Compact embeddings in the generalized Sobolev space $W_0^{1,p(\cdot)}(G)$ and existence of solutions for nonlinear elliptic problems

Takao Ohno

Abstract

Our aim in this paper is to deal with the compact embedding in the generalized Sobolev space $W_0^{1,p(\cdot)}(G)$ with a variable exponent satisfying the log-Hölder condition. As an application, we find a nontrivial weak solution of the nonlinear elliptic problem

$$-\operatorname{div}\left(|\nabla u(x)|^{p(x)-2}\nabla u(x)\right) = f(x,u(x)) \quad \text{in } G, \qquad u(x) = 0 \quad \text{on } \partial G,$$

which is an extension of Fan-Zhang [3, Theorem 4.7].

1 Introduction

Let \mathbf{R}^N be the *N*-dimensional Euclidean space and let *G* be an open bounded set in \mathbf{R}^N . Following Orlicz [10] and Kováčik-Rákosník [7], for a function $p(\cdot)$: $G \to [1,\infty)$, which is called a variable exponent, we define the $L^{p(\cdot)}$ -norm of a measurable function *u* on *G* by

$$\|u\|_{L^{p(\cdot)}(G)} = \inf\left\{\lambda > 0 : \int_{G} \left|\frac{u(x)}{\lambda}\right|^{p(x)} dx \le 1\right\}$$

and denote by $L^{p(\cdot)}(G)$ the family of all measurable functions u with $||u||_{L^{p(\cdot)}(G)} < \infty$. In recent years, the generalized Lebesgue spaces have attracted more and more attention, in connection with the study of elasticity, fluid mechanics and differential equations with $p(\cdot)$ -growth; see Růžička [11]. Further we denote by $W^{1,p(\cdot)}(G)$ the family of all measurable functions u on G such that

$$\|u\|_{W^{1,p(\cdot)}(G)} = \|u\|_{L^{p(\cdot)}(G)} + \|\nabla u\|_{L^{p(\cdot)}(G)} < \infty$$

²⁰⁰⁰ Mathematics Subject Classification : Primary 46E30, 46B50

Key words and phrases : Sobolev spaces of variable exponents, compact embeddings, non-linear elliptic problems

and denote by $W_0^{1,p(\cdot)}(G)$ the closure of $C_0^{\infty}(G)$ in $W^{1,p(\cdot)}(G)$.

We consider a positive nondecreasing continuous function φ on $(0, \infty)$ for which there exist $\varepsilon_0 \ge 0$ and $0 < r_0 < 1$ such that

 $(\varphi) \ (\log(1/r))^{-\varepsilon_0} \varphi(1/r)$ is nondecreasing on $(0, r_0)$ and $\varphi(1/r_0) \ge e^{\varepsilon_0}$;

 $(\varphi') \ \varphi(r) > 1$ for all r > 0.

Our typical example of φ is of the form

$$\varphi(r) = a(\log(\beta_0 + r))^b(\log(\beta_0 + \log(\beta_0 + r)))^c$$

for $r \ge 0$, where the constants a > 0, $b \ge 0$, $c \in \mathbf{R}$ and $\beta_0 \ge e$ are chosen so that $\varphi(r)$ is nondecreasing on $(0, \infty)$.

Throughout this paper, let us assume that our variable exponent $p(\cdot)$ is a positive continuous function on G satisfying :

(p1)
$$1 < p_{-} = \inf_{x \in G} p(x) \le \sup_{x \in G} p(x) = p_{+} < N$$
;
(p2) $|p(x) - p(y)| \le \frac{\log \varphi(|x - y|^{-1})}{\log(e + |x - y|^{-1})}$ whenever $x, y \in G$

When $\varphi(\cdot)$ is a bounded function on $(0, \infty)$, we say that $p(\cdot)$ satisfies the log-Hölder condition on G, that is,

$$|p(x) - p(y)| \le \frac{c}{\log(e + |x - y|^{-1})}$$

for all $x, y \in G$, where c is a positive constant. We know the fact that if $p(\cdot)$ satisfies the log-Hölder condition on G, then the embedding from $W_0^{1,p(\cdot)}(G)$ to $L^{p^*(\cdot)}(G)$ is bounded, where

$$1/p^*(x) = 1/p(x) - 1/N$$

(see Diening [1, Theorem 5.2]). Further, we know that the embedding from $W_0^{1,p(\cdot)}(G)$ to $L^{q(\cdot)}(G)$ is compact for the variable exponent $q(\cdot)$ satisfying ess $\inf_{x \in G}(p^*(x) - q(x)) > 0$ (see Fan-Shen-Zhao [2, Theorem 1.3]).

On the other hand, in the case $\varphi(\cdot)$ is an unbounded function on $(0, \infty)$, that is, $\lim_{r\to\infty}\varphi(r) = \infty$, Mizuta and Shimomura [9] showed that the embedding from $W_0^{1,p(\cdot)}(G)$ to $L^{\Phi_A(\cdot,\cdot)}(G)$ is bounded for A > N, where

$$L^{\Phi_{A}(\cdot,\cdot)}(G) = \left\{ u : \|u\|_{L^{\Phi_{A}(\cdot,\cdot)}(G)} = \inf\left\{\lambda > 0 : \int_{G} \Phi_{A}(x,|u(x)|/\lambda) dx \le 1\right\} < \infty \right\}$$

with $\Phi_A(x,t) = \{t\varphi(t)^{-A/p(x)^2}\}^{p^*(x)}$ (see also Futamura-Mizuta-Shimomura [5] and Mizuta-Ohno-Shimomura [8]).

In connection with the above facts, our first aim in this paper is to show that the embedding from $W_0^{1,p(\cdot)}(G)$ to $L^{\Phi_A(\cdot,\cdot)}(G)$ is compact for A > N.

As an application, we show the existence of a nontrivial weak solution to the nonlinear elliptic problem

$$\begin{cases} -\operatorname{div}\left(|\nabla u(x)|^{p(x)-2}\nabla u(x)\right) = f(x,u(x)) & \text{in } G, \\ u(x) = 0 & \text{on } \partial G, \end{cases}$$
(1.1)

where $f: G \times \mathbf{R} \to \mathbf{R}$ is a Carathéodory function satisfying the conditions given in Section 4. This extends Fan-Zhang [3, Theorem 4.7]. Here, we say that u is a weak solution of (1.1) if $u \in W_0^{1,p(\cdot)}(G)$ and

$$\int_{G} \left(|\nabla u(x)|^{p(x)-2} \nabla u(x) \nabla v(x) - f(x, u(x)) v(x) \right) dx = 0$$

for all $v \in W_0^{1,p(\cdot)}(G)$.

2 Preliminaries

Throughout this paper, let C denote various positive constants independent of the variables in question and let $C(a, b, \dots)$ be a constant which may depend on a, b, \dots For a measurable subset E of \mathbf{R}^N , we denote by |E| the Lebesgue measure of E.

The next result follows readily from the definition of the $L^{q(\cdot)}$ -norm.

LEMMA 2.1 ([4, Theorem 1.3]). If $q(\cdot)$ is a variable exponent on G satisfying $q_+ < \infty$, then

$$\min\left\{\|u\|_{L^{q(\cdot)}(G)}^{q_{-}}, \|u\|_{L^{q(\cdot)}(G)}^{q_{+}}\right\} \leq \int_{G} |u(x)|^{q(x)} dx \leq \max\left\{\|u\|_{L^{q(\cdot)}(G)}^{q_{-}}, \|u\|_{L^{q(\cdot)}(G)}^{q_{+}}\right\}.$$

We know the following Poincaré inequality for functions in $W_0^{1,q(\cdot)}(G)$.

LEMMA 2.2 ([6, Theorem 4.3]). If $q(\cdot)$ is a uniform continuous variable exponent on G satisfying $q_+ < \infty$, then there exists a constant C > 0 such that

 $\|u\|_{W^{1,q(\cdot)}(G)} \le C \|\nabla u\|_{L^{q(\cdot)}(G)}$

for all $u \in W_0^{1,q(\cdot)}(G)$.

It is worth noting the next result; see [8, Section 2].

LEMMA 2.3. Let $q(\cdot)$ be a variable exponent on G satisfying $q_+ < \infty$ and let $r(\cdot)$ be a measurable function on G satisfying $-\infty < r_- \leq r_+ < \infty$. Then $\Phi(x,t) = t^{q(x)}\varphi(t)^{r(x)}$ satisfies the doubling condition; more pricisely,

$$C^{-1}\Phi(x,t) \le \Phi(x,2t) \le C\Phi(x,t) \tag{2.1}$$

for all t > 0 and $x \in G$. Further, there exists a constant C > 0 such that

$$\Phi(x,t) \le C\Phi(x,s) \tag{2.2}$$

whenever $0 \le t \le s$ and $x \in G$.

LEMMA 2.4 ([8, Lemma 2.5]). $\|\cdot\|_{L^{\Phi_A(\cdot,\cdot)}(G)}$ is a quasi-norm; more pricisely, for $u, v \in L^{\Phi_A(\cdot,\cdot)}(G)$ and a real number k,

- (i) $||u||_{L^{\Phi_A(\cdot,\cdot)}(G)} = 0$ if and only if u = 0;
- (ii) $||ku||_{L^{\Phi_A(\cdot,\cdot)}(G)} = |k|||u||_{L^{\Phi_A(\cdot,\cdot)}(G)};$
- (iii) $||u+v||_{L^{\Phi_A(\cdot,\cdot)}(G)} \le C\left(||u||_{L^{\Phi_A(\cdot,\cdot)}(G)} + ||v||_{L^{\Phi_A(\cdot,\cdot)}(G)}\right)$.

LEMMA 2.5. $L^{\Phi_A(\cdot,\cdot)}(G)$ is a Banach space.

Proof. First note from Lemma 2.4 (iii) that there exists a constant $c \ge 1$ such that

$$\|u+v\|_{L^{\Phi_{A}(\cdot,\cdot)}(G)} \le c\left(\|u\|_{L^{\Phi_{A}(\cdot,\cdot)}(G)} + \|v\|_{L^{\Phi_{A}(\cdot,\cdot)}(G)}\right)$$

for all $u, v \in L^{\Phi_A(\cdot, \cdot)}(G)$.

Let $\{u_n\}$ be a Cauchy sequence in $L^{\Phi_A(\cdot,\cdot)}(G)$. Then we can take a subsequence $\{u_{n_j}\}$ of $\{u_n\}$ such that

$$||u_{n_{j+1}} - u_{n_j}||_{L^{\Phi_A(\cdot,\cdot)}(G)} < \frac{1}{(4c)^j}$$

Setting $E_j = \{x \in G : |u_{n_{j+1}}(x) - u_{n_j}(x)| > 1/2^j\}$, we have by (2.2)

$$|E_j| \le C \int_{E_j} \frac{\Phi_A(x, (4c)^j |u_{n_{j+1}}(x) - u_{n_j}(x)|)}{\Phi_A(x, 2^j)} dx \le C 2^{-j},$$

so that |E| = 0, where $E = \bigcap_{k=1}^{\infty} \bigcup_{j=k}^{\infty} E_j$. Hence we see that $u_{n_j} = u_{n_1} + \sum_{k=1}^{j-1} (u_{n_{k+1}} - u_{n_k})$ converges to a function u almost everywhere on G. Since

$$\|u\|_{L^{\Phi_{A}(\cdot,\cdot)}(G)} \le c\|u_{n_{1}}\|_{L^{\Phi_{A}(\cdot,\cdot)}(G)} + \sum_{j=1}^{\infty} c^{j}\|u_{n_{j+1}} - u_{n_{j}}\|_{L^{\Phi_{A}(\cdot,\cdot)}(G)} \le c(\|u_{n_{1}}\|_{L^{\Phi_{A}(\cdot,\cdot)}(G)} + 1),$$

we have $u \in L^{\Phi_A(\cdot, \cdot)}(G)$. Fatou's lemma implies that

$$\int_{G} \Phi_{A}(x, (4c)^{j} | u(x) - u_{n_{j}}(x) |) dx \le \liminf_{j \to \infty} \int_{G} \Phi_{A}(x, (4c)^{j} | u_{n_{j+1}}(x) - u_{n_{j}}(x) |) dx \le 1,$$

so that we have $||u - u_{n_j}||_{L^{\Phi_A(\cdot,\cdot)}(G)} < 1/(4c)^j$, as required.

We know the following Sobolev inequality for functions in $W_0^{1,p(\cdot)}(G)$. LEMMA 2.6 ([9, Theorem 3.5]). There exists a constant C > 0 such that

$$||u||_{L^{\Phi_A(\cdot,\cdot)}(G)} \le C ||\nabla u||_{L^{p(\cdot)}(G)}$$

for all $u \in W_0^{1,p(\cdot)}(G)$.

LEMMA 2.7 (cf. [8, Corollary 2.11]). Let p_0 satisfy $1 \le p_0 < p_-^*$. Then there exists a constant C > 0 such that

$$\int_G \Phi_A(x, |u(x)|) dx \le C \|\nabla u\|_{L^{p(\cdot)}(G)}^{p_0}$$

for all measurable functions $u \in W_0^{1,p(\cdot)}(G)$ with $\|\nabla u\|_{L^{p(\cdot)}(G)} \leq 1$.

Proof. If $\|\nabla u\|_{L^{p(\cdot)}(G)} \leq 1$, then we can find $\lambda > 0$ such that $\|\nabla u\|_{L^{p(\cdot)}(G)} \leq \lambda < 2$ and

$$\int_{G} \Phi_A(x, |u(x)|/\lambda) dx \le C$$

by Lemmas 2.3 and 2.6, where C is independent of λ . In view of [8, Corollary 2.3], we see that

$$\int_{G} \Phi_{A}(x, |u(x)|) dx \leq \sup_{x \in G} \tau(x, \lambda)^{p^{*}(x)} \int_{G} \Phi_{A}(x, |u(x)|/\lambda) dx$$
$$\leq C \sup_{x \in G} \tau(x, \lambda)^{p^{*}(x)},$$

where $\tau(x,\lambda) = \lambda \varphi(\lambda^{-1})^{A/p(x)^2}$. Since $\lambda < 2$, we have

$$\int_{G} \Phi_A(x, |u(x)|) dx \le C \lambda^{p_0}.$$

Letting $\lambda \to \|\nabla u\|_{L^{p(\cdot)}(G)}$ yields the required inequality.

3 Compact embeddings

From now on, we assume that $\varphi(\cdot)$ satisfies $\lim_{r\to\infty} \varphi(r) = \infty$.

Now we show our compactness result on the embedding of $W_0^{1,p(\cdot)}(G)$ to $L^{\Phi_A(\cdot,\cdot)}(G)$.

THEOREM 3.1. The embedding from $W_0^{1,p(\cdot)}(G)$ to $L^{\Phi_A(\cdot,\cdot)}(G)$ is compact for A > N.

Proof. Let $\{u_n\}$ be a bounded sequence in $W_0^{1,p(\cdot)}(G)$ and let A > B > N. For $\varepsilon > 0$, we set $v_{j,k} = (u_j - u_k)/\varepsilon$. Clearly $\{v_{j,k}\}$ is bounded in $L^{\Phi_B(\cdot,\cdot)}(G)$ from Lemma 2.6; say $\|v_{j,k}\|_{L^{\Phi_B(\cdot,\cdot)}(G)} \leq C(\varepsilon)$. Now there exists a constant $t_0 > e$ such that if $t > t_0$, then

$$\Phi_A(x,t) \le \Phi_B\left(x, \frac{t}{C(\varepsilon)}\right)$$

for all $x \in G$. Let $\delta = (t_0 \varphi(t_0)^{-A/p_+^2})^{-p_+^*}$ and set

$$G_{j,k} = \left\{ x \in G : |v_{j,k}(x)| \ge \Phi_A^{-1}\left(x, \frac{1}{|G|}\right) \right\},\$$

where

$$\Phi_A^{-1}(x,s) = \inf \left\{ t \ge 0 : \Phi_A(x,t) > s \right\}.$$

Then note that $\Phi_A(x, \Phi_A^{-1}(x, s)) \leq s$ for all $x \in G$. On the other hand, we see that $\{u_n\}$ converges in measure since the embedding from $W_0^{1,1}(G)$ to $L^1(G)$ is compact. Therefore, there exists an integer $n_0 > 0$ such that if $j, k \geq n_0$, then $|G_{j,k}| \leq \delta$ since $\Phi_A^{-1}(x, 1/|G|) \geq c_0$, where c_0 is independent of x. Set

$$G'_{j,k} = \{x \in G_{j,k} : |v_{j,k}(x)| \ge t_0\}$$
 and $G''_{j,k} = G_{j,k} - G'_{j,k}$.

For $j, k \ge n_0$, we have by (2.2)

$$\begin{split} &\int_{G} \Phi_{A}(x, |v_{j,k}(x)|) dx \\ &= \int_{G-G_{j,k}} \Phi_{A}(x, |v_{j,k}(x)|) dx + \int_{G'_{j,k}} \Phi_{A}(x, |v_{j,k}(x)|) dx + \int_{G''_{j,k}} \Phi_{A}(x, |v_{j,k}(x)|) dx \\ &\leq C \frac{|G|}{|G|} + \int_{G'_{j,k}} \Phi_{B}\left(x, \frac{|v_{j,k}(x)|}{C(\varepsilon)}\right) dx + C \delta(t_{0} \varphi(t_{0})^{-A/p_{+}^{2}})^{p_{+}^{*}} \leq C. \end{split}$$

Hence $||u_j - u_k||_{L^{\Phi_A(\cdot,\cdot)}(G)} \leq C\varepsilon$ and so $\{u_n\}$ converges in $L^{\Phi_A(\cdot,\cdot)}(G)$.

4 Applications

In this section, as an application of Theorem 3.1, we show the existence result of nontrivial weak solutions to (1.1), which is an extension of [3, Theorem 4.7]. Because we treat the case that the embedding from $W_0^{1,p(\cdot)}(G)$ into $L^{\Phi_A(\cdot,\cdot)}(G)$ is compact, the proof in [3] also works in our case with minor changes (see also [12] in the constant exponent case). However, for the reader's convenience, we give a proof of our theorem.

We set

$$\widetilde{\Phi}_A(x,t) = \left\{ t\varphi(t)^{A/p(x)^2} \right\}^{(p^*)'(x)}$$

for A > N, where

$$1/(p^*)'(x) = 1 - 1/p^*(x).$$

Then, by Lemma 2.3, there exists a constant C > 0 such that

$$\widetilde{\Phi}_A(x,s+t) \le C\left(\widetilde{\Phi}_A(x,s) + \widetilde{\Phi}_A(x,t)\right)$$
(4.1)

whenever $s, t \ge 0$ and $x \in G$. Further there exists a constant C > 0 such that

$$st \le C\left(\Phi_A(x,s) + \widetilde{\Phi}_A(x,t)\right)$$

$$(4.2)$$

for all s, t > 0. In fact, in the case $st \leq \Phi_A(x, s)$, the inequality (4.2) is obvious; in the case $st > \Phi_A(x, s)$, we have $s < Ct^{1/(p^*(x)-1)}\varphi(t)^{A(p^*)'(x)/p(x)^2}$ with the aid of (2.2), so that

$$st < Ct^{1/(p^*(x)-1)+1}\varphi(t)^{A(p^*)'(x)/p(x)^2} = C\widetilde{\Phi}_A(x,t).$$

Hence we obtain inequality (4.2).

We define a functional $L: W_0^{1,p(\cdot)}(G) \to \mathbf{R}$ by

$$L(u) = \int_{G} \frac{1}{p(x)} |\nabla u(x)|^{p(x)} dx \quad \text{for } u \in W_0^{1, p(\cdot)}(G).$$

We note that the Gâteaux derivative L'(u) of L at $u \in W_0^{1,p(\cdot)}(G)$ is given by

$$\langle L'(u), v \rangle = \lim_{t \to 0} \frac{L(u+tv) - L(u)}{t} = \int_G |\nabla u(x)|^{p(x)-2} \nabla u(x) \nabla v(x) dx$$

for each $v \in W_0^{1,p(\cdot)}(G)$. By the Vitali convergence theorem, we insist that L' is continuous from $W_0^{1,p(\cdot)}(G)$ to its dual space $(W_0^{1,p(\cdot)}(G))'$ and hence $L \in C^1(W_0^{1,p(\cdot)}(G); \mathbf{R})$.

LEMMA 4.1 ([3, Theorem 3.1]). $L': W_0^{1,p(\cdot)}(G) \to (W_0^{1,p(\cdot)}(G))'$ is a homeomorphism.

Let $f : G \times \mathbf{R} \to \mathbf{R}$ be a Carathéodory function; more precisely, $f(\cdot, t)$ is measurable for all $t \in \mathbf{R}$ and $f(x, \cdot)$ is continuous for almost every $x \in G$. We consider a functional $J : W_0^{1,p(\cdot)}(G) \to \mathbf{R}$ defined by

$$J(u) = \int_G F(x, u(x)) dx \quad \text{for } u \in W_0^{1, p(\cdot)}(G),$$

where $F(x,t) = \int_0^t f(x,s) ds$.

LEMMA 4.2. Let $f: G \times \mathbf{R} \to \mathbf{R}$ be a Carathéodory function satisfying:

(f1)
$$|f(x,t)| \le C(1+|t|^{p^*(x)-1}\varphi(|t|)^{-Ap^*(x)/p(x)^2})$$
 for all $x \in G$ and $t \in \mathbf{R}$.

Then the Fréchet derivative J'(u) of J at $u \in W_0^{1,p(\cdot)}(G)$ exists and

$$\langle J'(u), v \rangle = \int_G f(x, u(x))v(x)dx$$

for each $v \in W_0^{1,p(\cdot)}(G)$.

Proof. For simplicity, we set $g(x,t) = |t|^{p^*(x)-1}\varphi(|t|)^{-Ap^*(x)/p(x)^2}$. For $u, v \in W_0^{1,p(\cdot)}(G)$

and $t \in (-1, 1)$, we have by (f1) and (4.2)

$$\begin{aligned} \left| \frac{F(x, u(x) + tv(x)) - F(x, u(x))}{t} \right| \\ &\leq \frac{1}{|t|} \int_{0}^{|t|} |f(x, u(x) + sv(x))| |v(x)| ds \\ &\leq C \left(|v(x)| + \frac{1}{|t|} \int_{0}^{|t|} g(x, u(x) + sv(x))| v(x)| ds \right) \\ &\leq C \left(|v(x)| + \Phi_A(x, |v(x)|) + \frac{1}{|t|} \int_{0}^{|t|} \widetilde{\Phi}_A(x, g(x, u(x) + sv(x))) ds \right) \\ &\leq C \left(|v(x)| + \Phi_A(x, |v(x)|) + \frac{1}{|t|} \int_{0}^{|t|} \Phi_A(x, |u(x) + sv(x)|) ds \right) \\ &\leq C \left(|v(x)| + \Phi_A(x, |v(x)|) + \Phi_A(x, |u(x)|) \right). \end{aligned}$$

By the dominated convergence theorem,

$$\lim_{t \to 0} \frac{J(u+tv) - J(u)}{t} = \int_G f(x, u(x))v(x)dx,$$

so that J is Gâteaux differentiable and

$$\langle J'(u), v \rangle = \int_G f(x, u(x))v(x)dx.$$

Next we show that J' is continuous in $(W_0^{1,p(\cdot)}(G))'$. Let $\{u_n\} \subset W_0^{1,p(\cdot)}(G)$ converge to $u \in W_0^{1,p(\cdot)}(G)$ in $W_0^{1,p(\cdot)}(G)$. Since $\{u_n\}$ is bounded in $W_0^{1,p(\cdot)}(G)$, $\{u_n\}$ converges to u in $L^{\Phi_A(\cdot,\cdot)}(G)$ by Theorem 3.1. Therefore, there exists $\tilde{u} \in L^{\Phi_A(\cdot,\cdot)}(G)$ such that $|u(x)| \leq \tilde{u}(x)$ for almost every $x \in G$. In view of (f1), (4.1) and (4.2), we see that

$$\begin{aligned} &|f(x, u_n(x)) - f(x, u(x))||v(x)| \\ &\leq C\left(\widetilde{\Phi}_A(x, |f(x, u_n(x))|) + \widetilde{\Phi}_A(x, |f(x, u(x))|) + \Phi_A(x, |v(x)|)\right) \\ &\leq C\left(\widetilde{\Phi}_A(x, 1) + \Phi_A(x, |u_n(x)|) + \Phi_A(x, |u(x)|) + \Phi_A(x, |v(x)|)\right) \\ &\leq C\left(\widetilde{\Phi}_A(x, 1) + \Phi_A(x, \tilde{u}(x)) + \Phi_A(x, |u(x)|) + \Phi_A(x, |v(x)|)\right) \end{aligned}$$

for each $v \in W_0^{1,p(\cdot)}(G)$, so that the dominated convergence theorem gives the required result.

LEMMA 4.3. Suppose $\{u_n\} \subset W_0^{1,p(\cdot)}(G)$ converges weakly to $u \in W_0^{1,p(\cdot)}(G)$ and a Carathéodory function f satisfies (f1). Then $J'(u_n)$ converges to J'(u) in $(W_0^{1,p(\cdot)}(G))'$. *Proof.* Since $\{u_n\} \subset W_0^{1,p(\cdot)}(G)$ converges weakly to $u \in W_0^{1,p(\cdot)}(G)$, $\{u_n\}$ is bounded in $W_0^{1,p(\cdot)}(G)$, so that $\{u_n\}$ converges to u in $L^{\Phi_A(\cdot,\cdot)}(G)$ by Theorem 3.1. Hence, we can apply the considerations in Lemma 4.2 to obtain the required result. \Box

Let X be a Banach space. We say that $u \in X$ is a critical point of $I \in C^1(X; \mathbf{R})$ if the Fréchet derivative I'(u) of I at u is zero. We say that $\{u_n\} \subset X$ is a Palais-Smale sequence for I if $\{I(u_n)\}$ is bounded and $I'(u_n) \to 0$ as $n \to \infty$ in the dual space of X. We further say that I satisfies the Palais-Smale condition if every Palais-Smale sequence for I has a convergent subsequence.

We define a functional $I: W_0^{1,p(\cdot)}(G) \to \mathbf{R}$ by

$$I(u) = L(u) - J(u) \text{ for } u \in W_0^{1,p(\cdot)}(G).$$

Note from Lemma 4.2 that if a Carathéodory function f satisfies (f1), then the Fréchet derivative I'(u) of I at $u \in W_0^{1,p(\cdot)}(G)$ exists and

$$\langle I'(u), v \rangle = \langle L'(u) - J'(u), v \rangle = \int_G \left(|\nabla u(x)|^{p(x)-2} \nabla u(x) \nabla v(x) - f(x, u(x))v(x) \right) dx$$

for each $v \in W_0^{1,p(\cdot)}(G)$.

LEMMA 4.4. Let $f: G \times \mathbf{R} \to \mathbf{R}$ be a Carathéodory function satisfying (f1) and

(f2) there exist constants M > 0 and $\theta > p_+$ such that

$$0 < \theta \int_{M}^{t} f(x,s)ds \le tf(x,t) \text{ for all } x \in G \text{ and } t > M, \text{ and}$$
$$0 < \theta \int_{-M}^{t} f(x,s)ds \le tf(x,t) \text{ for all } x \in G \text{ and } t < -M.$$

Then I satisfies the Palais-Smale condition.

Proof. Let $\{u_n\} \subset W_0^{1,p(\cdot)}(G)$ be a Palais-Smale sequence for *I*. By (f1), (f2) and Lemmas 2.1 and 2.2, we have

$$C \geq I(u_{n})$$

$$\geq \int_{G} \frac{1}{p(x)} |\nabla u_{n}(x)|^{p(x)} dx - \int_{G} \frac{u_{n}(x)}{\theta} f(x, u_{n}(x)) dx - C$$

$$= \int_{G} \left(\frac{1}{p(x)} - \frac{1}{\theta} \right) |\nabla u_{n}(x)|^{p(x)} dx + \frac{1}{\theta} \langle I'(u_{n}), u_{n} \rangle - C$$

$$\geq \left(\frac{1}{p_{+}} - \frac{1}{\theta} \right) \min \left\{ \|\nabla u_{n}\|_{L^{p(\cdot)}(G)}^{p_{-}}, \|\nabla u_{n}\|_{L^{p(\cdot)}(G)}^{p_{+}} \right\}$$

$$- \frac{1}{\theta} \|I'(u_{n})\|_{(W_{0}^{1,p(\cdot)}(G))'} \|u_{n}\|_{W^{1,p(\cdot)}(G)} - C$$

$$\geq \left(\frac{1}{p_{+}} - \frac{1}{\theta} \right) \min \left\{ \|\nabla u_{n}\|_{L^{p(\cdot)}(G)}^{p_{-}}, \|\nabla u_{n}\|_{L^{p(\cdot)}(G)}^{p_{+}} \right\}$$

$$- C \left(\|I'(u_{n})\|_{(W_{0}^{1,p(\cdot)}(G))'} \|\nabla u_{n}\|_{L^{p(\cdot)}(G)} + 1 \right),$$

so that $\{u_n\}$ is bounded in $W_0^{1,p(\cdot)}(G)$ since $\theta > p_+$. Hence, passing to a subsequence, we may assume that $\{u_n\}$ converges weakly to a function u in $W_0^{1,p(\cdot)}(G)$. Since $I'(u_n)$ converges to 0 in $(W_0^{1,p(\cdot)}(G))'$ and $J'(u_n)$ converges to J'(u) in $(W_0^{1,p(\cdot)}(G))'$ by Lemma 4.3, we have $L'(u_n)$ converges to J'(u) in $(W_0^{1,p(\cdot)}(G))'$. It follows from Lemma 4.1 that I satisfies the Palais-Smale condition.

We recall the following variant of the mountain pass theorem; see e.g., [12].

LEMMA 4.5. Let X be a Banach space and let I be a C^1 functional on X with I(0) = 0, for which there exist positive constants $\kappa, r > 0$ such that

- (1) $I(u) \ge \kappa$ for all $u \in X$ with $||u||_X = r$, and
- (2) there exists an element $v \in X$ satisfying I(v) < 0 and $||v||_X > r$.

Define

$$c = \inf_{\gamma \in \Gamma} \max_{0 \le t \le 1} I(\gamma(t)),$$

where

$$\Gamma = \{ \gamma \in C([0,1]; X) : \gamma(0) = 0, \ I(\gamma(1)) < 0, \ \|\gamma(1)\| > r \}.$$

Then c > 0 and for each $\varepsilon > 0$, there exists $u \in X$ such that $|I(u) - c| \le \varepsilon$ and $||I'(u)||_{X'} \le \varepsilon$.

THEOREM 4.6. Suppose $p_+ < p_-^*$. Let $f : G \times \mathbf{R} \to \mathbf{R}$ be a Carathéodory function satisfying (f1), (f2) and

(f3)
$$\lim_{t \to 0} \sup_{x \in G} f(x, t) / |t|^{p_{+}-1} = 0.$$

Then there exists a nontrivial weak solution of (1.1).

Proof. First we show that

$$\inf\left\{I(u): u \in W_0^{1,p(\cdot)}(G), \ \|u\|_{W^{1,p(\cdot)}(G)} = r\right\} > 0 \tag{4.3}$$

if r > 0 is sufficiently small. Note from (f1) and (f3) that

$$F(x,t) \le \varepsilon |t|^{p_+} + C(\varepsilon)\Phi_A(x,t)$$

for all $t \in \mathbf{R}$ and $\varepsilon > 0$. Taking r > 0 so small, by Lemma 2.6, we have $\|\nabla u\|_{L^{p(\cdot)}(G)} \leq 1$ and $\|u\|_{L^{\Phi_A(\cdot,\cdot)}(G)} \leq 1$ for all $u \in W_0^{1,p(\cdot)}(G)$ with $\|u\|_{W^{1,p(\cdot)}(G)} = r$. Then for each $u \in W_0^{1,p(\cdot)}(G)$ with $\|u\|_{W^{1,p(\cdot)}(G)} = r$, we see from Lemmas 2.1, 2.2 and 2.7 that

$$I(u) \geq \frac{1}{p_{+}} \int_{G} |\nabla u(x)|^{p(x)} dx - \varepsilon \int_{G} |u(x)|^{p_{+}} dx - C(\varepsilon) \int_{G} \Phi_{A}(x, |u(x)|) dx$$

$$\geq \left(\frac{1}{p_{+}} - C\varepsilon\right) \|\nabla u\|^{p_{+}}_{L^{p(\cdot)}(G)} - C(\varepsilon)\|\nabla u\|^{p_{0}}_{L^{p(\cdot)}(G)},$$

where $p_+ < p_0 < p_-^*$. Choosing $\varepsilon > 0$ as $1/p_+ - C\varepsilon > 0$ in the last expression, we have (4.3) if r > 0 is small.

Next we prove $I(tu) \to -\infty$ as $t \to \infty$ for $u \in W_0^{1,p(\cdot)}(G)$ with $u \neq 0$. Note from (f2) that $F(x,t) \geq C|t|^{\theta}$ for all $x \in G$ and |t| > M. If $u \in W_0^{1,p(\cdot)}(G)$ such that $u \neq 0$, then we see that

$$I(tu) \le t^{p_+} \int_G \frac{1}{p(x)} |\nabla u(x)|^{p(x)} dx - t^{\theta} \int_G |u(x)|^{\theta} dx \to -\infty$$

as $t \to \infty$, since $p_+ < \theta$.

Now the required result follows from Lemmas 4.4 and 4.5.

REMARK 4.7. Let $p_+ < p_-^*$ and $\varphi(r) = (\log(e+r))^a$ for a > 0. Then Theorem 4.6 implies that there exists a nontrivial weak solution to the nonlinear elliptic problem

$$\begin{cases} -\operatorname{div}\left(|\nabla u(x)|^{p(x)-2}\nabla u(x)\right) = |u(x)|^{p^*(x)-2}u(x)(\log(e+|u(x)|))^{-a'Np^*(x)/p(x)^2} & \text{in } G, \\ u(x) = 0 & \text{on } \partial G, \end{cases}$$

where a' > a.

References

- [1] L. Diening, Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces $L^{p(\cdot)}$ and $W^{k,p(\cdot)}$, Math. Nachr. **268** (2004), 31–43.
- [2] X. Fan, J. Shen and D. Zhao, Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega)$, J. Math. Anal. Appl. **262** (2001), 749–760.
- [3] X. Fan and G.-H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal. **52** (2003), 1843-1852.
- [4] X. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$, J. Math. Anal. Appl. **263** (2001), 424-446.
- [5] T. Futamura, Y. Mizuta and T. Shimomura, Sobolev embedding for Riesz potential spaces of variable exponent, Math. Nachr. 279 (2006), 1463–1473.
- [6] P. Harjulehto, P. Hästö, M. Koskenoja and S. Varonen, The Dirichlet energy integral and variable exponent Sobolev spaces with zero boundary values, Potential Anal. 25 (2006), 205-222.
- [7] O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czechoslovak Math. J. **41** (1991), 592–618.
- [8] Y. Mizuta, T. Ohno and T. Shimomura, Sobolev's inequalities and vanishing integrability for Riesz potentials of functions in $L^{p(\cdot)}(\log L)^{q(\cdot)}$, J. Math. Anal. Appl. **345** (2008), 70–85.

- [9] Y. Mizuta and T. Shimomura, Maximal functions, Riesz potentials and Sobolev's inequality in generalized Lebesgue spaces, Potential theory in Matsue, 255–281, Adv. Stud. Pure Math. 44, Math. Soc. Japan, Tokyo, 2006.
- [10] W. Orlicz, Uber konjugierte Exponentenfolgen, Studia Math. 3 (1931), 200– 211.
- [11] M. Růžička, Electrorheological fluids : modeling and mathematical theory, Lecture Notes in Math. 1748, Springer, 2000.
- [12] M. Willem, Minimax theorems, Progress in nonlinear differential equations and their applications, 24, Birkhäuser Boston, Inc., Boston, MA, 1996.

General Arts Hiroshima National College of Maritime Technology Higashino Oosakikamijima Toyotagun 725-0231, Japan E-mail : ohno@hiroshima-cmt.ac.jp