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Abstract

Our aim in this paper is to deal with the compact embedding in the
generalized Sobolev space I/VOl P (‘)(G) with a variable exponent satisfying the
log-Holder condition. As an application, we find a nontrivial weak solution
of the nonlinear elliptic problem

—div(\vu(x)\p@)*?vu(x)) = f(z,u(z)) G, w(z)=0 ondG,

which is an extension of Fan-Zhang [3, Theorem 4.7].

1 Introduction

Let RY be the N-dimensional Euclidean space and let G be an open bounded
set in RY. Following Orlicz [10] and Kovédcik-Rakosnik [7], for a function p(-) :
G — [1,00), which is called a variable exponent, we define the LP()-norm of a
measurable function v on G by
p(z) }
dr <1

T {)\ S0
G

and denote by LP)(G) the family of all measurable functions u with ||u]| () <
0o. In recent years, the generalized Lebesgue spaces have attracted more and more
attention, in connection with the study of elasticity, fluid mechanics and differential
equations with p(-)-growth; see Ruzicka [11]. Further we denote by W*0)(G) the
family of all measurable functions v on G such that

u(z)
A

HU”WLM(G) = HUHLP(‘)(G) + ||quLP(')(G) <00
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and denote by W, "(G) the closure of C5°(G) in WO(G).
We consider a positive nondecreasing continuous function ¢ on (0, co) for which
there exist eg > 0 and 0 < ry < 1 such that

(p) (log(1/7))~%°¢(1/r) is nondecreasing on (0,7¢) and ¢(1/ry) > e%;
(¢") @(r) > 1 for all r > 0.

Our typical example of ¢ is of the form

p(r) = a(log(By + 7))’ (log(By + log(Bo + 1))

for r > 0, where the constants a > 0, b > 0, ¢ € R and [y > e are chosen so that
©(r) is nondecreasing on (0, 00).

Throughout this paper, let us assume that our variable exponent p(-) is a pos-
itive continuous function on G satisfying :

(pl) 1 <p_ =infieqp(r) <sup,eap(z) =py < N ;

log o(|z —y|™")
(p2) ’p(l‘) _p<y)’ < log(e 4+ ’$ _ y’_l)

whenever =,y € G.

When ¢(-) is a bounded function on (0, 00), we say that p(-) satisfies the log-Holder
condition on G, that is,

C
<
~ log(e+ [z —y[™!)

Ip(x) — p(y)|

for all z,y € G, where ¢ is a positive constant. We know the fact that if p(-)

satisfies the log-Holder condition on G, then the embedding from VVO1 P (')(G) to
LP"O)(@G) is bounded, where

1/p*(z) = 1/p(z) — 1/N

(see Diening [1, Theorem 5.2]). Further, we know that the embedding from
Wol’p(') (@) to LIV)(@) is compact for the variable exponent q(-) satisfying ess inf,cq(p* (z)—
q(z)) > 0 (see Fan-Shen-Zhao [2, Theorem 1.3]).

On the other hand, in the case ¢(-) is an unbounded function on (0, c0), that
is, lim, ., ¢(r) = 0o, Mizuta and Shimomura [9] showed that the embedding from

Wol’p(')(G) to L*40)(@G) is bounded for A > N, where

L2t () = {u [l g aco @) = inf {)\ >0: / D (, Ju(x)|/N)de < 1} < oo}
G

with ®4(z,t) = {tp(t)~ AP} @) (see also Futamura-Mizuta-Shimomura [5] and
Mizuta-Ohno-Shimomura [8]).

In connection with the above facts, our first aim in this paper is to show that
the embedding from W, (@) to L®4)(G) is compact for A > N
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As an application, we show the existence of a nontrivial weak solution to the
nonlinear elliptic problem

{ —div (|Vu(z) [P 2Vu(z)) = f(z,u(z)) in G,
u(z) =0 on 0G,

(1.1)

where f : G x R — R is a Carathéodory function satisfying the conditions given
in Section 4. This extends Fan-Zhang [3, Theorem 4.7]. Here, we say that u is a

weak solution of (1.1) if u € Wy (G) and
/G (|Vu(x)|p(z)_2Vu(x)Vv(x) — f(z,u(z))v(z)) dz =0

for all v € Wy PY(@).

2 Preliminaries

Throughout this paper, let C' denote various positive constants independent of
the variables in question and let C(a,b,---) be a constant which may depend on
a,b, . ... For a measurable subset E of RY, we denote by | E| the Lebesgue measure
of .

The next result follows readily from the definition of the L¢")-norm.

LEMMA 2.1 ([4, Theorem 1.3]). If ¢(-) is a variable exponent on G satistying q; <
oo, then

min{““”ﬁc)(g)a 12 %Z(-)(G)} < /G |“<x)’q(x)dx < max {HquL;(,)(G), [l q;;m(c)} :

We know the following Poincaré inequality for functions in Wy *“(G).

LEMMA 2.2 ([6, Theorem 4.3]). If ¢(-) is a uniform continuous variable exponent
on G satisfying q. < oo, then there exists a constant C' > 0 such that

[ullwraor @y < ClIVUll L)
for all u € Wol’q(’)(G).

It is worth noting the next result; see [8, Section 2].

LEMMA 2.3. Let q(-) be a variable exponent on G satistfying ¢y < oo and let r(-)
be a measurable function on G satistying —oo < r_ < ry < oco. Then ®(z,t) =
1@ p(4)7(®) satisfies the doubling condition; more pricisely,

C'®(z,t) < ®(z,2t) < CB(x, 1) (2.1)
for allt > 0 and x € G. Further, there exists a constant C' > 0 such that
O(z,t) < CP(z, s) (2.2)

whenever 0 <t <sandz € Q.



LEMMA 2.4 ([8, Lemma 2.5]). || - [|pe4c.) ) I8 @ quasi-norm; more pricisely, for
u,v € LP40)(G) and a real number F,

(1) [Jull poacrg) = 0 if and only if u = 0;
(i) [[Fullpeaco iy = [Flllulleac )i
(i) Jlu+ vl peacor ) < C (Il eaco ) + ol zoacoc ) -
LEMMA 2.5. L®40)(G) is a Banach space.
Proof. First note from Lemma 2.4 (iii) that there exists a constant ¢ > 1 such that
Ju+ U||L<I>A(-v>(c) <c <||u||L‘1’A("')(G) + ||U||L¢A('v'>(G)>
for all u,v € L240)(@).

Let {u,} be a Cauchy sequence in L*4¢)(G). Then we can take a subsequence
{tn, } of {u,} such that

Hunj+1 - unjH[fPA("‘)(G) < (4C)j'
Setting E; = {x € G : |uy,,, (¥) — un, ()| > 1/27}, we have by (2.2)

Dy (z, (4e) un, ., (2) = un,(x)])
il < C/ D y(x,29)

de < C277,

E;
so that |E| = 0, where E = M2, U2, E;. Hence we see that u,, = u,, +

—1 . .
> i1 (Uny,, — Up, ) converges to a function u almost everywhere on G. Since

o
HUHL‘I’A("‘)(G) < C”um||L‘I’A("‘>(G)+Zc]||unj+1_unjHL‘I’A(‘v‘)(G) < C(HUTL1HL‘1’A(‘7‘)(G)+1)J
j=1

we have u € L*40)(G). Fatou’s lemma implies that

/ P (, (4c)|u(x) —up, (z)|)dz < lim inf/ D4 (x, (4¢) [t () = un, (2)])de < 1,
e a

Jj—o0
so that we have [lu — || po4c.0(g) < 1/(4c)’, as required. O

We know the following Sobolev inequality for functions in W, (')(G).

LEMMA 2.6 ([9, Theorem 3.5]). There exists a constant C' > 0 such that
||u||L‘I>A(‘v‘)(G) < CHVUHLP(-)(G)

for all u € WSP(G).



LEMMA 2.7 (cf. [8, Corollary 2.11]). Let py satisfy 1 < py < p*. Then there exists
a constant C' > 0 such that

/G D (e, Ju(@))dz < CVul,

for all measurable functions u € Wol’p(')(G) with ||Vul|pee) @ < 1.

Proof. If [|[Vu|| o)) < 1, then we can find A > 0 such that |[Vul| 0 g < A <2
and

/GCIDA(x, lu(z)|/N)dx < C

by Lemmas 2.3 and 2.6, where C' is independent of A. In view of [8, Corollary 2.3],
we see that

| s u@har < s re 2@ [ 0o futo)l/3)ds

zeG
< Csupr(z, \)P'@
zelG

where 7(z, \) = Ap(A~1)A/7@)” Since A < 2, we have

/GQDA(x, |u(x)])de < CNP°.

Letting A — || Vu|| o) (g yields the required inequality. O

3 Compact embeddings

From now on, we assume that ¢(-) satisfies lim, ., ¢(r) = occ.
Now we show our compactness result on the embedding of W, © (G) to LEAC)(@).

THEOREM 3.1. The embedding from Wol’p(')(G) to L®4)(Q) is compact for A >
N.

Proof. Let {u,} be a bounded sequence in Wol’p(')(G) and let A > B > N. For
e > 0, we set v = (u; —uy)/e. Clearly {v;;} is bounded in L?*20)(G) from
Lemma 2.6; say [[vjllpesc ) < C(e). Now there exists a constant ¢y > e such

that if ¢t > ¢, then
t
) )< o —
e < 00 (275 )

for all z € G. Let § = (top(to) /%) P+ and set

1
Gjr = {ZB €G:|vj(z)| > @21 (x, @) } ,
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where
O, (z,5) =inf {t >0: Py(x,t) > s}.

Then note that ®4(z, ®,'(z,s)) < s for all # € G. On the other hand, we see
that {u,} converges in measure since the embedding from W, "' (G) to L'(G) is
compact. Therefore, there exists an integer ng > 0 such that if j, k& > ng, then
|G x| <6 since @' (z,1/|G|) > ¢, where ¢ is independent of z. Set

G;,k ={z € G : |vjr(x)] >t} and G;tk =G — G;k
For j, k > ng, we have by (2.2)

| ®atalosata)aa

:/ch,k (I)A(l’?lvj,k(iﬂ)bdl“-f—/G D (e, |vj7k(x)|)dx+/ B4z, [0;(7)|)dz

ik Gl
|Gl / ( |Ujk(l‘)|) —A/P2 P
<Ci + Dp (o, —L255) da + Co(tgp(te) ~A/P+)P+ < C.
R Ce)
Hence [lu; — uglzo40 (@) < Ce and so {u,} converges in L2AC)(@). O

4 Applications

In this section, as an application of Theorem 3.1, we show the existence result
of nontrivial weak solutions to (1.1), which is an extension of [3, Theorem 4.7].

Because we treat the case that the embedding from Wol’p(')(G) into L240)(Q) is
compact, the proof in [3] also works in our case with minor changes (see also [12]
in the constant exponent case). However, for the reader’s convenience, we give a

proof of our theorem.
We set

~ 2 (") (2)
Ba(e,1) = {tp(yrer
for A > N, where
/@) (x)=1-1/p"(x).
Then, by Lemma 2.3, there exists a constant C' > 0 such that
Ba(r,s+1) < C (ciA(x, s) + B, t)) (4.1)
whenever s,t > 0 and x € GG. Further there exists a constant C' > 0 such that

st<C (@A(x, s) + EISA@,t)) (4.2)

for all s,t > 0. In fact, in the case st < ®4(z, s), the inequality (4.2) is obvious;
in the case st > ®4(x,s), we have s < CtY/E @=Dp($)AP) @)/p(*)* with the aid of
(2.2), so that

st < C'tl/(p*(96)*1)+1g0(t)A(p*)'(f’c)/:l’(iv)2 — C%A(x’ t).
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Hence we obtain inequality (4.2).
We define a functional L : W, *"(G) — R by

1
_ p(z) Lp(+)
L(u) /Gp—@) \Vu(z)[P'*"dx for u € Wy (G).

We note that the Gateaux derivative L'(u) of L at u € Wol’p(')(G) is given by

:/G|Vu(x)|p(w)_2Vu(x)Vv(x)dx

for each v € VVO () (G). By the Vitali convergence theorem, we insist that L’ is con-
()

tinuous from Wy (G) to its dual space (W, *(G)) and hence L € C* (W *(G); R).

LEMMA 4.1 ([3, Theorem 3.1]). L' : Wol’p(‘)(G) — (Wol’p(')(G))’ is a homeomor-
phism.

Let f : G x R — R be a Carathéodory function; more precisely, f(-,t) is
measurable for all t € R and f(z,-) is continuous for almost every z € G. We

consider a functional J : W, (')(G’) — R defined by
J(u) = / F(z,u(x))dx for u € Wol’p(')(G),
G
where F(z,t) = [5 f(

LEMMA 4.2. Let f: G x R — R be a Carathéodory function satisfying:

(f1) |f(x,t)] < C( Pr@=L o (1¢)) AP @Y for all x € G and t € R.

Then the Fréchet derivative J'(u) of J at u € Wol’p(')(G) exists and

_ /G F, u(@))o(z)de

for each v € Wol’p(')(G).

Lo([t))=4P"@/P@?*  For u, v € Wa(G)

Proof. For simplicity, we set g(x,t) = [t|P"



and t € (—1,1), we have by (f1) and (4.2)

‘F(x, u(@) + to(@)) — F(z, u(z)) '
t

1 [t]
< / (@ u(z) + so(@))|o()|ds

IN

1
C | |v(x)] + m/o g(x,u(z) + sv(a:))|v(a:)\ds>

IN

It _
C | |v(x)] + Palz, |v(z)]) + % i Dy (z, gz, u(x) + sv(:c)))ds)

1 [l
< O Jo(@)[ + Palz, [v(z)]) + m/ D a(x, u(z) + Sv(x)!)dé’)
0
< Cu()] + Palz, [v(2)]) + Palz, [u(z)])) -
By the dominated convergence theorem,

lim J(u+tv) — J(u) _
t—0 t

/G f(a, u(@))o(x)d,
so that J is Gateaux differentiable and
(.0} = [ o ula)ola)ds.
G

Next we show that J’ is continuous in (Wol’p(')(G))’. Let {u,} C Wol’p(')(G) converge
tou € Wol’p(')(G) in Wol’p(')(G). Since {uy, } is bounded in Wol’p(')(G), {u, } converges
to u in L?20)(G) by Theorem 3.1. Therefore, there exists & € L®4()(G) such
that |u(z)| < @(z) for almost every z € G. In view of (f1), (4.1) and (4.2), we see
that

f (@, un(2)) = f (2, u(@))|Jo(z)]

C (Ba(, [/ (@, un(@))]) + Bala, |f (2, u(@))]) + ®ala, [v()]))

C (Bale, 1) + @a(w, [un(@)]) + @a (e, [u(@)]) + ®ala, [v(x)]))

< (Balw 1) + Pal, 6(a)) + Pl [u(@)]) + Pala [o(z))

IA

IN

for each v € I/VO1 P (')(G), so that the dominated convergence theorem gives the
required result. [

LEMMA 4.3. Suppose {u,} C Wol’p(')(G) converges weakly to u € Wol’p(')(G)
and a Carathéodory function f satisfies (f1). Then J'(u,) converges to J'(u) in

(W™ (@)



Proof. Since {u,} C Wol’p(’ (G) converges weakly to u € W01 ' ( ), {wn} is bounded
in Wol’p(’)(G), so that {u,} converges to u in L*4()(G) by Theorem 3.1. Hence,
we can apply the considerations in Lemma 4.2 to obtain the required result. [

Let X be a Banach space. We say that u € X is a critical point of I € C*(X;R)
if the Fréchet derivative I'(u) of I at u is zero. We say that {u,} C X is a Palais-
Smale sequence for I if {I(u,)} is bounded and I'(u,) — 0 as n — oo in the dual
space of X. We further say that [ satisfies the Palais-Smale condition if every
Palais-Smale sequence for I has a convergent subsequence.

We define a functional T : Wg*"(G) — R by

I(u) = L(u) — J(u) for u € Wy™(@).

Note from Lemma 4.2 that if a Carathéodory function f satisfies (f1), then the
Fréchet derivative I'(u) of I at u € Wy (@) exists and

(I'(u), v) = (L'(u)=J(u), v) =/G(IVU(ﬁ)I”(”C)_QVU(ﬂf)W(fE)—f(:mU(x))v(x))dﬂf

for each v € Wy (@).
LEMMA 4.4. Let f : G x R — R be a Carathéodory function satisfying (f1) and
(f2) there exist constants M > 0 and 6 > p, such that

t
O<0/ f(z,s)ds < tf(x,t) for all x € G and t > M, and
M

t
()<(9/ flz,s)ds < tf(x,t) forallz € G andt < —M.
M

Then [ satisfies the Palais-Smale condition.

Proof. Let {u,} C Wol’p(')(G) be a Palais-Smale sequence for I. By (fl), (f2) and
Lemmas 2.1 and 2.2, we have

C

v

v

/ @) |Vun )dx—/Gunéx)f(SC,un(x))dx—C
/ ( )|Vun( )|P<x)dx+%(f'(un),un>—0

(pi_ )mm ||Vun||Lp( HVUnHLp() }
__||]’(un)|| wir @y lnllwreo @ = €
(pi — —> min ||Vun||Lp() ||Vun||Lp() }
—O<||I’(un)|| 100y [ Vil £ ) +1>
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so that {u,} is bounded in Wol’p(')(G) since § > p,. Hence, passing to a subse-
quence, we may assume that {u,} converges weakly to a function u in W,* (')(G).
Since I'(u,) converges to 0 in (Wol’p(')(G))/ and J'(u,) converges to J'(u) in (Wol’p(’)(G))’
by Lemma 4.3, we have L'(u,) converges to J'(u) in (Wol’p(')(G))’. It follows from
Lemma 4.1 that I satisfies the Palais-Smale condition. O

We recall the following variant of the mountain pass theorem; see e.g., [12].

LEMMA 4.5. Let X be a Banach space and let I be a C' functional on X with
1(0) = 0, for which there exist positive constants k,7 > 0 such that

(1) I(u) > & for all w € X with ||lul]|x = r, and
(2) there exists an element v € X satisfying I(v) < 0 and ||v||x > 7.
Define

c= ;gﬁgggg I(v()),

where
I'={yeC([0,1]; X) : v(0) = 0, I((1)) <0, [|lv(1)[| > r}.

Then ¢ > 0 and for each ¢ > 0, there exists uw € X such that |I(u) — c¢| < ¢ and
1 (w)llx <e.

THEOREM 4.6. Suppose p, < p*. Let f : G Xx R — R be a Carathéodory function
satisfying (f1), (f2) and

(f3) limsup f(z,t)/|t[P+ = 0.
t—0 e
Then there exists a nontrivial weak solution of (1.1).

Proof. First we show that
inf {](u) Tu € Wol’p(')(G), ullwreo ) = r} >0 (4.3)
if r > 0 is sufficiently small. Note from (f1) and (f3) that
F(x,t) <elt]P+ + C(e)P4(z,t)

for all t € R and ¢ > 0. Taking r > 0 so small, by Lemma 2.6, we have
IVull ooy < 1 and JJull poacr gy < 1 for all w € Wy (G) with [[ully o0 = -

Then for each u € Wol’p(')(G) with [[ully 1)@ = 7, We see from Lemmas 2.1, 2.2
and 2.7 that

I(w) > /|Vu )P daz—s/ () P+ dz — ()/GQDA(:E,\U(:E)])da:

> (p——ce) 19l ) — CEONTUI .

+
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where p, < pg < p*. Choosing € > 0 as 1/p, — Ce > 0 in the last expression, we
have (4.3) if r > 0 is small.

Next we prove I(tu) — —oo as t — oo for u € Wol’p(')(G) with u # 0. Note

from (2) that F(z,t) > C|t|° for all z € G and |t| > M. If u € W;(G) such
that u # 0, then we see that

I(tu) < t7+ / 1

Vu(z p("”)dx—te/ u(2)|?dr — —co
Gp(x)‘ ()] GI (2)]

as t — oo, since py < 0.
Now the required result follows from Lemmas 4.4 and 4.5. ]

REMARK 4.7. Let p, < p* and ¢(r) = (log(e + r))* for a > 0. Then Theorem
4.6 implies that there exists a nontrivial weak solution to the nonlinear elliptic
problem

—div (]Vu(x)\p(m)_ZVu(x)) = |u(x) p*(x)_2u(x)(log(e + |u(x)\))_“/Np*(x)/p(x)2 in G,
u(z) =0 on 0G,

where a’ > a.
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