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Abstract

Our aim in this paper is to deal with the compact embedding in the

generalized Sobolev space W
1,p(·)
0 (G) with a variable exponent satisfying the

log-Hölder condition. As an application, we find a nontrivial weak solution
of the nonlinear elliptic problem

−div
(
|∇u(x)|p(x)−2∇u(x)

)
= f(x, u(x)) in G, u(x) = 0 on ∂G,

which is an extension of Fan-Zhang [3, Theorem 4.7].

1 Introduction

Let RN be the N -dimensional Euclidean space and let G be an open bounded
set in RN . Following Orlicz [10] and Kováčik-Rákosńık [7], for a function p(·) :
G → [1,∞), which is called a variable exponent, we define the Lp(·)-norm of a
measurable function u on G by

∥u∥Lp(·)(G) = inf

{
λ > 0 :

∫
G

∣∣∣∣u(x)λ

∣∣∣∣p(x) dx ≤ 1

}

and denote by Lp(·)(G) the family of all measurable functions u with ∥u∥Lp(·)(G) <
∞. In recent years, the generalized Lebesgue spaces have attracted more and more
attention, in connection with the study of elasticity, fluid mechanics and differential

equations with p(·)-growth; see R
◦
užička [11]. Further we denote by W 1,p(·)(G) the

family of all measurable functions u on G such that

∥u∥W 1,p(·)(G) = ∥u∥Lp(·)(G) + ∥∇u∥Lp(·)(G) < ∞
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and denote by W
1,p(·)
0 (G) the closure of C∞

0 (G) in W 1,p(·)(G).
We consider a positive nondecreasing continuous function φ on (0,∞) for which

there exist ε0 ≥ 0 and 0 < r0 < 1 such that

(φ) (log(1/r))−ε0φ(1/r) is nondecreasing on (0, r0) and φ(1/r0) ≥ eε0 ;

(φ′) φ(r) > 1 for all r > 0.

Our typical example of φ is of the form

φ(r) = a(log(β0 + r))b(log(β0 + log(β0 + r)))c

for r ≥ 0, where the constants a > 0, b ≥ 0, c ∈ R and β0 ≥ e are chosen so that
φ(r) is nondecreasing on (0,∞).

Throughout this paper, let us assume that our variable exponent p(·) is a pos-
itive continuous function on G satisfying :

(p1) 1 < p− = infx∈G p(x) ≤ supx∈G p(x) = p+ < N ;

(p2) |p(x)− p(y)| ≤ logφ(|x− y|−1)

log(e+ |x− y|−1)
whenever x, y ∈ G.

When φ(·) is a bounded function on (0,∞), we say that p(·) satisfies the log-Hölder
condition on G, that is,

|p(x)− p(y)| ≤ c

log(e+ |x− y|−1)

for all x, y ∈ G, where c is a positive constant. We know the fact that if p(·)
satisfies the log-Hölder condition on G, then the embedding from W

1,p(·)
0 (G) to

Lp∗(·)(G) is bounded, where

1/p∗(x) = 1/p(x)− 1/N

(see Diening [1, Theorem 5.2]). Further, we know that the embedding from

W
1,p(·)
0 (G) to Lq(·)(G) is compact for the variable exponent q(·) satisfying ess infx∈G(p∗(x)−

q(x)) > 0 (see Fan-Shen-Zhao [2, Theorem 1.3]).
On the other hand, in the case φ(·) is an unbounded function on (0,∞), that

is, limr→∞ φ(r) = ∞, Mizuta and Shimomura [9] showed that the embedding from

W
1,p(·)
0 (G) to LΦA(·,·)(G) is bounded for A > N , where

LΦA(·,·)(G) =

{
u : ∥u∥LΦA(·,·)(G) = inf

{
λ > 0 :

∫
G

ΦA(x, |u(x)|/λ)dx ≤ 1

}
< ∞

}
with ΦA(x, t) = {tφ(t)−A/p(x)2}p∗(x) (see also Futamura-Mizuta-Shimomura [5] and
Mizuta-Ohno-Shimomura [8]).

In connection with the above facts, our first aim in this paper is to show that
the embedding from W

1,p(·)
0 (G) to LΦA(·,·)(G) is compact for A > N .
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As an application, we show the existence of a nontrivial weak solution to the
nonlinear elliptic problem{

−div
(
|∇u(x)|p(x)−2∇u(x)

)
= f(x, u(x)) in G,

u(x) = 0 on ∂G,
(1.1)

where f : G ×R → R is a Carathéodory function satisfying the conditions given
in Section 4. This extends Fan-Zhang [3, Theorem 4.7]. Here, we say that u is a

weak solution of (1.1) if u ∈ W
1,p(·)
0 (G) and∫

G

(
|∇u(x)|p(x)−2∇u(x)∇v(x)− f(x, u(x))v(x)

)
dx = 0

for all v ∈ W
1,p(·)
0 (G).

2 Preliminaries

Throughout this paper, let C denote various positive constants independent of
the variables in question and let C(a, b, · · · ) be a constant which may depend on
a, b, . . .. For a measurable subset E of RN , we denote by |E| the Lebesgue measure
of E.

The next result follows readily from the definition of the Lq(·)-norm.

Lemma 2.1 ([4, Theorem 1.3]). If q(·) is a variable exponent on G satisfying q+ <
∞, then

min
{
∥u∥q−

Lq(·)(G)
, ∥u∥q+

Lq(·)(G)

}
≤
∫
G

|u(x)|q(x)dx ≤ max
{
∥u∥q−

Lq(·)(G)
, ∥u∥q+

Lq(·)(G)

}
.

We know the following Poincaré inequality for functions in W
1,q(·)
0 (G).

Lemma 2.2 ([6, Theorem 4.3]). If q(·) is a uniform continuous variable exponent
on G satisfying q+ < ∞, then there exists a constant C > 0 such that

∥u∥W 1,q(·)(G) ≤ C∥∇u∥Lq(·)(G)

for all u ∈ W
1,q(·)
0 (G).

It is worth noting the next result; see [8, Section 2].

Lemma 2.3. Let q(·) be a variable exponent on G satisfying q+ < ∞ and let r(·)
be a measurable function on G satisfying −∞ < r− ≤ r+ < ∞. Then Φ(x, t) =
tq(x)φ(t)r(x) satisfies the doubling condition; more pricisely,

C−1Φ(x, t) ≤ Φ(x, 2t) ≤ CΦ(x, t) (2.1)

for all t > 0 and x ∈ G. Further, there exists a constant C > 0 such that

Φ(x, t) ≤ CΦ(x, s) (2.2)

whenever 0 ≤ t ≤ s and x ∈ G.
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Lemma 2.4 ([8, Lemma 2.5]). ∥ · ∥LΦA(·,·)(G) is a quasi-norm; more pricisely, for

u, v ∈ LΦA(·,·)(G) and a real number k,

(i) ∥u∥LΦA(·,·)(G) = 0 if and only if u = 0;

(ii) ∥ku∥LΦA(·,·)(G) = |k|∥u∥LΦA(·,·)(G);

(iii) ∥u+ v∥LΦA(·,·)(G) ≤ C
(
∥u∥LΦA(·,·)(G) + ∥v∥LΦA(·,·)(G)

)
.

Lemma 2.5. LΦA(·,·)(G) is a Banach space.

Proof. First note from Lemma 2.4 (iii) that there exists a constant c ≥ 1 such that

∥u+ v∥LΦA(·,·)(G) ≤ c
(
∥u∥LΦA(·,·)(G) + ∥v∥LΦA(·,·)(G)

)
for all u, v ∈ LΦA(·,·)(G).

Let {un} be a Cauchy sequence in LΦA(·,·)(G). Then we can take a subsequence
{unj

} of {un} such that

∥unj+1
− unj

∥LΦA(·,·)(G) <
1

(4c)j
.

Setting Ej = {x ∈ G : |unj+1
(x)− unj

(x)| > 1/2j}, we have by (2.2)

|Ej| ≤ C

∫
Ej

ΦA(x, (4c)
j|unj+1

(x)− unj
(x)|)

ΦA(x, 2j)
dx ≤ C2−j,

so that |E| = 0, where E = ∩∞
k=1 ∪∞

j=k Ej. Hence we see that unj
= un1 +∑j−1

k=1(unk+1
− unk

) converges to a function u almost everywhere on G. Since

∥u∥LΦA(·,·)(G) ≤ c∥un1∥LΦA(·,·)(G)+
∞∑
j=1

cj∥unj+1
−unj

∥LΦA(·,·)(G) ≤ c(∥un1∥LΦA(·,·)(G)+1),

we have u ∈ LΦA(·,·)(G). Fatou’s lemma implies that∫
G

ΦA(x, (4c)
j|u(x)−unj

(x)|)dx ≤ lim inf
j→∞

∫
G

ΦA(x, (4c)
j|unj+1

(x)−unj
(x)|)dx ≤ 1,

so that we have ∥u− unj
∥LΦA(·,·)(G) < 1/(4c)j, as required.

We know the following Sobolev inequality for functions in W
1,p(·)
0 (G).

Lemma 2.6 ([9, Theorem 3.5]). There exists a constant C > 0 such that

∥u∥LΦA(·,·)(G) ≤ C∥∇u∥Lp(·)(G)

for all u ∈ W
1,p(·)
0 (G).
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Lemma 2.7 (cf. [8, Corollary 2.11]). Let p0 satisfy 1 ≤ p0 < p∗−. Then there exists
a constant C > 0 such that∫

G

ΦA(x, |u(x)|)dx ≤ C∥∇u∥p0
Lp(·)(G)

for all measurable functions u ∈ W
1,p(·)
0 (G) with ∥∇u∥Lp(·)(G) ≤ 1.

Proof. If ∥∇u∥Lp(·)(G) ≤ 1, then we can find λ > 0 such that ∥∇u∥Lp(·)(G) ≤ λ < 2
and ∫

G

ΦA(x, |u(x)|/λ)dx ≤ C

by Lemmas 2.3 and 2.6, where C is independent of λ. In view of [8, Corollary 2.3],
we see that∫

G

ΦA(x, |u(x)|)dx ≤ sup
x∈G

τ(x, λ)p
∗(x)

∫
G

ΦA(x, |u(x)|/λ)dx

≤ C sup
x∈G

τ(x, λ)p
∗(x),

where τ(x, λ) = λφ(λ−1)A/p(x)2 . Since λ < 2, we have∫
G

ΦA(x, |u(x)|)dx ≤ Cλp0 .

Letting λ → ∥∇u∥Lp(·)(G) yields the required inequality.

3 Compact embeddings

From now on, we assume that φ(·) satisfies limr→∞ φ(r) = ∞.

Now we show our compactness result on the embedding ofW
1,p(·)
0 (G) to LΦA(·,·)(G).

Theorem 3.1. The embedding from W
1,p(·)
0 (G) to LΦA(·,·)(G) is compact for A >

N .

Proof. Let {un} be a bounded sequence in W
1,p(·)
0 (G) and let A > B > N . For

ε > 0, we set vj,k = (uj − uk)/ε. Clearly {vj,k} is bounded in LΦB(·,·)(G) from
Lemma 2.6; say ∥vj,k∥LΦB(·,·)(G) ≤ C(ε). Now there exists a constant t0 > e such
that if t > t0, then

ΦA(x, t) ≤ ΦB

(
x,

t

C(ε)

)
for all x ∈ G. Let δ = (t0φ(t0)

−A/p2+)−p∗+ and set

Gj,k =

{
x ∈ G : |vj,k(x)| ≥ Φ−1

A

(
x,

1

|G|

)}
,
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where
Φ−1

A (x, s) = inf {t ≥ 0 : ΦA(x, t) > s} .
Then note that ΦA(x,Φ

−1
A (x, s)) ≤ s for all x ∈ G. On the other hand, we see

that {un} converges in measure since the embedding from W 1,1
0 (G) to L1(G) is

compact. Therefore, there exists an integer n0 > 0 such that if j, k ≥ n0, then
|Gj,k| ≤ δ since Φ−1

A (x, 1/|G|) ≥ c0, where c0 is independent of x. Set

G′
j,k = {x ∈ Gj,k : |vj,k(x)| ≥ t0} and G′′

j,k = Gj,k −G′
j,k.

For j, k ≥ n0, we have by (2.2)∫
G

ΦA(x, |vj,k(x)|)dx

=

∫
G−Gj,k

ΦA(x, |vj,k(x)|)dx+

∫
G′

j,k

ΦA(x, |vj,k(x)|)dx+

∫
G′′

j,k

ΦA(x, |vj,k(x)|)dx

≤ C
|G|
|G|

+

∫
G′

j,k

ΦB

(
x,

|vj,k(x)|
C(ε)

)
dx+ Cδ(t0φ(t0)

−A/p2+)p
∗
+ ≤ C.

Hence ∥uj − uk∥LΦA(·,·)(G) ≤ Cε and so {un} converges in LΦA(·,·)(G).

4 Applications

In this section, as an application of Theorem 3.1, we show the existence result
of nontrivial weak solutions to (1.1), which is an extension of [3, Theorem 4.7].

Because we treat the case that the embedding from W
1,p(·)
0 (G) into LΦA(·,·)(G) is

compact, the proof in [3] also works in our case with minor changes (see also [12]
in the constant exponent case). However, for the reader’s convenience, we give a
proof of our theorem.

We set

Φ̃A(x, t) =
{
tφ(t)A/p(x)2

}(p∗)′(x)

for A > N , where
1/(p∗)′(x) = 1− 1/p∗(x).

Then, by Lemma 2.3, there exists a constant C > 0 such that

Φ̃A(x, s+ t) ≤ C
(
Φ̃A(x, s) + Φ̃A(x, t)

)
(4.1)

whenever s, t ≥ 0 and x ∈ G. Further there exists a constant C > 0 such that

st ≤ C
(
ΦA(x, s) + Φ̃A(x, t)

)
(4.2)

for all s, t > 0. In fact, in the case st ≤ ΦA(x, s), the inequality (4.2) is obvious;
in the case st > ΦA(x, s), we have s < Ct1/(p

∗(x)−1)φ(t)A(p∗)′(x)/p(x)2 with the aid of
(2.2), so that

st < Ct1/(p
∗(x)−1)+1φ(t)A(p∗)′(x)/p(x)2 = CΦ̃A(x, t).
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Hence we obtain inequality (4.2).

We define a functional L : W
1,p(·)
0 (G) → R by

L(u) =

∫
G

1

p(x)
|∇u(x)|p(x)dx for u ∈ W

1,p(·)
0 (G).

We note that the Gâteaux derivative L′(u) of L at u ∈ W
1,p(·)
0 (G) is given by

⟨L′(u), v⟩ = lim
t→0

L(u+ tv)− L(u)

t
=

∫
G

|∇u(x)|p(x)−2∇u(x)∇v(x)dx

for each v ∈ W
1,p(·)
0 (G). By the Vitali convergence theorem, we insist that L′ is con-

tinuous fromW
1,p(·)
0 (G) to its dual space (W

1,p(·)
0 (G))′ and hence L ∈ C1(W

1,p(·)
0 (G);R).

Lemma 4.1 ([3, Theorem 3.1]). L′ : W
1,p(·)
0 (G) → (W

1,p(·)
0 (G))′ is a homeomor-

phism.

Let f : G × R → R be a Carathéodory function; more precisely, f(·, t) is
measurable for all t ∈ R and f(x, ·) is continuous for almost every x ∈ G. We

consider a functional J : W
1,p(·)
0 (G) → R defined by

J(u) =

∫
G

F (x, u(x))dx for u ∈ W
1,p(·)
0 (G),

where F (x, t) =
∫ t

0
f(x, s)ds.

Lemma 4.2. Let f : G×R → R be a Carathéodory function satisfying:

(f1) |f(x, t)| ≤ C(1 + |t|p∗(x)−1φ(|t|)−Ap∗(x)/p(x)2) for all x ∈ G and t ∈ R.

Then the Fréchet derivative J ′(u) of J at u ∈ W
1,p(·)
0 (G) exists and

⟨J ′(u), v⟩ =
∫
G

f(x, u(x))v(x)dx

for each v ∈ W
1,p(·)
0 (G).

Proof. For simplicity, we set g(x, t) = |t|p∗(x)−1φ(|t|)−Ap∗(x)/p(x)2 . For u, v ∈ W
1,p(·)
0 (G)
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and t ∈ (−1, 1), we have by (f1) and (4.2)∣∣∣∣F (x, u(x) + tv(x))− F (x, u(x))

t

∣∣∣∣
≤ 1

|t|

∫ |t|

0

|f(x, u(x) + sv(x))||v(x)|ds

≤ C

(
|v(x)|+ 1

|t|

∫ |t|

0

g(x, u(x) + sv(x))|v(x)|ds

)

≤ C

(
|v(x)|+ ΦA(x, |v(x)|) +

1

|t|

∫ |t|

0

Φ̃A(x, g(x, u(x) + sv(x)))ds

)

≤ C

(
|v(x)|+ ΦA(x, |v(x)|) +

1

|t|

∫ |t|

0

ΦA(x, |u(x) + sv(x)|)ds

)
≤ C (|v(x)|+ ΦA(x, |v(x)|) + ΦA(x, |u(x)|)) .

By the dominated convergence theorem,

lim
t→0

J(u+ tv)− J(u)

t
=

∫
G

f(x, u(x))v(x)dx,

so that J is Gâteaux differentiable and

⟨J ′(u), v⟩ =
∫
G

f(x, u(x))v(x)dx.

Next we show that J ′ is continuous in (W
1,p(·)
0 (G))′. Let {un} ⊂ W

1,p(·)
0 (G) converge

to u ∈ W
1,p(·)
0 (G) inW

1,p(·)
0 (G). Since {un} is bounded inW

1,p(·)
0 (G), {un} converges

to u in LΦA(·,·)(G) by Theorem 3.1. Therefore, there exists ũ ∈ LΦA(·,·)(G) such
that |u(x)| ≤ ũ(x) for almost every x ∈ G. In view of (f1), (4.1) and (4.2), we see
that

|f(x, un(x))− f(x, u(x))||v(x)|

≤ C
(
Φ̃A(x, |f(x, un(x))|) + Φ̃A(x, |f(x, u(x))|) + ΦA(x, |v(x)|)

)
≤ C

(
Φ̃A(x, 1) + ΦA(x, |un(x)|) + ΦA(x, |u(x)|) + ΦA(x, |v(x)|)

)
≤ C

(
Φ̃A(x, 1) + ΦA(x, ũ(x)) + ΦA(x, |u(x)|) + ΦA(x, |v(x)|)

)
for each v ∈ W

1,p(·)
0 (G), so that the dominated convergence theorem gives the

required result.

Lemma 4.3. Suppose {un} ⊂ W
1,p(·)
0 (G) converges weakly to u ∈ W

1,p(·)
0 (G)

and a Carathéodory function f satisfies (f1). Then J ′(un) converges to J ′(u) in

(W
1,p(·)
0 (G))′.
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Proof. Since {un} ⊂ W
1,p(·)
0 (G) converges weakly to u ∈ W

1,p(·)
0 (G), {un} is bounded

in W
1,p(·)
0 (G), so that {un} converges to u in LΦA(·,·)(G) by Theorem 3.1. Hence,

we can apply the considerations in Lemma 4.2 to obtain the required result.

Let X be a Banach space. We say that u ∈ X is a critical point of I ∈ C1(X;R)
if the Fréchet derivative I ′(u) of I at u is zero. We say that {un} ⊂ X is a Palais-
Smale sequence for I if {I(un)} is bounded and I ′(un) → 0 as n → ∞ in the dual
space of X. We further say that I satisfies the Palais-Smale condition if every
Palais-Smale sequence for I has a convergent subsequence.

We define a functional I : W
1,p(·)
0 (G) → R by

I(u) = L(u)− J(u) for u ∈ W
1,p(·)
0 (G).

Note from Lemma 4.2 that if a Carathéodory function f satisfies (f1), then the

Fréchet derivative I ′(u) of I at u ∈ W
1,p(·)
0 (G) exists and

⟨I ′(u), v⟩ = ⟨L′(u)−J ′(u), v⟩ =
∫
G

(
|∇u(x)|p(x)−2∇u(x)∇v(x)− f(x, u(x))v(x)

)
dx

for each v ∈ W
1,p(·)
0 (G).

Lemma 4.4. Let f : G×R → R be a Carathéodory function satisfying (f1) and

(f2) there exist constants M > 0 and θ > p+ such that

0 < θ

∫ t

M

f(x, s)ds ≤ tf(x, t) for all x ∈ G and t > M , and

0 < θ

∫ t

−M

f(x, s)ds ≤ tf(x, t) for all x ∈ G and t < −M .

Then I satisfies the Palais-Smale condition.

Proof. Let {un} ⊂ W
1,p(·)
0 (G) be a Palais-Smale sequence for I. By (f1), (f2) and

Lemmas 2.1 and 2.2, we have

C ≥ I(un)

≥
∫
G

1

p(x)
|∇un(x)|p(x)dx−

∫
G

un(x)

θ
f(x, un(x))dx− C

=

∫
G

(
1

p(x)
− 1

θ

)
|∇un(x)|p(x)dx+

1

θ
⟨I ′(un), un⟩ − C

≥
(

1

p+
− 1

θ

)
min

{
∥∇un∥p−Lp(·)(G)

, ∥∇un∥p+Lp(·)(G)

}
−1

θ
∥I ′(un)∥(W 1,p(·)

0 (G))′
∥un∥W 1,p(·)(G) − C

≥
(

1

p+
− 1

θ

)
min

{
∥∇un∥p−Lp(·)(G)

, ∥∇un∥p+Lp(·)(G)

}
−C

(
∥I ′(un)∥(W 1,p(·)

0 (G))′
∥∇un∥Lp(·)(G) + 1

)
,
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so that {un} is bounded in W
1,p(·)
0 (G) since θ > p+. Hence, passing to a subse-

quence, we may assume that {un} converges weakly to a function u in W
1,p(·)
0 (G).

Since I ′(un) converges to 0 in (W
1,p(·)
0 (G))′ and J ′(un) converges to J

′(u) in (W
1,p(·)
0 (G))′

by Lemma 4.3, we have L′(un) converges to J ′(u) in (W
1,p(·)
0 (G))′. It follows from

Lemma 4.1 that I satisfies the Palais-Smale condition.

We recall the following variant of the mountain pass theorem; see e.g., [12].

Lemma 4.5. Let X be a Banach space and let I be a C1 functional on X with
I(0) = 0, for which there exist positive constants κ, r > 0 such that

(1) I(u) ≥ κ for all u ∈ X with ∥u∥X = r, and

(2) there exists an element v ∈ X satisfying I(v) < 0 and ∥v∥X > r.

Define
c = inf

γ∈Γ
max
0≤t≤1

I(γ(t)),

where
Γ = {γ ∈ C([0, 1];X) : γ(0) = 0, I(γ(1)) < 0, ∥γ(1)∥ > r}.

Then c > 0 and for each ε > 0, there exists u ∈ X such that |I(u) − c| ≤ ε and
∥I ′(u)∥X′ ≤ ε.

Theorem 4.6. Suppose p+ < p∗−. Let f : G×R → R be a Carathéodory function
satisfying (f1), (f2) and

(f3) lim
t→0

sup
x∈G

f(x, t)/|t|p+−1 = 0.

Then there exists a nontrivial weak solution of (1.1).

Proof. First we show that

inf
{
I(u) : u ∈ W

1,p(·)
0 (G), ∥u∥W 1,p(·)(G) = r

}
> 0 (4.3)

if r > 0 is sufficiently small. Note from (f1) and (f3) that

F (x, t) ≤ ε|t|p+ + C(ε)ΦA(x, t)

for all t ∈ R and ε > 0. Taking r > 0 so small, by Lemma 2.6, we have
∥∇u∥Lp(·)(G) ≤ 1 and ∥u∥LΦA(·,·)(G) ≤ 1 for all u ∈ W

1,p(·)
0 (G) with ∥u∥W 1,p(·)(G) = r.

Then for each u ∈ W
1,p(·)
0 (G) with ∥u∥W 1,p(·)(G) = r, we see from Lemmas 2.1, 2.2

and 2.7 that

I(u) ≥ 1

p+

∫
G

|∇u(x)|p(x)dx− ε

∫
G

|u(x)|p+dx− C(ε)

∫
G

ΦA(x, |u(x)|)dx

≥
(

1

p+
− Cε

)
∥∇u∥p+

Lp(·)(G)
− C(ε)∥∇u∥p0

Lp(·)(G)
,
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where p+ < p0 < p∗−. Choosing ε > 0 as 1/p+ − Cε > 0 in the last expression, we
have (4.3) if r > 0 is small.

Next we prove I(tu) → −∞ as t → ∞ for u ∈ W
1,p(·)
0 (G) with u ̸= 0. Note

from (f2) that F (x, t) ≥ C|t|θ for all x ∈ G and |t| > M . If u ∈ W
1,p(·)
0 (G) such

that u ̸= 0, then we see that

I(tu) ≤ tp+
∫
G

1

p(x)
|∇u(x)|p(x)dx− tθ

∫
G

|u(x)|θdx → −∞

as t → ∞, since p+ < θ.
Now the required result follows from Lemmas 4.4 and 4.5.

Remark 4.7. Let p+ < p∗− and φ(r) = (log(e + r))a for a > 0. Then Theorem
4.6 implies that there exists a nontrivial weak solution to the nonlinear elliptic
problem{
−div

(
|∇u(x)|p(x)−2∇u(x)

)
= |u(x)|p∗(x)−2u(x)(log(e+ |u(x)|))−a′Np∗(x)/p(x)2 in G,

u(x) = 0 on ∂G,

where a′ > a.
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