Compact embeddings in the generalized Sobolev space $W_{0}^{1, p(\cdot)}(G)$ and existence of solutions for nonlinear elliptic problems

Takao Ohno

Abstract

Our aim in this paper is to deal with the compact embedding in the generalized Sobolev space $W_{0}^{1, p(\cdot)}(G)$ with a variable exponent satisfying the log-Hölder condition. As an application, we find a nontrivial weak solution of the nonlinear elliptic problem $$
-\operatorname{div}\left(|\nabla u(x)|^{p(x)-2} \nabla u(x)\right)=f(x, u(x)) \quad \text { in } G, \quad u(x)=0 \quad \text { on } \partial G,
$$ which is an extension of Fan-Zhang [3, Theorem 4.7].

1 Introduction

Let \mathbf{R}^{N} be the N-dimensional Euclidean space and let G be an open bounded set in \mathbf{R}^{N}. Following Orlicz [10] and Kováčik-Rákosník [7], for a function $p(\cdot)$: $G \rightarrow[1, \infty)$, which is called a variable exponent, we define the $L^{p(\cdot)}$-norm of a measurable function u on G by

$$
\|u\|_{L^{p(\cdot)}(G)}=\inf \left\{\lambda>0: \int_{G}\left|\frac{u(x)}{\lambda}\right|^{p(x)} d x \leq 1\right\}
$$

and denote by $L^{p(\cdot)}(G)$ the family of all measurable functions u with $\|u\|_{L^{p(\cdot)}(G)}<$ ∞. In recent years, the generalized Lebesgue spaces have attracted more and more attention, in connection with the study of elasticity, fluid mechanics and differential equations with $p(\cdot)$-growth; see Rǔ̌ička [11]. Further we denote by $W^{1, p(\cdot)}(G)$ the family of all measurable functions u on G such that

$$
\|u\|_{W^{1, p(\cdot)}(G)}=\|u\|_{L^{p(\cdot)}(G)}+\|\nabla u\|_{L^{p(\cdot)}(G)}<\infty
$$

[^0]and denote by $W_{0}^{1, p(\cdot)}(G)$ the closure of $C_{0}^{\infty}(G)$ in $W^{1, p(\cdot)}(G)$.
We consider a positive nondecreasing continuous function φ on $(0, \infty)$ for which there exist $\varepsilon_{0} \geq 0$ and $0<r_{0}<1$ such that
(φ) $(\log (1 / r))^{-\varepsilon_{0}} \varphi(1 / r)$ is nondecreasing on $\left(0, r_{0}\right)$ and $\varphi\left(1 / r_{0}\right) \geq e^{\varepsilon_{0}}$;
$\left(\varphi^{\prime}\right) \varphi(r)>1$ for all $r>0$.
Our typical example of φ is of the form
$$
\varphi(r)=a\left(\log \left(\beta_{0}+r\right)\right)^{b}\left(\log \left(\beta_{0}+\log \left(\beta_{0}+r\right)\right)\right)^{c}
$$
for $r \geq 0$, where the constants $a>0, b \geq 0, c \in \mathbf{R}$ and $\beta_{0} \geq e$ are chosen so that $\varphi(r)$ is nondecreasing on $(0, \infty)$.

Throughout this paper, let us assume that our variable exponent $p(\cdot)$ is a positive continuous function on G satisfying :
(p1) $1<p_{-}=\inf _{x \in G} p(x) \leq \sup _{x \in G} p(x)=p_{+}<N$;
(p2) $|p(x)-p(y)| \leq \frac{\log \varphi\left(|x-y|^{-1}\right)}{\log \left(e+|x-y|^{-1}\right)} \quad$ whenever $x, y \in G$.
When $\varphi(\cdot)$ is a bounded function on $(0, \infty)$, we say that $p(\cdot)$ satisfies the log-Hölder condition on G, that is,

$$
|p(x)-p(y)| \leq \frac{c}{\log \left(e+|x-y|^{-1}\right)}
$$

for all $x, y \in G$, where c is a positive constant. We know the fact that if $p(\cdot)$ satisfies the log-Hölder condition on G, then the embedding from $W_{0}^{1, p(\cdot)}(G)$ to $L^{p^{*}(\cdot)}(G)$ is bounded, where

$$
1 / p^{*}(x)=1 / p(x)-1 / N
$$

(see Diening [1, Theorem 5.2]). Further, we know that the embedding from $W_{0}^{1, p(\cdot)}(G)$ to $L^{q(\cdot)}(G)$ is compact for the variable exponent $q(\cdot)$ satisfying $\operatorname{ess}_{\inf }^{x \in G}$ ($p^{*}(x)-$ $q(x))>0$ (see Fan-Shen-Zhao [2, Theorem 1.3]).

On the other hand, in the case $\varphi(\cdot)$ is an unbounded function on $(0, \infty)$, that is, $\lim _{r \rightarrow \infty} \varphi(r)=\infty$, Mizuta and Shimomura [9] showed that the embedding from $W_{0}^{1, p(\cdot)}(G)$ to $L^{\Phi_{A}(\cdot,)}(G)$ is bounded for $A>N$, where

$$
L^{\Phi_{A}(\cdot,)}(G)=\left\{u:\|u\|_{L^{\Phi} A^{(\cdot,)}(G)}=\inf \left\{\lambda>0: \int_{G} \Phi_{A}(x,|u(x)| / \lambda) d x \leq 1\right\}<\infty\right\}
$$

with $\Phi_{A}(x, t)=\left\{t \varphi(t)^{-A / p(x)^{2}}\right\}^{p^{*}(x)}$ (see also Futamura-Mizuta-Shimomura [5] and Mizuta-Ohno-Shimomura [8]).

In connection with the above facts, our first aim in this paper is to show that the embedding from $W_{0}^{1, p(\cdot)}(G)$ to $L^{\Phi_{A}(\cdot, \cdot)}(G)$ is compact for $A>N$.

As an application, we show the existence of a nontrivial weak solution to the nonlinear elliptic problem

$$
\left\{\begin{align*}
-\operatorname{div}\left(|\nabla u(x)|^{p(x)-2} \nabla u(x)\right) & =f(x, u(x)) & & \text { in } G, \tag{1.1}\\
u(x) & =0 & & \text { on } \partial G,
\end{align*}\right.
$$

where $f: G \times \mathbf{R} \rightarrow \mathbf{R}$ is a Carathéodory function satisfying the conditions given in Section 4. This extends Fan-Zhang [3, Theorem 4.7]. Here, we say that u is a weak solution of (1.1) if $u \in W_{0}^{1, p(\cdot)}(G)$ and

$$
\int_{G}\left(|\nabla u(x)|^{p(x)-2} \nabla u(x) \nabla v(x)-f(x, u(x)) v(x)\right) d x=0
$$

for all $v \in W_{0}^{1, p(\cdot)}(G)$.

2 Preliminaries

Throughout this paper, let C denote various positive constants independent of the variables in question and let $C(a, b, \cdots)$ be a constant which may depend on a, b, \ldots. For a measurable subset E of \mathbf{R}^{N}, we denote by $|E|$ the Lebesgue measure of E.

The next result follows readily from the definition of the $L^{q(\cdot)}$-norm.
Lemma 2.1 ([4, Theorem 1.3]). If $q(\cdot)$ is a variable exponent on G satisfying $q_{+}<$ ∞, then

$$
\min \left\{\|u\|_{L^{q(\cdot)}(G)}^{q_{-}},\|u\|_{L^{q \cdot()}(G)}^{q_{+}}\right\} \leq \int_{G}|u(x)|^{q(x)} d x \leq \max \left\{\|u\|_{L^{q(\cdot)}(G)}^{q_{-}},\|u\|_{L^{q(\cdot)}(G)}^{q_{+}}\right\} .
$$

We know the following Poincaré inequality for functions in $W_{0}^{1, q(\cdot)}(G)$.
Lemma 2.2 ([6, Theorem 4.3]). If $q(\cdot)$ is a uniform continuous variable exponent on G satisfying $q_{+}<\infty$, then there exists a constant $C>0$ such that

$$
\|u\|_{W^{1, q(\cdot)}(G)} \leq C\|\nabla u\|_{L^{q(\cdot)}(G)}
$$

for all $u \in W_{0}^{1, q(\cdot)}(G)$.
It is worth noting the next result; see [8, Section 2].
Lemma 2.3. Let $q(\cdot)$ be a variable exponent on G satisfying $q_{+}<\infty$ and let $r(\cdot)$ be a measurable function on G satisfying $-\infty<r_{-} \leq r_{+}<\infty$. Then $\Phi(x, t)=$ $t^{q(x)} \varphi(t)^{r(x)}$ satisfies the doubling condition; more pricisely,

$$
\begin{equation*}
C^{-1} \Phi(x, t) \leq \Phi(x, 2 t) \leq C \Phi(x, t) \tag{2.1}
\end{equation*}
$$

for all $t>0$ and $x \in G$. Further, there exists a constant $C>0$ such that

$$
\begin{equation*}
\Phi(x, t) \leq C \Phi(x, s) \tag{2.2}
\end{equation*}
$$

whenever $0 \leq t \leq s$ and $x \in G$.

Lemma 2.4 ([8, Lemma 2.5]). $\|\cdot\|_{L^{\Phi_{A}(,,)}(G)}$ is a quasi-norm; more pricisely, for $u, v \in L^{\Phi_{A}(\cdot, \cdot)}(G)$ and a real number k,
(i) $\|u\|_{L^{\Phi_{A}(\cdot,)}(G)}=0$ if and only if $u=0$;
(ii) $\|k u\|_{L^{\Phi_{A}(\cdot,)}(G)}=|k|\|u\|_{L^{\Phi_{A}(\cdot,)}(G)}$;
(iii) $\|u+v\|_{L^{\Phi} A^{(\cdot,)}(G)} \leq C\left(\|u\|_{L^{\Phi_{A}(\cdot,)}(G)}+\|v\|_{L^{\Phi_{A}(\cdot,)}(G)}\right)$.

Lemma 2.5. $L^{\Phi_{A}(\cdot,)}(G)$ is a Banach space.
Proof. First note from Lemma 2.4 (iii) that there exists a constant $c \geq 1$ such that

$$
\|u+v\|_{L^{\Phi_{A}(\cdot,)}(G)} \leq c\left(\|u\|_{L^{\Phi_{A}(\cdot,)}(G)}+\|v\|_{L^{\Phi_{A}(\cdot,)}(G)}\right)
$$

for all $u, v \in L^{\Phi_{A}(\cdot, \cdot)}(G)$.
Let $\left\{u_{n}\right\}$ be a Cauchy sequence in $L^{\Phi_{A}(\cdot, \cdot)}(G)$. Then we can take a subsequence $\left\{u_{n_{j}}\right\}$ of $\left\{u_{n}\right\}$ such that

$$
\left\|u_{n_{j+1}}-u_{n_{j}}\right\|_{\left.L^{\Phi} A^{(}, \cdot\right)(G)}<\frac{1}{(4 c)^{j}} .
$$

Setting $E_{j}=\left\{x \in G:\left|u_{n_{j+1}}(x)-u_{n_{j}}(x)\right|>1 / 2^{j}\right\}$, we have by (2.2)

$$
\left|E_{j}\right| \leq C \int_{E_{j}} \frac{\Phi_{A}\left(x,(4 c)^{j}\left|u_{n_{j+1}}(x)-u_{n_{j}}(x)\right|\right)}{\Phi_{A}\left(x, 2^{j}\right)} d x \leq C 2^{-j}
$$

so that $|E|=0$, where $E=\cap_{k=1}^{\infty} \cup_{j=k}^{\infty} E_{j}$. Hence we see that $u_{n_{j}}=u_{n_{1}}+$ $\sum_{k=1}^{j-1}\left(u_{n_{k+1}}-u_{n_{k}}\right)$ converges to a function u almost everywhere on G. Since
$\|u\|_{L^{\Phi} A^{(, \cdot)}(G)} \leq c\left\|u_{n_{1}}\right\|_{L^{\Phi} A^{(, \cdot)}(G)}+\sum_{j=1}^{\infty} c^{j}\left\|u_{n_{j+1}}-u_{n_{j}}\right\|_{L^{\Phi_{A}(\cdot,)}(G)} \leq c\left(\left\|u_{n_{1}}\right\|_{L^{\left.\Phi_{A}(\cdot,)\right)}(G)}+1\right)$, we have $u \in L^{\Phi_{A}(\cdot,)}(G)$. Fatou's lemma implies that $\int_{G} \Phi_{A}\left(x,(4 c)^{j}\left|u(x)-u_{n_{j}}(x)\right|\right) d x \leq \liminf _{j \rightarrow \infty} \int_{G} \Phi_{A}\left(x,(4 c)^{j}\left|u_{n_{j+1}}(x)-u_{n_{j}}(x)\right|\right) d x \leq 1$, so that we have $\left\|u-u_{n_{j}}\right\|_{L^{\Phi} A(\cdot,)}(G)<1 /(4 c)^{j}$, as required.

We know the following Sobolev inequality for functions in $W_{0}^{1, p(\cdot)}(G)$.
Lemma 2.6 ([9, Theorem 3.5]). There exists a constant $C>0$ such that

$$
\|u\|_{L^{\Phi} A^{(\cdot,)}(G)} \leq C\|\nabla u\|_{L^{p(\cdot)}(G)}
$$

for all $u \in W_{0}^{1, p(\cdot)}(G)$.

Lemma 2.7 (cf. [8, Corollary 2.11]). Let p_{0} satisfy $1 \leq p_{0}<p_{-}^{*}$. Then there exists a constant $C>0$ such that

$$
\int_{G} \Phi_{A}(x,|u(x)|) d x \leq C\|\nabla u\|_{L^{p(\cdot)}(G)}^{p_{0}}
$$

for all measurable functions $u \in W_{0}^{1, p(\cdot)}(G)$ with $\|\nabla u\|_{L^{p(\cdot)}(G)} \leq 1$.
Proof. If $\|\nabla u\|_{L^{p(\cdot)}(G)} \leq 1$, then we can find $\lambda>0$ such that $\|\nabla u\|_{L^{p(\cdot)}(G)} \leq \lambda<2$ and

$$
\int_{G} \Phi_{A}(x,|u(x)| / \lambda) d x \leq C
$$

by Lemmas 2.3 and 2.6, where C is independent of λ. In view of [8, Corollary 2.3], we see that

$$
\begin{aligned}
\int_{G} \Phi_{A}(x,|u(x)|) d x & \leq \sup _{x \in G} \tau(x, \lambda)^{p^{*}(x)} \int_{G} \Phi_{A}(x,|u(x)| / \lambda) d x \\
& \leq C \sup _{x \in G} \tau(x, \lambda)^{p^{*}(x)}
\end{aligned}
$$

where $\tau(x, \lambda)=\lambda \varphi\left(\lambda^{-1}\right)^{A / p(x)^{2}}$. Since $\lambda<2$, we have

$$
\int_{G} \Phi_{A}(x,|u(x)|) d x \leq C \lambda^{p_{0}}
$$

Letting $\lambda \rightarrow\|\nabla u\|_{L^{p(\cdot)}(G)}$ yields the required inequality.

3 Compact embeddings

From now on, we assume that $\varphi(\cdot)$ satisfies $\lim _{r \rightarrow \infty} \varphi(r)=\infty$.
Now we show our compactness result on the embedding of $W_{0}^{1, p(\cdot)}(G)$ to $L^{\Phi_{A}(\cdot,)}(G)$.
Theorem 3.1. The embedding from $W_{0}^{1, p(\cdot)}(G)$ to $L^{\Phi_{A}(\cdot, \cdot)}(G)$ is compact for $A>$ N.

Proof. Let $\left\{u_{n}\right\}$ be a bounded sequence in $W_{0}^{1, p(\cdot)}(G)$ and let $A>B>N$. For $\varepsilon>0$, we set $v_{j, k}=\left(u_{j}-u_{k}\right) / \varepsilon$. Clearly $\left\{v_{j, k}\right\}$ is bounded in $L^{\Phi_{B}(\cdot, \cdot)}(G)$ from Lemma 2.6; say $\left\|v_{j, k}\right\|_{L^{\Phi_{B}(\cdot,)}(G)} \leq C(\varepsilon)$. Now there exists a constant $t_{0}>e$ such that if $t>t_{0}$, then

$$
\Phi_{A}(x, t) \leq \Phi_{B}\left(x, \frac{t}{C(\varepsilon)}\right)
$$

for all $x \in G$. Let $\delta=\left(t_{0} \varphi\left(t_{0}\right)^{-A / p_{+}^{2}}\right)^{-p_{+}^{*}}$ and set

$$
G_{j, k}=\left\{x \in G:\left|v_{j, k}(x)\right| \geq \Phi_{A}^{-1}\left(x, \frac{1}{|G|}\right)\right\},
$$

where

$$
\Phi_{A}^{-1}(x, s)=\inf \left\{t \geq 0: \Phi_{A}(x, t)>s\right\} .
$$

Then note that $\Phi_{A}\left(x, \Phi_{A}^{-1}(x, s)\right) \leq s$ for all $x \in G$. On the other hand, we see that $\left\{u_{n}\right\}$ converges in measure since the embedding from $W_{0}^{1,1}(G)$ to $L^{1}(G)$ is compact. Therefore, there exists an integer $n_{0}>0$ such that if $j, k \geq n_{0}$, then $\left|G_{j, k}\right| \leq \delta$ since $\Phi_{A}^{-1}(x, 1 /|G|) \geq c_{0}$, where c_{0} is independent of x. Set

$$
G_{j, k}^{\prime}=\left\{x \in G_{j, k}:\left|v_{j, k}(x)\right| \geq t_{0}\right\} \quad \text { and } \quad G_{j, k}^{\prime \prime}=G_{j, k}-G_{j, k}^{\prime} .
$$

For $j, k \geq n_{0}$, we have by (2.2)

$$
\begin{aligned}
& \int_{G} \Phi_{A}\left(x,\left|v_{j, k}(x)\right|\right) d x \\
& =\int_{G-G_{j, k}} \Phi_{A}\left(x,\left|v_{j, k}(x)\right|\right) d x+\int_{G_{j, k}^{\prime}} \Phi_{A}\left(x,\left|v_{j, k}(x)\right|\right) d x+\int_{G_{j, k}^{\prime \prime}} \Phi_{A}\left(x,\left|v_{j, k}(x)\right|\right) d x \\
& \leq C \frac{|G|}{|G|}+\int_{G_{j, k}^{\prime}} \Phi_{B}\left(x, \frac{\left|v_{j, k}(x)\right|}{C(\varepsilon)}\right) d x+C \delta\left(t_{0} \varphi\left(t_{0}\right)^{-A / p_{+}^{2}}\right)^{p_{+}^{*}} \leq C .
\end{aligned}
$$

Hence $\left\|u_{j}-u_{k}\right\|_{L^{\Phi} A^{(\cdot,)}(G)} \leq C \varepsilon$ and so $\left\{u_{n}\right\}$ converges in $L^{\Phi_{A}(\cdot, \cdot)}(G)$.

4 Applications

In this section, as an application of Theorem 3.1, we show the existence result of nontrivial weak solutions to (1.1), which is an extension of [3, Theorem 4.7]. Because we treat the case that the embedding from $W_{0}^{1, p(\cdot)}(G)$ into $L^{\Phi_{A}(\cdot, \cdot)}(G)$ is compact, the proof in [3] also works in our case with minor changes (see also [12] in the constant exponent case). However, for the reader's convenience, we give a proof of our theorem.

We set

$$
\widetilde{\Phi}_{A}(x, t)=\left\{t \varphi(t)^{A / p(x)^{2}}\right\}^{\left(p^{*}\right)^{\prime}(x)}
$$

for $A>N$, where

$$
1 /\left(p^{*}\right)^{\prime}(x)=1-1 / p^{*}(x) .
$$

Then, by Lemma 2.3, there exists a constant $C>0$ such that

$$
\begin{equation*}
\widetilde{\Phi}_{A}(x, s+t) \leq C\left(\widetilde{\Phi}_{A}(x, s)+\widetilde{\Phi}_{A}(x, t)\right) \tag{4.1}
\end{equation*}
$$

whenever $s, t \geq 0$ and $x \in G$. Further there exists a constant $C>0$ such that

$$
\begin{equation*}
s t \leq C\left(\Phi_{A}(x, s)+\widetilde{\Phi}_{A}(x, t)\right) \tag{4.2}
\end{equation*}
$$

for all $s, t>0$. In fact, in the case $s t \leq \Phi_{A}(x, s)$, the inequality (4.2) is obvious; in the case st $>\Phi_{A}(x, s)$, we have $s<C t^{1 /\left(p^{*}(x)-1\right)} \varphi(t)^{A\left(p^{*}\right)^{\prime}(x) / p(x)^{2}}$ with the aid of (2.2), so that

$$
s t<C t^{1 /\left(p^{*}(x)-1\right)+1} \varphi(t)^{A\left(p^{*}\right)^{\prime}(x) / p(x)^{2}}=C \widetilde{\Phi}_{A}(x, t)
$$

Hence we obtain inequality (4.2).
We define a functional $L: W_{0}^{1, p(\cdot)}(G) \rightarrow \mathbf{R}$ by

$$
L(u)=\int_{G} \frac{1}{p(x)}|\nabla u(x)|^{p(x)} d x \quad \text { for } u \in W_{0}^{1, p(\cdot)}(G)
$$

We note that the Gâteaux derivative $L^{\prime}(u)$ of L at $u \in W_{0}^{1, p(\cdot)}(G)$ is given by

$$
\left\langle L^{\prime}(u), v\right\rangle=\lim _{t \rightarrow 0} \frac{L(u+t v)-L(u)}{t}=\int_{G}|\nabla u(x)|^{p(x)-2} \nabla u(x) \nabla v(x) d x
$$

for each $v \in W_{0}^{1, p(\cdot)}(G)$. By the Vitali convergence theorem, we insist that L^{\prime} is continuous from $W_{0}^{1, p(\cdot)}(G)$ to its dual space $\left(W_{0}^{1, p(\cdot)}(G)\right)^{\prime}$ and hence $L \in C^{1}\left(W_{0}^{1, p(\cdot)}(G) ; \mathbf{R}\right)$.

Lemma $4.1\left(\left[3\right.\right.$, Theorem 3.1]). $L^{\prime}: W_{0}^{1, p(\cdot)}(G) \rightarrow\left(W_{0}^{1, p(\cdot)}(G)\right)^{\prime}$ is a homeomorphism.

Let $f: G \times \mathbf{R} \rightarrow \mathbf{R}$ be a Carathéodory function; more precisely, $f(\cdot, t)$ is measurable for all $t \in \mathbf{R}$ and $f(x, \cdot)$ is continuous for almost every $x \in G$. We consider a functional $J: W_{0}^{1, p(\cdot)}(G) \rightarrow \mathbf{R}$ defined by

$$
J(u)=\int_{G} F(x, u(x)) d x \quad \text { for } u \in W_{0}^{1, p(\cdot)}(G)
$$

where $F(x, t)=\int_{0}^{t} f(x, s) d s$.

Lemma 4.2. Let $f: G \times \mathbf{R} \rightarrow \mathbf{R}$ be a Carathéodory function satisfying:
(f1) $|f(x, t)| \leq C\left(1+|t|^{p^{*}(x)-1} \varphi(|t|)^{-A p^{*}(x) / p(x)^{2}}\right)$ for all $x \in G$ and $t \in \mathbf{R}$.
Then the Fréchet derivative $J^{\prime}(u)$ of J at $u \in W_{0}^{1, p(\cdot)}(G)$ exists and

$$
\left\langle J^{\prime}(u), v\right\rangle=\int_{G} f(x, u(x)) v(x) d x
$$

for each $v \in W_{0}^{1, p(\cdot)}(G)$.

Proof. For simplicity, we set $g(x, t)=|t|^{p^{*}(x)-1} \varphi(|t|)^{-A p^{*}(x) / p(x)^{2}}$. For $u, v \in W_{0}^{1, p(\cdot)}(G)$
and $t \in(-1,1)$, we have by (f1) and (4.2)

$$
\begin{aligned}
& \left|\frac{F(x, u(x)+t v(x))-F(x, u(x))}{t}\right| \\
\leq & \frac{1}{|t|} \int_{0}^{|t|}|f(x, u(x)+s v(x))||v(x)| d s \\
\leq & C\left(|v(x)|+\frac{1}{|t|} \int_{0}^{|t|} g(x, u(x)+s v(x))|v(x)| d s\right) \\
\leq & C\left(|v(x)|+\Phi_{A}(x,|v(x)|)+\frac{1}{|t|} \int_{0}^{|t|} \widetilde{\Phi}_{A}(x, g(x, u(x)+s v(x))) d s\right) \\
\leq & C\left(|v(x)|+\Phi_{A}(x,|v(x)|)+\frac{1}{|t|} \int_{0}^{|t|} \Phi_{A}(x,|u(x)+s v(x)|) d s\right) \\
\leq & C\left(|v(x)|+\Phi_{A}(x,|v(x)|)+\Phi_{A}(x,|u(x)|)\right) .
\end{aligned}
$$

By the dominated convergence theorem,

$$
\lim _{t \rightarrow 0} \frac{J(u+t v)-J(u)}{t}=\int_{G} f(x, u(x)) v(x) d x
$$

so that J is Gâteaux differentiable and

$$
\left\langle J^{\prime}(u), v\right\rangle=\int_{G} f(x, u(x)) v(x) d x
$$

Next we show that J^{\prime} is continuous in $\left(W_{0}^{1, p(\cdot)}(G)\right)^{\prime}$. Let $\left\{u_{n}\right\} \subset W_{0}^{1, p(\cdot)}(G)$ converge to $u \in W_{0}^{1, p(\cdot)}(G)$ in $W_{0}^{1, p(\cdot)}(G)$. Since $\left\{u_{n}\right\}$ is bounded in $W_{0}^{1, p(\cdot)}(G),\left\{u_{n}\right\}$ converges to u in $L^{\Phi_{A}(\cdot, \cdot)}(G)$ by Theorem 3.1. Therefore, there exists $\tilde{u} \in L^{\Phi_{A}(\cdot, \cdot)}(G)$ such that $|u(x)| \leq \tilde{u}(x)$ for almost every $x \in G$. In view of (f1), (4.1) and (4.2), we see that

$$
\begin{aligned}
& \left|f\left(x, u_{n}(x)\right)-f(x, u(x))\right||v(x)| \\
\leq & C\left(\widetilde{\Phi}_{A}\left(x,\left|f\left(x, u_{n}(x)\right)\right|\right)+\widetilde{\Phi}_{A}(x,|f(x, u(x))|)+\Phi_{A}(x,|v(x)|)\right) \\
\leq & C\left(\widetilde{\Phi}_{A}(x, 1)+\Phi_{A}\left(x,\left|u_{n}(x)\right|\right)+\Phi_{A}(x,|u(x)|)+\Phi_{A}(x,|v(x)|)\right) \\
\leq & C\left(\widetilde{\Phi}_{A}(x, 1)+\Phi_{A}(x, \tilde{u}(x))+\Phi_{A}(x,|u(x)|)+\Phi_{A}(x,|v(x)|)\right)
\end{aligned}
$$

for each $v \in W_{0}^{1, p(\cdot)}(G)$, so that the dominated convergence theorem gives the required result.
Lemma 4.3. Suppose $\left\{u_{n}\right\} \subset W_{0}^{1, p(\cdot)}(G)$ converges weakly to $u \in W_{0}^{1, p(\cdot)}(G)$ and a Carathéodory function f satisfies (f1). Then $J^{\prime}\left(u_{n}\right)$ converges to $J^{\prime}(u)$ in $\left(W_{0}^{1, p(\cdot)}(G)\right)^{\prime}$.

Proof. Since $\left\{u_{n}\right\} \subset W_{0}^{1, p(\cdot)}(G)$ converges weakly to $u \in W_{0}^{1, p(\cdot)}(G),\left\{u_{n}\right\}$ is bounded in $W_{0}^{1, p(\cdot)}(G)$, so that $\left\{u_{n}\right\}$ converges to u in $L^{\Phi_{A}(\cdot, \cdot)}(G)$ by Theorem 3.1. Hence, we can apply the considerations in Lemma 4.2 to obtain the required result.

Let X be a Banach space. We say that $u \in X$ is a critical point of $I \in C^{1}(X ; \mathbf{R})$ if the Fréchet derivative $I^{\prime}(u)$ of I at u is zero. We say that $\left\{u_{n}\right\} \subset X$ is a PalaisSmale sequence for I if $\left\{I\left(u_{n}\right)\right\}$ is bounded and $I^{\prime}\left(u_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$ in the dual space of X. We further say that I satisfies the Palais-Smale condition if every Palais-Smale sequence for I has a convergent subsequence.

We define a functional $I: W_{0}^{1, p(\cdot)}(G) \rightarrow \mathbf{R}$ by

$$
I(u)=L(u)-J(u) \quad \text { for } u \in W_{0}^{1, p(\cdot)}(G) .
$$

Note from Lemma 4.2 that if a Carathéodory function f satisfies (f1), then the Fréchet derivative $I^{\prime}(u)$ of I at $u \in W_{0}^{1, p(\cdot)}(G)$ exists and
$\left\langle I^{\prime}(u), v\right\rangle=\left\langle L^{\prime}(u)-J^{\prime}(u), v\right\rangle=\int_{G}\left(|\nabla u(x)|^{p(x)-2} \nabla u(x) \nabla v(x)-f(x, u(x)) v(x)\right) d x$ for each $v \in W_{0}^{1, p(\cdot)}(G)$.
Lemma 4.4. Let $f: G \times \mathbf{R} \rightarrow \mathbf{R}$ be a Carathéodory function satisfying (f1) and
(f2) there exist constants $M>0$ and $\theta>p_{+}$such that

$$
\begin{aligned}
& 0<\theta \int_{M}^{t} f(x, s) d s \leq t f(x, t) \text { for all } x \in G \text { and } t>M, \text { and } \\
& 0<\theta \int_{-M}^{t} f(x, s) d s \leq t f(x, t) \text { for all } x \in G \text { and } t<-M .
\end{aligned}
$$

Then I satisfies the Palais-Smale condition.
Proof. Let $\left\{u_{n}\right\} \subset W_{0}^{1, p(\cdot)}(G)$ be a Palais-Smale sequence for I. By (f1), (f2) and Lemmas 2.1 and 2.2, we have

$$
\begin{aligned}
& C \geq I\left(u_{n}\right) \\
& \geq \int_{G} \frac{1}{p(x)}\left|\nabla u_{n}(x)\right|^{p(x)} d x-\int_{G} \frac{u_{n}(x)}{\theta} f\left(x, u_{n}(x)\right) d x-C \\
&= \int_{G}\left(\frac{1}{p(x)}-\frac{1}{\theta}\right)\left|\nabla u_{n}(x)\right|^{p(x)} d x+\frac{1}{\theta}\left\langle I^{\prime}\left(u_{n}\right), u_{n}\right\rangle-C \\
& \geq\left(\frac{1}{p_{+}}-\frac{1}{\theta}\right) \min \left\{\left\|\nabla u_{n}\right\|_{L^{p(\cdot)}(G)}^{p_{-}},\left\|\nabla u_{n}\right\|_{L^{p(\cdot)}(G)}^{p_{+}}\right\} \\
& \quad-\frac{1}{\theta}\left\|I^{\prime}\left(u_{n}\right)\right\|_{\left(W_{0}^{1, p(\cdot)}(G)\right)^{\prime}}\left\|u_{n}\right\|_{W^{1, p(\cdot)}(G)}-C \\
& \geq\left(\frac{1}{p_{+}}-\frac{1}{\theta}\right) \min \left\{\left\|\nabla u_{n}\right\|_{L^{p(\cdot)}(G)}^{p_{-}},\left\|\nabla u_{n}\right\|_{L^{p(\cdot)}(G)}^{p_{+}}\right\} \\
& \quad-C\left(\left\|I^{\prime}\left(u_{n}\right)\right\|_{\left(W_{0}^{1, p(\cdot)}(G)\right)^{\prime}}\left\|\nabla u_{n}\right\|_{L^{p(\cdot)}(G)}+1\right),
\end{aligned}
$$

so that $\left\{u_{n}\right\}$ is bounded in $W_{0}^{1, p(\cdot)}(G)$ since $\theta>p_{+}$. Hence, passing to a subsequence, we may assume that $\left\{u_{n}\right\}$ converges weakly to a function u in $W_{0}^{1, p(\cdot)}(G)$. Since $I^{\prime}\left(u_{n}\right)$ converges to 0 in $\left(W_{0}^{1, p(\cdot)}(G)\right)^{\prime}$ and $J^{\prime}\left(u_{n}\right)$ converges to $J^{\prime}(u)$ in $\left(W_{0}^{1, p(\cdot)}(G)\right)^{\prime}$ by Lemma 4.3, we have $L^{\prime}\left(u_{n}\right)$ converges to $J^{\prime}(u)$ in $\left(W_{0}^{1, p(\cdot)}(G)\right)^{\prime}$. It follows from Lemma 4.1 that I satisfies the Palais-Smale condition.

We recall the following variant of the mountain pass theorem; see e.g., [12].
Lemma 4.5. Let X be a Banach space and let I be a C^{1} functional on X with $I(0)=0$, for which there exist positive constants $\kappa, r>0$ such that
(1) $I(u) \geq \kappa$ for all $u \in X$ with $\|u\|_{X}=r$, and
(2) there exists an element $v \in X$ satisfying $I(v)<0$ and $\|v\|_{X}>r$.

Define

$$
c=\inf _{\gamma \in \Gamma} \max _{0 \leq t \leq 1} I(\gamma(t))
$$

where

$$
\Gamma=\{\gamma \in C([0,1] ; X): \gamma(0)=0, I(\gamma(1))<0,\|\gamma(1)\|>r\}
$$

Then $c>0$ and for each $\varepsilon>0$, there exists $u \in X$ such that $|I(u)-c| \leq \varepsilon$ and $\left\|I^{\prime}(u)\right\|_{X^{\prime}} \leq \varepsilon$.

Theorem 4.6. Suppose $p_{+}<p_{-}^{*}$. Let $f: G \times \mathbf{R} \rightarrow \mathbf{R}$ be a Carathéodory function satisfying (f1), (f2) and
(f3) $\lim _{t \rightarrow 0} \sup _{x \in G} f(x, t) /|t|^{p_{+}-1}=0$.
Then there exists a nontrivial weak solution of (1.1).
Proof. First we show that

$$
\begin{equation*}
\inf \left\{I(u): u \in W_{0}^{1, p(\cdot)}(G),\|u\|_{W^{1, p(\cdot)}(G)}=r\right\}>0 \tag{4.3}
\end{equation*}
$$

if $r>0$ is sufficiently small. Note from (f1) and (f3) that

$$
F(x, t) \leq \varepsilon|t|^{p_{+}}+C(\varepsilon) \Phi_{A}(x, t)
$$

for all $t \in \mathbf{R}$ and $\varepsilon>0$. Taking $r>0$ so small, by Lemma 2.6, we have $\|\nabla u\|_{L^{p(\cdot)}(G)} \leq 1$ and $\|u\|_{L^{\Phi_{A}(\cdot,)}(G)} \leq 1$ for all $u \in W_{0}^{1, p(\cdot)}(G)$ with $\|u\|_{W^{1, p(\cdot)}(G)}=r$. Then for each $u \in W_{0}^{1, p(\cdot)}(G)$ with $\|u\|_{W^{1, p(\cdot)}(G)}=r$, we see from Lemmas 2.1, 2.2 and 2.7 that

$$
\begin{aligned}
I(u) & \geq \frac{1}{p_{+}} \int_{G}|\nabla u(x)|^{p(x)} d x-\varepsilon \int_{G}|u(x)|^{p_{+}} d x-C(\varepsilon) \int_{G} \Phi_{A}(x,|u(x)|) d x \\
& \geq\left(\frac{1}{p_{+}}-C \varepsilon\right)\|\nabla u\|_{L^{p(\cdot)}(G)}^{p_{+}}-C(\varepsilon)\|\nabla u\|_{L^{p(\cdot)}(G)}^{p_{0}},
\end{aligned}
$$

where $p_{+}<p_{0}<p_{-}^{*}$. Choosing $\varepsilon>0$ as $1 / p_{+}-C \varepsilon>0$ in the last expression, we have (4.3) if $r>0$ is small.

Next we prove $I(t u) \rightarrow-\infty$ as $t \rightarrow \infty$ for $u \in W_{0}^{1, p(\cdot)}(G)$ with $u \neq 0$. Note from (f2) that $F(x, t) \geq C|t|^{\theta}$ for all $x \in G$ and $|t|>M$. If $u \in W_{0}^{1, p(\cdot)}(G)$ such that $u \neq 0$, then we see that

$$
I(t u) \leq t^{p_{+}} \int_{G} \frac{1}{p(x)}|\nabla u(x)|^{p(x)} d x-t^{\theta} \int_{G}|u(x)|^{\theta} d x \rightarrow-\infty
$$

as $t \rightarrow \infty$, since $p_{+}<\theta$.
Now the required result follows from Lemmas 4.4 and 4.5.
Remark 4.7. Let $p_{+}<p_{-}^{*}$ and $\varphi(r)=(\log (e+r))^{a}$ for $a>0$. Then Theorem 4.6 implies that there exists a nontrivial weak solution to the nonlinear elliptic problem
$\left\{\begin{aligned}-\operatorname{div}\left(|\nabla u(x)|^{p(x)-2} \nabla u(x)\right) & =|u(x)|^{\left.\right|^{*}(x)-2} u(x)(\log (e+|u(x)|))^{-a^{\prime} N p^{*}(x) / p(x)^{2}} & & \text { in } G, \\ u(x) & =0 & & \text { on } \partial G,\end{aligned}\right.$ where $a^{\prime}>a$.

References

[1] L. Diening, Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces $L^{p(\cdot)}$ and $W^{k, p(\cdot)}$, Math. Nachr. 268 (2004), 31-43.
[2] X. Fan, J. Shen and D. Zhao, Sobolev embedding theorems for spaces $W^{k, p(x)}(\Omega)$, J. Math. Anal. Appl. 262 (2001), 749-760.
[3] X. Fan and G.-H. Zhang, Existence of solutions for $p(x)$-Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003), 1843-1852.
[4] X. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)$, J. Math. Anal. Appl. 263 (2001), 424-446.
[5] T. Futamura, Y. Mizuta and T. Shimomura, Sobolev embedding for Riesz potential spaces of variable exponent, Math. Nachr. 279 (2006), 1463-1473.
[6] P. Harjulehto, P. Hästö, M. Koskenoja and S. Varonen, The Dirichlet energy integral and variable exponent Sobolev spaces with zero boundary values, Potential Anal. 25 (2006), 205-222.
[7] O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{k, p(x)}$, Czechoslovak Math. J. 41 (1991), 592-618.
[8] Y. Mizuta, T. Ohno and T. Shimomura, Sobolev's inequalities and vanishing integrability for Riesz potentials of functions in $L^{p(\cdot)}(\log L)^{q(\cdot)}$, J. Math. Anal. Appl. 345 (2008), 70-85.
[9] Y. Mizuta and T. Shimomura, Maximal functions, Riesz potentials and Sobolev's inequality in generalized Lebesgue spaces, Potential theory in Matsue, 255-281, Adv. Stud. Pure Math. 44, Math. Soc. Japan, Tokyo, 2006.
[10] W. Orlicz, Über konjugierte Exponentenfolgen, Studia Math. 3 (1931), 200211.
[11] M. Rưžička, Electrorheological fluids : modeling and mathematical theory, Lecture Notes in Math. 1748, Springer, 2000.
[12] M. Willem, Minimax theorems, Progress in nonlinear differential equations and their applications, 24, Birkhäuser Boston, Inc., Boston, MA, 1996.

General Arts
Hiroshima National College of Maritime Technology Higashino Oosakikamijima Toyotagun 725-0231, Japan

E-mail : ohno@hiroshima-cmt.ac.jp

[^0]: 2000 Mathematics Subject Classification : Primary 46E30, 46B50
 Key words and phrases : Sobolev spaces of variable exponents, compact embeddings, nonlinear elliptic problems

