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Abstract

Our aim in this paper is to deal with continuity properties for logarithmic
potentials of functions in Morrey spaces of variable exponent. Our exponent
approaches 1 on some part of the domain, and hence continuity properties
depend on the shape of that part and the speed of the exponent approaching
1.

1 Introduction

Let Rn be the n-dimensional Euclidean space. Following Orlicz [7] and Kováčik-
Rákosńık [1], for a continuous function p(·) : Rn → [1,∞), which is called a
variable exponent, we consider the generalized Lebesgue space Lp(·)(Rn). In recent
years, the generalized Lebesgue spaces have attracted more and more attention, in
connection with the study of elasticity, fluid mechanics and differential equations

with p(·)-growth; see R
◦
užička [9].

In the present paper we are concerned with generalized Morrey spaces of vari-
able exponent p(·). We use the notation B(x, r) to denote the open ball centered
at x with radius r. For 0 ≤ ν ≤ n and a positive function ϕ : (0,∞) → (0,∞), we
define the Lp(·),ν,ϕ-norm of a locally integrable function f on Rn by

‖f‖p(·),ν,ϕ = inf

{
λ > 0 : sup

x∈Rn,r>0
r−νϕ(r)

∫
B(x,r)

∣∣∣∣f(y)

λ

∣∣∣∣p(y)

dy ≤ 1

}
.

We denote by Lp(·),ν,ϕ(Rn) the space of all measurable functions f on Rn with
‖f‖p(·),ν,ϕ < ∞. This space Lp(·),ν,ϕ(Rn) is referred to as a generalized Morrey
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space of variable exponent. In particular, Lp(·),0,1(Rn) is equal to the generalized
Lebesgue space Lp(·)(Rn).

In this paper, we consider a variable exponent p(·) satisfying the following
special condition. For a compact set K in Rn, we define

K(r) = {x ∈ Rn : δK(x) < r},

where δK(x) denotes the distance of x from K. For a nonincreasing function
k(·) : (0,∞] → (0,∞), we consider a function ω satisfying a generalized log-Hölder
condition such that ω(0) = 0,

ω(r) =
log k(r)

log(1/r)

for 0 < r < r0 and ω(r) = ω(r0) for r ≥ r0, where the number r0 is chosen so that
ω(r) is nondecreasing on (0, r0) (see Lemma 2.3 below). Now we define a variable
exponent p(·) by

p(x) = p0 + ω(δK(x))

for p0 ≥ 1; set p(x) = p0 on K.
For 0 ≤ α ≤ n, we say that the (n − α)-dimensional upper Minkowski content

of K is finite (see Mattila [2]) if there exists a constant C > 0 such that

|K(r)| ≤ Crα for small r > 0,

where |E| denotes the Lebesgue measure of a set E. Note here that if K is a
singleton, then its 0-dimensional upper Minkowski content is finite, and if K is a
spherical surface, then its (n − 1)-dimensional upper Minkowski content is finite.
Moreover, as examples of K, we may consider fractal type sets like Cantor sets or
Koch curves.

In view of [4, Lemma 2.4], we know that if ν = 0, ϕ(·) ≡ 1 and the (n − α)-
dimensional upper Minkowski content of K is finite, then for each bounded open
set G ⊂ Rn, ∫

G

|f(x)|p0k(|f(x)|−1)α/p0 dx < ∞

for all f ∈ Lp(·)(Rn). Our first aim in this paper is to obtain the following theorem
which gives an extension of the above fact to the generalized Morrey space of
variable exponent. For this purpose we need several conditions on k and ϕ, which
are stated in Section 2.

Theorem A (cf. [4, Lemma 2.4]). Suppose 0 ≤ ν ≤ α ≤ n and the (n − α)-
dimensional upper Minkowski content of K is finite. Then for each bounded open
set G ⊂ Rn there exists a constant C > 0 such that∫

G∩B(x,r)

|f(y)|p0k(|f(y)|−1)(α−ν)/p0dy ≤ Crνϕ(r)−1
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for all x ∈ Rn, r > 0 and f ∈ Lp(·),ν,ϕ(Rn) with ‖f‖p(·),ν,ϕ ≤ 1.

In Section 3, we consider the logarithmic potential of a locally integrable func-
tion f on Rn, which is defined by

Lf(x) =

∫
Rn

(log(1/|x − y|)) f(y)dy.

Here it is natural to assume that∫
Rn

(log(2 + |y|))|f(y)|dy < ∞, (1.1)

which is equivalent to the condition that −∞ < Lf 6≡ ∞ (see [3, Section 2.6]). If
f is a locally integrable function on Rn satisfying (1.1) and∫

Rn

|f(y)|(log(2 + |f(y)|))dy < ∞,

then it is known that Lf is continuous on Rn (see [3, Theorem 9.1, Section 5.9]).
Our second aim is to show the following theorem which deals with the continuity of
logarithmic potentials of functions in Morrey spaces (see Section 3 for the definition
of ϕ1 and Φ).

Theorem B. Let f ∈ L1,ν,ϕ(Rn) satisfy (1.1).

(1) If 0 ≤ ν ≤ 1 and ϕ1(1/2) < ∞ when ν = 0, then

|Lf(x) − Lf(z)| ≤ C|x − z|νΦ(|x − z|)

whenever 0 < |x − z| < 1/2, where the constant C may depend on the
L1-norm and L1,ν,ϕ-norm of f .

(2) If ν > 1, then
|Lf(x) − Lf(z)| ≤ C|x − z|

whenever 0 < |x − z| < 1/2, where the constant C may depend on the
L1-norm and L1,ν,ϕ-norm of f .

In the final section, our aim is to show the following theorem which deals with
the continuity of logarithmic potentials of functions in Morrey spaces of variable
exponent by use of Theorems A and B (see Section 4 for the definition of ϕk).

Theorem C. Assume that p0 = 1, 0 ≤ ν ≤ α ≤ n and the (n − α)-dimensional
upper Minkowski content of K is finite. Let f ∈ Lp(·),ν,ϕ(Rn) satisfy (1.1).

(1) If 0 ≤ ν ≤ 1 and ∫ 1/2

0

ϕ(t)−1k(t)−α dt

t
< ∞
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when ν = 0, then

|Lf(x) − Lf(z)| ≤ C|x − z|νϕk(|x − z|)

whenever 0 < |x − z| < 1/2, where the constant C may depend on the
L1-norm and Lp(·),ν,ϕ-norm of f .

(2) If ν > 1, then

|Lf(x) − Lf(z)| ≤ C|x − z|

whenever 0 < |x − z| < 1/2, where the constant C may depend on the
L1-norm and Lp(·),ν,ϕ-norm of f .

2 Morrey spaces of variable exponent

Throughout this paper, let C denote various positive constants independent of the
variables in question.

We say that a positive function ϕ on (0,∞) is quasi-increasing if there exists a
constant C > 1 such that

ϕ(s) ≤ Cϕ(t) whenever 0 < s ≤ t.

A positive function ϕ on (0,∞) is called quasi-decreasing if ϕ(t)−1 is quasi-increasing.

From now on we consider a positive function ϕ on (0,∞) for which there exists
a constant C1 > 1 such that

(ϕ1) C−1
1 ϕ(r) ≤ ϕ(t) ≤ C1ϕ(r) whenever 0 < r ≤ t ≤ 2r2 or 0 < r2 ≤ t ≤ 2r,

which implies the doubling condition:

(ϕ2) C−1
2 ϕ(r) ≤ ϕ(t) ≤ C2ϕ(r) whenever 0 < r ≤ t ≤ 2r

for some constant C2 > 1. Our typical example of ϕ is of the form

ϕ(r) = a(log(1)(1/r))
b(log(2)(1/r))

c

for r > 0, where a > 0 and b, c ∈ R and log(0) t = e, log(1) t = log(e + t) and
log(m+1) t = log(e + log(m) t) for m = 1, 2, . . ..

Lemma 2.1 ([3, Lemma 3.1, Section 5.3]). If γ > 0, then tγϕ(t) is quasi-increasing
on (0,∞).
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Lemma 2.2 (cf. [4, Lemma 2.3]). For 0 ≤ α ≤ n suppose the (n − α)-dimensional
upper Minkowski content of K is finite. If ψ(t) is a positive quasi-increasing mea-
surable function on (0,∞) satisfying the doubling condition, then for each bounded
open set G ⊂ Rn there exists a constant C > 0 such that∫

(G∩K(ρ)∩B(x,r))\K
ψ(δK(y))−1dy ≤ C

∫ min{r,ρ}

0

tαψ(t)−1dt

t

for all x ∈ Rn, r > 0 and ρ > 0.

Proof. Since G is bounded, we have

|G ∩ K(r)| ≤ Crα

for all r > 0. First consider the case K ∩ B(x, 2r) 6= ∅. For each integer j, set
Kj = {y ∈ G ∩ B(x, r) : 2−j−1 min{r, ρ} ≤ δK(y) < 2−j min{r, ρ}}. Then we have
by the doubling condition on ψ∫

(G∩K(ρ)∩B(x,r))\K
ψ(δK(y))−1dy =

∞∑
j=−2

∫
Kj

ψ(δK(y))−1 dy

≤ C

∞∑
j=−2

ψ(2−j min{r, ρ})−1|G ∩ K(2−j min{r, ρ})|

≤ C
∞∑

j=0

ψ(2−j min{r, ρ})−1(2−j min{r, ρ})α

≤ C

∫ min{r,ρ}

0

tαψ(t)−1dt

t

for all r > 0 and ρ > 0.
Next consider the case K ∩ B(x, 2r) = ∅. Then note that r < δK(y) ≤ ρ if

y ∈ G ∩ K(ρ) ∩ B(x, r). It follows from the doubling condition on ψ that∫
(G∩K(ρ)∩B(x,r))\K

ψ(δK(y))−1dy ≤ Cψ(r)−1

∫
G∩B(x,r)

dy

≤ Cψ(r)−1

{
rn if r < 1,
|G| if r ≥ 1

≤ Crαψ(r)−1 ≤ C

∫ min{r,ρ}

0

tαψ(t)−1dt

t

for all r > 0 and ρ > 0. Thus the required assertion is now proved.

Consider a positive continuous nonincreasing function k on (0,∞) for which
there exist ε0 ≥ 0 and 0 < r0 < 1 such that
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(k) (log(1/r))−ε0k(r) is nondecreasing on (0, r0) and k(r0) ≥ eε0 ;

(k’) k(r) > 1 for all r > 0.

By (k) and (k’), we find (see [4]) that

C−1k(r) ≤ k(r2) ≤ Ck(r) whenever r > 0, (2.1)

which implies the doubling condition on k for r > 0. Our typical example of k is
of the form

k(r) = a(log(1)(1/r))
b(log(2)(1/r))

c

for r ∈ (0, r0), where a > 0, b ≥ 0 and c ∈ R are numbers for which r0 can be
chosen so that k(r) is nonincreasing on (0, r0) and satisfies (k).

In view of (k), we have the following lemma.

Lemma 2.3 ([4, Lemma 2.1]). There exists 0 < r∗ < r0 such that ω(r) = log k(r)/ log(1/r)
is nondecreasing on (0, r∗).

In view of this lemma, we retake the above r0 > 0 so that log k(r)/ log(1/r) is
nondecreasing on (0, r0).

In what follows, we set

ω(r) = ω(r0) for r ≥ r0

and consider a positive continuous function p(·) such that p(x) = p0 on K and

p(x) = p0 + ω(δK(x))

for δK(x) > 0, where p0 ≥ 1.
For 0 ≤ ν ≤ n and a locally integrable function f on Rn, we define its Lp(·),ν,ϕ-

norm by

‖f‖p(·),ν,ϕ = inf

{
λ > 0 : sup

x∈Rn,r>0
r−νϕ(r)

∫
B(x,r)

∣∣∣∣f(y)

λ

∣∣∣∣p(y)

dy ≤ 1

}
.

We denote by Lp(·),ν,ϕ(Rn) the space of all locally integrable functions f on Rn with
‖f‖p(·),ν,ϕ < ∞. Hereafter it is natural to assume further that ϕ is measurable,

(ϕ3) ϕ(r) is quasi-decreasing on (0,∞) when ν = 0 and

(ϕ4) lim supr→0 ϕ(r) < ∞ when ν = n.

It is worth to note the following results.
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Lemma 2.4. Suppose ν > 0. Then∫ r

0

tνϕ(t)−1dt

t
≤ Crνϕ(r)−1

for all r > 0.

Proof. Taking 0 < ν ′ < ν, we see by Lemma 2.1 that∫ r

0

tνϕ(t)−1dt

t
≤ Crν−ν′

ϕ(r)−1

∫ r

0

tν
′ dt

t
≤ Crνϕ(r)−1

for all r > 0, as required.

Lemma 2.5. Let 0 ≤ ν ≤ n. If G is a bounded open set in Rn, then there exists a
constant C > 0 such that ∫

G∩B(x,r)

dy ≤ Crνϕ(r)−1

for all x ∈ Rn and r > 0.

Proof. Since rn−νϕ(r) is quasi-increasing on (0, 1) by Lemma 2.1 and (ϕ4), we see
that ∫

G∩B(x,r)

dy ≤ Crn ≤ Crνϕ(r)−1

when 0 < r < 1. If r ≥ 1, then∫
G∩B(x,r)

dy ≤ |G| ≤ Crνϕ(r)−1

since rνϕ(r)−1 is quasi-increasing on (0,∞) by Lemma 2.1 and (ϕ3).

Now we prove Theorem A.

Proof of Theorem A. Let f ∈ Lp(·),ν,ϕ(Rn) with ‖f‖p(·),ν,ϕ ≤ 1.
First consider the case ν = α. In this case, by Lemma 2.5, we have∫

G∩B(x,r)

|f(y)|p0dy ≤
∫

G∩B(x,r)

dy +

∫
G∩B(x,r)

|f(y)|p(y)dy ≤ Crνϕ(r)−1

for x ∈ Rn and r > 0.
Next consider the case 0 ≤ ν < α. Setting G′ = {y ∈ G : |f(y)| ≤ e}, we note

that ∫
G′∩B(x,r)

|f(y)|p0k(|f(y)|−1)(α−ν)/p0dy ≤ C

∫
G∩B(x,r)

dy ≤ Crνϕ(r)−1
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by Lemma 2.5. Consider

N(t) = t−(α−ν)/p0(log(1/t))−ε0(α−ν)/p2
0−2/p0ϕ(t)−1/p0

and
G′′ = {y ∈ (K(r0) ∩ B(x, r)) \ K : |f(y)| < N(δ(y))},

where we set δ(y) = δK(y) for simplicity; here recall that ε0 is the constant in (k).
Since tp0k(t−1)(α−ν)/p0 is nondecreasing on (0,∞), using condition (k), we have for
y ∈ G′′,

|f(y)|p0k(|f(y)|−1)(α−ν)/p0 ≤ CN(δ(y))p0k(N(δ(y))−1)(α−ν)/p0

≤ CN(δ(y))p0k(δ(y))(α−ν)/p0

≤ Cδ(y)−(α−ν)(log(1/δ(y)))−2ϕ(δ(y))−1.

Hence it follows from Lemma 2.2 that∫
G′′

|f(y)|p0k(|f(y)|−1)(α−ν)/p0dy ≤ C

∫
G′′

δ(y)−(α−ν)(log(1/δ(y)))−2ϕ(δ(y))−1dy

≤ C

∫ min{r,r0}

0

tν(log(1/t))−2ϕ(t)−1dt

t

≤ Crνϕ(r)−1

∫ r0

0

(log(1/t))−2dt

t

≤ Crνϕ(r)−1

since tνϕ(t)−1 is quasi-increasing on (0,∞).
If y ∈ (K(r0) ∩ B(x, r)) \ (G′ ∪ G′′ ∪ K), then

|f(y)| ≥ N(δ(y)),

so that, by Lemma 2.1 and (ϕ1), we have

|f(y)|−p0/(α−ν)(log |f(y)|)−ε0/p0−2/(α−ν)ϕ(|f(y)|−1)−1/(α−ν)

≤ CN(δ(y))−p0/(α−ν)(log(1/δ(y)))−ε0/p0−2/(α−ν)ϕ(δ(y))−1/(α−ν)

≤ Cδ(y).

Set M(t) = t−p0/(α−ν)(log t)−ε0/p0−2/(α−ν)ϕ(t−1)−1/(α−ν) for simplicity. Then, in
view of Lemma 2.3, we see that

log k(δ(y))

log(1/δ(y))
≥ log k(CM(|f(y)|))

log(1/(CM(|f(y)|)))
.

Noting that
k(CM(|f(y)|)) ≥ Ck(|f(y)|−1)

by (2.1) and

log(1/(CM(|f(y)|))) ≤ (p0/(α − ν)) log(|f(y)|) + ε(|f(y)|)
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with ε(r) ≤ C(log(log r) + max{0, log ϕ(r−1)}), we establish

log k(δ(y))

log(1/δ(y))
log(|f(y)|) ≥ log(Ck(|f(y)|−1))

p0

α−ν
log(|f(y)|) + ε(|f(y)|)

log(|f(y)|)

≥ α − ν

p0

log k(|f(y)|−1) − C

since |f(y)| ≥ e and (log k(r−1))ε(r)/(log r + ε(r)) is bounded for r ≥ e. Hence we
have

|f(y)|p(y)−p0 = exp

(
log k(δ(y))

log(1/δ(y))
log |f(y)|

)
≥ exp

(
α − ν

p0

log k(|f(y)|−1) − C

)
= Ck(|f(y)|−1)(α−ν)/p0 .

Thus it follows that∫
(K(r0)∩B(x,r))\(G′∪G′′)

|f(y)|p0k(|f(y)|−1)(α−ν)/p0dy ≤ C

∫
B(x,r)

|f(y)|p(y) dy ≤ Crνϕ(r)−1

since |K| = 0 for α > 0.
Finally, since p(y) = p0 + ω(r0) > p0 when δ(y) ≥ r0, we find by Lemma 2.5∫

(G∩B(x,r))\K(r0)

|f(y)|p0k(|f(y)|−1)(α−ν)/p0dy

≤ C

∫
B(x,r)

|f(y)|p(y) dy + C

∫
G∩B(x,r)

dy ≤ Crνϕ(r)−1.

The required assertion is now proved.

Remark 2.6. We set Ψk(t) = tp0k(t−1)(α−ν)/p0 for t > 0, which satisfies the dou-
bling condition by (2.1). For 0 ≤ ν ≤ n and a locally integrable function f on Rn,
we define its quasi-norm by

‖f‖Ψk,ν,ϕ = inf

{
λ > 0 : sup

x∈Rn,r>0
r−νϕ(r)

∫
B(x,r)

Ψk

(∣∣∣∣f(y)

λ

∣∣∣∣) dy ≤ 1

}
(see [5]). We denote by LΨk,ν,ϕ(Rn) the space of all locally integrable functions f
on Rn with ‖f‖Ψk,ν,ϕ < ∞. Then it follows from Theorem A that for each bounded
open set G,

‖f‖Ψk,ν,ϕ ≤ C‖f‖p(·),ν,ϕ whenever f ∈ Lp(·),ν,ϕ(G),

where Lp(·),ν,ϕ(G) = {f ∈ Lp(·),ν,ϕ(Rn) : f = 0 outside G}.
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Remark 2.7. Set K = {0}. Let

k(t) = (log(m)(1/t))
a

for a > 0 and an integer m ≥ 0 and

ϕ(t) = (log(`)(1/t))
b

for an integer ` ≥ 1 and b > 0. Then

p(x) = p0 +
a log(log(m)(1/|x|))

log(1/|x|)

for x ∈ B(0, r0) \ {0}. Then we can find f ∈ Lp(·),ν,ϕ(Rn) satisfying∫
B(0,r)

|f(y)|p0(log(m) |f(y)|)a(n−ν)/p0dy ≥ Crν(log(`)(1/r))
−b

for all 0 < r < r0. This shows that the conclusion of Theorem A is sharp when
K = {0} and k, ϕ are as above.

For this purpose, in case 0 < ν ≤ n, we consider the function

f(y) = |y|−(n−ν)/p0(log(`)(1/|y|))−b/p0(log(m)(1/|y|))−a(n−ν)/p2
0

for y ∈ B(0, r0); set f(y) = 0 when |y| ≥ r0. Then, as in the proof of Theorem A,
we note that

f(y)p(y)−p0 = exp

(
a log(log(m)(1/|y|))

log(1/|y|)
log f(y)

)
≤ exp

(
a(n − ν)

p0

log(log(m)(1/|y|)) + C

)
≤ C(log(m)(1/|y|))a(n−ν)/p0 .

We see by Lemma 2.4 that∫
B(x,r)

f(y)p(y) dy ≤ C

∫
B(0,r0)∩B(x,r)

|y|−(n−ν)(log(`)(1/|y|))−bdy

≤ C

∫
B(0,r)

|y|−(n−ν)(log(`)(1/|y|))−bdy

≤ C

∫ r

0

tν(log(`)(1/t))
−b dt

t

≤ Crν(log(`)(1/r))
−b

for all x ∈ Rn and r > 0, which implies that f ∈ Lp(·),ν,ϕ(Rn). Further, we have∫
B(0,r)

f(y)p0(log(m) f(y))a(n−ν)/p0dy = C

∫ r

0

tν(log(`)(1/t))
−b dt

t

≥ Crν(log(`)(1/r))
−b
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for all 0 < r < r0.
In case ν = 0, since

C−1(log(`)(1/r))
−b ≤

∫ r

0

(log(`)(1/t))
−(b+1)

`−1∏
j=1

(log(j)(1/t))
−1dt

t
≤ C(log(`)(1/r))

−b

for 0 < r < r0, we have only to replace f by

f(y) = |y|−n/p0(log(`)(1/|y|))−(b+1)/p0(log(m)(1/|y|))−an/p2
0

`−1∏
j=1

(log(j)(1/|y|))−1/p0

for y ∈ B(0, r0). Here we used the convention
∏0

j=1 aj = 1.

We show another imbedding from Lp(·),ν,ϕ(Rn) to the Morrey space Lp0,ν,Φk(G),
where Φk(r) = ϕ(r)k(r)(α−ν)/p0 and G is a bounded open set in Rn.

Theorem 2.8. Suppose 0 ≤ ν ≤ α ≤ n, 0 ≤ κ ≤ (α − ν)/p0 and the (n − α)-
dimensional upper Minkowski content of K is finite. For each bounded open set
G ⊂ Rn there exists a constant C > 0 such that∫

G∩B(x,r)

|f(y)|p0k(|f(y)|−1)(α−ν)/p0−κdy ≤ Crνϕ(r)−1k(r)−κ

for all x ∈ Rn, r > 0 and f ∈ Lp(·),ν,ϕ(Rn) with ‖f‖p(·),ν,ϕ ≤ 1.

Proof. Since the case ν = α follows readily from Theorem A, we consider the case
0 ≤ ν < α. Take σ > 0 such that α − p0σ > ν. Then, since k is nonincreasing, we
have ∫

G∩B(x,r)

|f(y)|p0k(|f(y)|−1)(α−ν)/p0−κdy

=

∫
{y∈G∩B(x,r):|f(y)|≤r−σ}

|f(y)|p0k(|f(y)|−1)(α−ν)/p0−κdy

+

∫
{y∈G∩B(x,r):|f(y)|>r−σ}

|f(y)|p0k(|f(y)|−1)(α−ν)/p0−κdy

≤ r−σp0k(rσ)(α−ν)/p0−κ

∫
G∩B(x,r)

dy

+k(rσ)−κ

∫
G∩B(x,r)

|f(y)|p0k(|f(y)|−1)(α−ν)/p0dy.

By Lemma 2.5 with rνϕ(r)−1 replaced by rν+σp0ϕ(r)−1k(r)−(α−ν)/p0 , Theorem A
and (2.1), we have∫

G∩B(x,r)

|f(y)|p0k(|f(y)|−1)(α−ν)/p0−κdy ≤ Crνϕ(r)−1k(r)−κ

for all x ∈ Rn and r > 0, as required.
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Remark 2.9. Let 0 ≤ ν ≤ α ≤ n. Set Φk(t) = ϕ(t)k(t)(α−ν)/p0 for t > 0. Then
Theorem 2.8 implies that

‖f‖p0,ν,Φk
≤ C‖f‖p(·),ν,ϕ whenever f ∈ Lp(·),ν,ϕ(G)

for each bounded open set G ⊂ Rn.
Here we recall that

‖f‖p0,ν,Φk
= sup

x∈Rn,r>0

(
r−νΦk(r)

∫
B(x,r)

|f(y)|p0dy

)1/p0

.

3 Continuity of logarithmic potentials of func-

tions in Morrey spaces

For the function ϕ as above, we consider a function ϕ1 on (0, 1/2] and a nonin-
creasing function ϕ2 on (0, 1/2] such that

ϕ1(r) =

∫ r

0

ϕ(t)−1dt

t
and ϕ2(r) =

∫ 1

r

ϕ(t)−1dt

t
.

We set

Φ(r) =


ϕ1(r) if ν = 0,
ϕ(r)−1 if 0 < ν < 1,
ϕ2(r) if ν = 1

for 0 < r ≤ 1/2. In view of (ϕ2), note that

ϕ1(r) ≥ Cϕ(r)−1 and ϕ2(r) ≥ Cϕ(r)−1

for 0 < r ≤ 1/2.

Remark 3.1. Let ϕ(t) = (log(1)(1/t))
β for β ∈ R. Then

ϕ1(r) ≤ C(log(1)(1/r))
−β+1 if β > 1

and

ϕ2(r) ≤ C


(log(1)(1/r))

−β+1 if β < 1,
log(2)(1/r) if β = 1,
1 if β > 1

for 0 < r ≤ 1/2.

Our aim in this section is to give a proof of Theorem B, which deals with
the continuity of logarithmic potentials of functions in Morrey spaces of constant
exponent. For the proof we prepare the following two lemmas.
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Lemma 3.2. Let 0 ≤ ν ≤ n. If f ∈ L1,ν,ϕ(Rn), then there exists a constant C > 0
such that ∫

B(x,δ)

(log(δ/|x − y|)) |f(y)|dy ≤ C

{
δνΦ(δ) if 0 ≤ ν ≤ 1,
δ if ν > 1

for all x ∈ Rn and 0 < δ < 1/2, where the constant C may depend on the
L1,ν,ϕ-norm of f .

Proof. Let f ∈ L1,ν,ϕ(Rn). By Lemma 2.4, we have∫
B(x,δ)

(log(δ/|x − y|)) |f(y)|dy =

∫ δ

0

(log(δ/t))

(∫
∂B(x,t)

|f(y)|dS(y)

)
dt

≤
∫ δ

0

(∫
B(x,t)

|f(y)|dy

)
dt

t

≤ C

∫ δ

0

tνϕ(t)−1dt

t

≤ C

{
δνΦ(δ) if 0 ≤ ν ≤ 1,
δ if ν > 1

for all x ∈ Rn and 0 < δ < 1/2, as required.

Lemma 3.3. Let 0 ≤ ν ≤ n. If f ∈ L1,ν,ϕ(Rn) satisfies (1.1), then∫
Rn\B(x,δ)

|x − y|−1|f(y)|dy ≤ C

{
δν−1Φ(δ) if 0 ≤ ν ≤ 1,
1 if ν > 1

for all x ∈ Rn and 0 < δ < 1/2, where the constant C may depend on the L1-norm
and L1,ν,ϕ-norm of f .

Proof. Let f ∈ L1,ν,ϕ(Rn) satisfy (1.1). For x ∈ Rn and 0 < δ < 1/2, we find∫
Rn\B(x,δ)

|x − y|−1|f(y)|dy =

∫ ∞

δ

t−1

(∫
∂B(x,t)

|f(y)|dS(y)

)
dt

≤
∫ ∞

δ

t−1

(∫
B(x,t)

|f(y)|dy

)
dt

t

≤ C

∫ 1

δ

tν−1ϕ(t)−1dt

t
+

∫
Rn

|f(y)|dy

∫ ∞

1

t−1dt

t

≤ C

∫ 1

δ

tν−1ϕ(t)−1dt

t
+

∫
Rn

|f(y)|dy

≤ C

{
δν−1Φ(δ) if 0 ≤ ν ≤ 1,
1 if ν > 1

since f ∈ L1(Rn) by (1.1).
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Now we are ready to prove Theorem B.

Proof of Theorem B. Let f ∈ L1,ν,ϕ(Rn) satisfy (1.1). By Lemma 3.2 and (ϕ2), we
have ∫

B(x,2|x−z|)
|log(1/|x − y|) − log(1/|z − y|)| |f(y)|dy

≤
∫

B(x,2|x−z|)
(log(3|x − z|/|x − y|)) |f(y)|dy

+

∫
B(z,3|x−z|)

(log(3|x − z|/|z − y|)) |f(y)|dy

≤ C

{
|x − z|νΦ(|x − z|) if 0 ≤ ν ≤ 1,
|x − z| if ν > 1

(3.1)

for |x − z| < 1/6.
On the other hand, we see from the mean value theorem for analysis, Lemma

3.3 and (ϕ2) that∫
Rn\B(x,2|x−z|)

|log(1/|x − y|) − log(1/|z − y|)| |f(y)|dy

≤ C|x − z|
∫

Rn\B(x,2|x−z|)
|x − y|−1|f(y)|dy

≤ C

{
|x − z|νΦ(|x − z|) if 0 ≤ ν ≤ 1,
|x − z| if ν > 1

(3.2)

for |x − z| < 1/6.
Hence it follows from (3.1) and (3.2) that

|Lf(x) − Lf(z)| ≤ C

{
|x − z|νΦ(|x − z|) if 0 ≤ ν ≤ 1,
|x − z| if ν > 1

for |x − z| < 1/6, which proves the theorem.

For p0 > 1, we set νp0 = ν/p0 + n/p′0 and

Φp0(r) =

{
ϕ(r)−1/p0 if νp0 < 1,∫ 1

r
ϕ(t)−1/p0 dt

t
if νp0 = 1

for 0 < r ≤ 1/2.

Corollary 3.4. Suppose p0 > 1. Let f ∈ Lp0,ν,ϕ(Rn) satisfy (1.1).

(1) If νp0 ≤ 1, then

|Lf(x) − Lf(z)| ≤ C|x − z|νp0Φp0(|x − z|)

whenever 0 < |x − z| < 1/2, where the constant C may depend on the
L1-norm and Lp0,ν,ϕ-norm of f .
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(2) If νp0 > 1, then

|Lf(x) − Lf(z)| ≤ C|x − z|

whenever 0 < |x − z| < 1/2, where the constant C may depend on the
L1-norm and Lp0,ν,ϕ-norm of f .

Proof. Let f ∈ Lp0,ν,ϕ(Rn) satisfy (1.1). Then Jensen’s theorem gives

1

|B(x, r)|

∫
B(x,r)

|f(y)|dy ≤
(

1

|B(x, r)|

∫
B(x,r)

|f(y)|p0dy

)1/p0

≤ Cr−(n−ν)/p0ϕ(r)−1/p0

for all x ∈ Rn and r > 0, so that f ∈ L1,νp0 ,ϕ1/p0 (Rn). Hence, applying Theorem B
with ν and ϕ(r) replaced by νp0 and ϕ(r)1/p0 , we obtain the required assertion.

Remark 3.5. In the case ν = 0, we need the condition ϕ1(1/2) < ∞ for the
continuity of Lf .

For this, consider the functions

ϕ(t) = (log(1)(1/t))
a

and

f(y) = |y|−n(log(1/|y|))−2χB(0,1/2)(y),

where χE denotes the characteristic function of a measurable set E ⊂ Rn. If a ≤ 1,
then we see that ϕ1(1/2) = ∞,

(1) Lf(0) =

∫
(log(1/|y|))f(y)dy = ∞; and

(2)

∫
B(x,r)

f(y)dy ≤ C(log(1)(1/r))
−1 ≤ Cϕ(r)−1 for all x ∈ Rn and r > 0.

This implies that f ∈ L1,0,ϕ(Rn), but Lf is not continuous at the origin.

Remark 3.6. We show that Theorem B is sharp. In fact, if 0 < ν ≤ 1, then, letting
ϕ(t) = (log(m)(1/t))

a for an integer m ≥ 0 and a ∈ R, we can find f ∈ L1,ν,ϕ(Rn)
satisfying

|Lf(0) − Lf(x(i))| ≥ C|x(i)|νΦ(|x(i)|)

for some sequence {x(i)} which tends to the origin.
To show this, we consider the sequence x(i) = (0, 0, . . . ,−1/i) and the function

f(y) = |y|−(n−ν)ϕ(|y|)−1χΓ+(y),
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where Γ+ = {y = (y′, yn) ∈ B(0, 1/2) : |y′| < yn/2}. Then, by Lemma 2.4, we have∫
B(x,r)

f(y)dy ≤ C

∫ r

0

tνϕ(t)−1dt

t
≤ Crνϕ(r)−1

for all x ∈ Rn and r > 0, so that f ∈ L1,ν,ϕ(Rn). Further, we have

|Lf(0) − Lf(x(i))|

=

∫
Γ+

(
log(1/|y|) − log(1/|x(i) − y|)

)
f(y)dy

≥
∫

Γ+∩B(0,|x(i)|/2)

(
log(1/|y|) − log(2/|x(i)|)

)
f(y)dy

+

∫
Γ+\B(0,|x(i)|/2)

(
log(1/|y|) − log(1/|x(i) − y|)

)
f(y)dy

≥ C

∫
Γ+∩B(0,|x(i)|/3)

f(y)dy + C|x(i)|
∫

Γ+\B(0,|x(i)|/2)

|y|−1f(y)dy

≥ C

∫ |x(i)|/3

0

tνϕ(t)−1dt

t
+ C|x(i)|

∫ 1/2

|x(i)|/2

tν−1ϕ(t)−1dt

t

≥ C|x(i)|νΦ(|x(i)|).

If ν = 0, then, letting

ϕ(t) = (log(m)(1/t))
a

m−1∏
j=1

log(j)(1/t)

for a > 1 and an integer m ≥ 1, we have only to consider the function

f(y) = |y|−n(log(1/|y|))−1ϕ(|y|)−1χΓ+(y).

Then we can show as above that f ∈ L1,0,ϕ(Rn) and

|Lf(0) − Lf(x(i))| ≥ C

∫
Γ+∩B(0,|x(i)|2/2)

(log(1/|y|))f(y)dy

≥ C(log(m)(1/|x(i)|))−a+1

for x(i) = (0, 0, . . . ,−1/i).

4 Continuity of logarithmic potentials of func-

tions in Morrey spaces of variable exponent

We set

ϕk(r) =


∫ r

0
ϕ(t)−1k(t)−α dt

t
if ν = 0,

ϕ(r)−1k(r)−(α−ν) if 0 < ν < 1,∫ 1

r
ϕ(t)−1k(t)−(α−1) dt

t
if ν = 1

16



for 0 < r ≤ 1/2.
Our final goal is to give a proof of Theorem C, which deals with the continuity

of logarithmic potentials of functions in Morrey spaces of variable exponent.

Proof of Theorem C. Let f ∈ Lp(·),ν,ϕ(Rn) satisfy (1.1). We set

f = fχK(r0) + fχRn\K(r0) = f1 + f2.

Since K(r0) is a bounded open set, we have by Theorem 2.8 with κ = α − ν∫
B(x,r)

|f1(y)|dy ≤ Crνϕ(r)−1k(r)−(α−ν)

for all x ∈ Rn and r > 0. Applying Theorem B with ϕ(r) replaced by ϕ(r)k(r)α−ν ,
we have

|Lf1(x) − Lf1(z)| ≤ C

{
|x − z|νϕk(|x − z|) if 0 ≤ ν ≤ 1,
|x − z| if ν > 1

for 0 < |x − z| < 1/2. On the other hand, since p(y) = p1 := 1 + ω(r0) for
y ∈ Rn \ K(r0), we have ∫

B(x,r)

|f2(y)|p1dy ≤ Crνϕ(r)−1

for all x ∈ Rn and r > 0. Then, by Corollary 3.4, we have

|Lf2(x) − Lf2(z)| ≤ C

{
|x − z|νp1Φp1(|x − z|) if νp1 ≤ 1,
|x − z| if νp1 > 1

for 0 < |x − z| < 1/2. Hence, we obtain that

|Lf(x) − Lf(z)| ≤ C

{
|x − z|νϕk(|x − z|) if 0 ≤ ν ≤ 1,
|x − z| if ν > 1

for 0 < |x − z| < 1/2 since νp1 ≥ ν and rνp1−νΦp1(r)ϕk(r)
−1 is quasi-increasing on

(0,1/2) for νp1 ≤ 1.

For p0 > 1, we set

ϕk,p0(r) =

{
ϕ(r)−1/p0k(r)−(α−ν)/p2

0 if νp0 < 1,∫ 1

r
ϕ(t)−1/p0k(t)−(α−1)/p2

0 dt
t

if νp0 = 1

for 0 < r ≤ 1/2.

Using Corollary 3.4 instead of Theorem B, we can similarly show the following
corollary.
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Corollary 4.1. Suppose p0 > 1. Assume that 0 ≤ ν ≤ α ≤ n and the (n − α)-
dimensional upper Minkowski content of K is finite. Let f ∈ Lp(·),ν,ϕ(Rn) satisfy
(1.1).

(1) If νp0 ≤ 1, then

|Lf(x) − Lf(z)| ≤ C|x − z|νp0ϕk,p0(|x − z|)

whenever 0 < |x − z| < 1/2, where the constant C may depend on the
L1-norm and Lp(·),ν,ϕ-norm of f .

(2) If νp0 > 1, then
|Lf(x) − Lf(z)| ≤ C|x − z|

whenever 0 < |x − z| < 1/2, where the constant C may depend on the
L1-norm and Lp(·),ν,ϕ-norm of f .

From now on we consider

k(r) = eb(log(1)(1/r))
a

and
ϕ(r) = (log(1)(1/r))

β

for a ≥ 0, b ≥ 0, β ∈ R and r > 0, where β ≥ 0 when ν = 0 and β ≤ 0 when ν = n.
Then, letting A = a(n − ν) + β, we see that

ϕk(r) ≤ CΨ(r),

where

Ψ(r) =


(log(1)(1/r))

−A+1 if ν = 0,
(log(1)(1/r))

−A if 0 < ν < 1,
(log(1)(1/r))

−A+1 if ν = 1 and A < 1,
log(2)(1/r) if ν = 1 and A = 1,
1 if ν = 1 and A > 1

for 0 < r ≤ 1/2.
By Theorem C with K = {x0} and Remark 3.1, we have the following result.

Corollary 4.2. Let ωa,b(0) = 0,

ωa,b(r) =
a log(log(1)(1/r))

log(1/r)
+

b

log(1/r)

for 0 < r < r0 and ωa,b(r) = ωa,b(r0) for r ≥ r0, where the number r0 is chosen so
that ωa,b(r) is nondecreasing on (0, r0) and satisfies (k). Set

p(x) = 1 + ωa,b(|x0 − x|).
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Let f ∈ Lp(·),ν,ϕ(Rn) satisfy (1.1). If 0 ≤ ν ≤ 1 and A > 1 when ν = 0, then

|Lf(x) − Lf(z)| ≤ C|x − z|νΨ(|x − z|)

whenever 0 < |x − z| < 1/2, where the constant C may depend on the L1-norm
and Lp(·),ν,ϕ-norm of f .

We have three remarks for Corollary 4.2.

Remark 4.3. When ν = β = 0, we showed that∫
G

|f(y)|(log(1 + |f(y)|))andy < ∞

for all f ∈ Lp(·)(Rn) (see Theorem A). It follows from [3, Theorem 9.1, Section 5.9]
that Lf is continuous on Rn even when ν = 0 and A = an = 1, in case ϕ(r) = 1
for which ϕk(r) = ∞.

Remark 4.4. In case ν = 0 and an < 1, we need the condition A > 1 for the
continuity of Lf .

For this, set x0 = 0 and consider the function

f(y) = |y|−n(log(1/|y|))−2χB(0,1/2)(y).

Note that A = an + β. Thus, if A ≤ 1, then as in Remark 2.7, we see that

(1) Lf(0) =

∫
(log(1/|y|))f(y)dy = ∞; and

(2)

∫
B(x,r)

f(y)p(y)dy ≤ C

∫
B(x,r)∩B(0,1/2)

|y|−n(log(1/|y|))an−2dy ≤ C(log(1/r))an−1 ≤

C(log(1)(1/r))
−β for all x ∈ Rn and 0 < r < 1/2.

This implies that f ∈ Lp(·),0,ϕ(Rn), but Lf is not continuous at the origin.

Remark 4.5. Corollary 4.2 is seen to be sharp in the following sense: in case
x0 = 0 and 0 < ν ≤ 1, we can find f ∈ Lp(·),ν,ϕ(Rn) satisfying

|Lf(0) − Lf(x(i))| ≥ C|x(i)|νΨ(|x(i)|)

for some sequence {x(i)} which tends to the origin.
For this purpose, we consider the sequence x(i) = (0, 0, . . . ,−1/i) and the func-

tion

f(y) = |y|−(n−ν)(log(1/|y|))−AχΓ+(y),
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where Γ+ is as in Remark 3.6. Then, as in Remark 2.7, we have∫
B(x,r)

f(y)p(y)dy ≤ C

∫ r

0

tν(log(1/t))−β dt

t
≤ Crν(log(1/r))−β

for all x ∈ Rn and 0 < r < 1/2, which implies that f ∈ Lp(·),ν,ϕ(Rn). Further, we
can show the required property as in Remark 3.6.

Similarly, for ν = 0, we can find f ∈ Lp(·),0,ϕ(Rn) satisfying

|Lf(0) − Lf(x(i))| ≥ C(log(1/|x(i)|))−A+1

for some sequence {x(i)} which tends to the origin.

By Theorem C with K = ∂B(0, 1), we have the following corollary.

Corollary 4.6. Let

p(x) = 1 + ωa,b(1 − |x|),

where ωa,b(·) is as in Corollary 4.2. Set AS = a(1 − ν) + β and

ΨS(r) =


(log(1)(1/r))

−AS+1 if ν = 0,
(log(1)(1/r))

−AS if 0 < ν < 1,
(log(1)(1/r))

−AS+1 if ν = 1 and AS < 1,
log(2)(1/r) if ν = 1 and AS = 1,
1 if ν = 1 and AS > 1

for 0 < r ≤ 1/2.
Let f ∈ Lp(·),ν,ϕ(Rn) satisfy (1.1). If 0 ≤ ν ≤ 1 and AS > 1 when ν = 0, then

|Lf(x) − Lf(z)| ≤ C|x − z|νΨS(|x − z|)

whenever 0 < |x − z| < 1/2, where the constant C may depend on the L1-norm
and Lp(·),ν,ϕ-norm of f .
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