# Boundedness of maximal operators and Sobolev's theorem for non-homogeneous central Morrey spaces of variable exponent 

Yoshihiro Mizuta, Takao Ohno and Tetsu Shimomura


#### Abstract

Our aim in this paper is to deal with the boundedness of the HardyLittlewood maximal operator in non-homogeneous central Morrey spaces of variable exponent. Further, we give Sobolev's inequality and Trudinger's exponential integrability for generalized Riesz potentials.


## 1 Introduction

Let $\mathbf{R}^{N}$ be the Euclidean space. In [4], Beurling introduced the space $B^{p}\left(\mathbf{R}^{N}\right)$ to extend Wiener's ideas $[21,22]$ which describes the behavior of functions at infinity. Feichtinger [8] gave an equivalent norm on $B^{p}\left(\mathbf{R}^{N}\right)$, which is a special case of norms in Herz spaces $K_{p}^{\alpha, r}\left(\mathbf{R}^{N}\right)$ introduced by Herz [12]. Precisely speaking, $B^{p}\left(\mathbf{R}^{N}\right)=$ $K_{p}^{-N / p, \infty}\left(\mathbf{R}^{N}\right)$ (see also [11]). In [10], García-Cuerva studied the boundedness of the maximal operator on the space $B^{p}\left(\mathbf{R}^{N}\right)$. As an extension of the space $B^{p}\left(\mathbf{R}^{N}\right)$, García-Cuerva and Herrero [11] introduced the central Morrey spaces $B^{p, \nu}\left(\mathbf{R}^{N}\right)$ (see also [3]). Alvarez, Guzmán-Partida and Lakey [3] obtained the boundedness of a class of singular integrals operators on the central Morrey spaces (see also Komori [13]), which are more singular than Calderón-Zygmund operators and include pseudo-differential operators.

Variable exponent Lebesgue spaces and Sobolev spaces were introduced to discuss nonlinear partial differential equations with non-standard growth condition. Our first aim in this paper is to introduce the non-homogeneous central Morrey spaces of variable exponent, and study the boundedness of the Hardy-Littlewood maximal operator (see Theorem 3.1), in a way different from Almeida and Drihem [2].

In classical Lebesgue spaces, we know Sobolev's inequality :

$$
\left\|I_{\alpha} f\right\|_{L^{p}\left(\mathbf{R}^{N}\right)} \leq C\|f\|_{L^{p}\left(\mathbf{R}^{N}\right)}
$$

[^0]for $f \in L^{p}\left(\mathbf{R}^{N}\right), 0<\alpha<N$ and $1<p<N / \alpha$, where $I_{\alpha}$ is the Riesz kernel of order $\alpha$ and $1 / p^{\sharp}=1 / p-\alpha / N$ (see, e.g. [1, Theorem 3.1.4]). This result was extended to the central Morrey spaces by Fu, Lin and Lu [9, Proposition 1.1] (see also Matsuoka and Nakai [15]).

To obtain general results, for $0<\alpha<N$ and an integer $k$, we define the generalized Riesz potential $I_{\alpha, k} f$ of order $\alpha$ of a locally integrable function $f$ on $\mathbf{R}^{N}$ by

$$
I_{\alpha, k} f(x)=\int_{\mathbf{R}^{N} \backslash B(0,1)}\left\{I_{\alpha}(x-y)-\sum_{\{\mu:|\mu| \leq k-1\}} \frac{x^{\mu}}{\mu!}\left(D^{\mu} I_{\alpha}\right)(-y)\right\} f(y) d y
$$

where $I_{\alpha}(x)=|x|^{\alpha-n}$ (see $\left.[16,17]\right)$. Remark here that

$$
I_{\alpha, k} f(x)=\int_{\mathbf{R}^{N} \backslash B(0,1)} I_{\alpha}(x-y) f(y) d y
$$

when $k \leq 0$.
In Section 4, when $p^{+}<N / \alpha$ (see Section 2 for the definition of $p^{+}$), we shall give Sobolev's inequality for $I_{\alpha, k} f$ with functions in the non-homogeneous central Morrey spaces of variable exponent (see Theorem 4.5); for related result, we refer the reader to Fu , Lin and $\mathrm{Lu}[9$, Theorem 2.1].

In the last section, when $p=N / \alpha$, we treat Trudinger's exponential integrability for $I_{\alpha, k} f$ (see Theorem 5.1).

## 2 Preliminaries

Consider a function $p(\cdot)$ on $\mathbf{R}^{N}$ such that
(P1) $1<p^{-}:=\inf _{x \in \mathbf{R}^{N}} p(x) \leq \sup _{x \in \mathbf{R}^{N}} p(x)=: p^{+}<\infty$;
(P2) $p(\cdot)$ is log-Hölder continuous, namely

$$
|p(x)-p(y)| \leq \frac{c_{p}}{\log (e+1 /|x-y|)} \quad \text { for } x, y \in \mathbf{R}^{N}
$$

with a constant $c_{p} \geq 0$;
(P3) $p(\cdot)$ is $\log$-Hölder continuous at $\infty$, namely

$$
|p(x)-p(\infty)| \leq \frac{c_{\infty}}{\log (e+|x|)} \quad \text { whenever }|x|>0
$$

with constants $p(\infty)>1$ and $c_{\infty} \geq 0 ;$
$p(\cdot)$ is referred to as a variable exponent.
For $\nu \geq 0$, we denote by $\mathcal{B}^{p(\cdot), \nu}\left(\mathbf{R}^{N}\right)$ the class of locally integrable functions $f$ on $\mathbf{R}^{N}$ satisfying

$$
\|f\|_{\mathcal{B}^{p(\cdot), \nu}\left(\mathbf{R}^{N}\right)}=\sup _{R \geq 1} R^{-\nu / p(\infty)}\|f\|_{L^{p(\cdot)}(B(0, R))}<\infty
$$

where

$$
\|f\|_{L^{p(\cdot)}(B(0, R))}=\inf \left\{\lambda>0: \int_{B(0, R)}\left(\frac{|f(y)|}{\lambda}\right)^{p(y)} d y \leq 1\right\}
$$

The space $\mathcal{B}^{p(\cdot), \nu}\left(\mathbf{R}^{N}\right)$ is referred to as a non-homogeneous central Morrey spaces of variable exponent. If $p(\cdot)$ is a constant and $\nu=N$, then $\mathcal{B}^{p(\cdot), \nu}\left(\mathbf{R}^{N}\right)=B^{p}\left(\mathbf{R}^{N}\right)$.

Throughout this paper, let $C$ denote various constants independent of the variables in question. The symbol $g \sim h$ means that $C^{-1} h \leq g \leq C h$ for some constant $C>0$.

Lemma 2.1. Set

$$
\|f\|_{\tilde{\mathcal{B}} p(\cdot), \nu\left(\mathbf{R}^{N}\right)}=\inf \left\{\lambda>0: \sup _{R \geq 1} R^{-\nu} \int_{B(0, R)}\left(\frac{|f(y)|}{\lambda}\right)^{p(y)} d y \leq 1\right\} .
$$

Then

$$
\|f\|_{\mathcal{B}^{p(\cdot), \nu}\left(\mathbf{R}^{N}\right)} \sim\|f\|_{\tilde{\mathcal{B}}^{p(\cdot), \nu}\left(\mathbf{R}^{N}\right)}
$$

for all $f \in L_{l o c}^{1}\left(\mathbf{R}^{N}\right)$.
Proof. We may assume that $\nu>0$. First we find a constant $C>0$ such that

$$
\|f\|_{\mathcal{B}^{p(\cdot), \nu}\left(\mathbf{R}^{N}\right)} \leq C\|f\|_{\tilde{\mathcal{B}}^{p}(\cdot), \nu\left(\mathbf{R}^{N}\right)}
$$

for all $f \in L_{l o c}^{1}\left(\mathbf{R}^{N}\right)$. Let $f$ be a nonnegative function on $\mathbf{R}^{N}$ with $\|f\|_{\tilde{\mathcal{B}}(\cdot), \nu\left(\mathbf{R}^{N}\right)} \leq$ 1. Then note that

$$
R^{-\nu} \int_{B(0, R)} f(y)^{p(y)} d y \leq 1
$$

for all $R \geq 1$. To end the proof, it is sufficient to find a constant $C>0$ such that

$$
\int_{B(0, R) \backslash B(0,1)}\left(R^{-\nu / p(\infty)} f(y)\right)^{p(y)} d y \leq C
$$

for all $R \geq 1$. For this purpose, let $R \geq 1$ and take an integer $j_{0} \geq 1$ such that $2^{-j_{0}} R \leq 1<2^{-j_{0}+1} R$. We have

$$
\begin{aligned}
& \int_{B(0, R) \backslash B(0,1)}\left(R^{-\nu / p(\infty)} f(y)\right)^{p(y)} d y \\
& \leq \sum_{j=0}^{j_{0}} \int_{B\left(0,2^{-j+1} R\right) \backslash B\left(0,2^{-j} R\right)}\left(R^{-\nu / p(\infty)} f(y)\right)^{p(y)} d y \\
& \leq \sum_{j=0}^{j_{0}}\left(2^{-j}\right)^{\nu / p(\infty)} \int_{B\left(0,2^{-j+1} R\right) \backslash B\left(0,2^{-j} R\right)}\left\{\left(2^{-j} R\right)^{-\nu / p(\infty)} f(y)\right\}^{p(y)} d y \\
& \leq \sum_{j=0}^{j_{0}}\left(2^{-j}\right)^{\nu / p(\infty)}\left(2^{-j} R\right)^{\nu} \int_{B\left(0,2^{-j+1} R\right)} f(y)^{p(y)} d y \\
& \leq C \sum_{j=0}^{j_{0}}\left(2^{-j}\right)^{\nu / p(\infty)} \leq C
\end{aligned}
$$

since $|y|^{-p(y)} \leq C|y|^{-p(\infty)}$ for $y \in B\left(0,2^{-j+1} R\right) \backslash B\left(0,2^{-j} R\right)$ and $0 \leq j \leq j_{0}$ by (P3).

Next we prove the converse inequality. Then it is sufficient to find a constant $C>0$ such that

$$
R^{-\nu} \int_{B(0, R) \backslash B(0,1)} f(y)^{p(y)} d y \leq C
$$

for all $R \geq 1$ and $f \geq 0$ on $\mathbf{R}^{N}$ with

$$
\sup _{R>1} \int_{B(0, R)}\left(R^{-\nu / p(\infty)} f(y)\right)^{p(y)} d y \leq 1 .
$$

For this purpose, let $R>1$ and take an integer $j_{0} \geq 1$ such that $2^{-j_{0}} R \leq 1<$ $2^{-j_{0}+1} R$ as before. We find

$$
\begin{aligned}
& \int_{B(0, R) \backslash B(0,1)}\left(R^{-\nu / p(y)} f(y)\right)^{p(y)} d y \\
& \leq \sum_{j=0}^{j_{0}}\left(2^{-j}\right)^{\nu} \int_{B\left(0,2^{-j+1} R\right) \backslash B\left(0,2^{-j} R\right)}\left\{\left(2^{-j} R\right)^{-\nu / p(y)} f(y)\right\}^{p(y)} d y \\
& \leq \sum_{j=0}^{j_{0}}\left(2^{-j}\right)^{\nu} \int_{B\left(0,2^{-j+1} R\right)}\left\{\left(2^{-j} R\right)^{-\nu / p(\infty)} f(y)\right\}^{p(y)} d y \\
& \leq C \sum_{j=0}^{j_{0}}\left(2^{-j}\right)^{\nu} \leq C
\end{aligned}
$$

since $|y|^{-1 / p(y)} \leq C|y|^{-1 / p(\infty)}$ for $y \in B\left(0,2^{-j+1} R\right) \backslash B\left(0,2^{-j} R\right)$ and $0 \leq j \leq j_{0}$ by (P3). Thus the proof is completed.

## 3 Boundedness of maximal operators

For a locally integrable function $f$ on $\mathbf{R}^{N}$, the Hardy-Littlewood maximal function $M f$ is defined by

$$
M f(x)=\sup _{r>0} \frac{1}{|B(x, r)|} \int_{B(x, r)}|f(y)| d y
$$

where $B(x, r)$ is the ball in $\mathbf{R}^{N}$ with center $x$ and of radius $r>0$, and $|B(x, r)|$ denotes its Lebesgue measure. The mapping $f \mapsto M f$ is called the maximal operator.

The maximal operator is a classical tool in harmonic analysis and studying Sobolev functions and partial differential equations, and it plays a central role in the study of differentiation, singular integrals, smoothness of functions and so on (see [5, 13, 14, 20], etc.).

It is well known that the maximal operator is bounded in the Lebesgue space $L^{p}\left(\mathbf{R}^{N}\right)$ when $p>1$ (see [20]). We present the boundedness of maximal operator in the central Morrey spaces of variable exponent.

Theorem 3.1. Let $0 \leq \nu \leq N$. Then the maximal operator : $f \rightarrow M f$ is bounded from $\mathcal{B}^{p(\cdot), \nu}\left(\mathbf{R}^{N}\right)$ to $\mathcal{B}^{p(\cdot), \nu}\left(\mathbf{R}^{N}\right)$, that is,

$$
\|M f\|_{\mathcal{B}^{p(\cdot), \nu}\left(\mathbf{R}^{N}\right)} \leq C\|f\|_{\mathcal{B}^{p(\cdot), \nu}\left(\mathbf{R}^{N}\right)} \quad \text { for all } f \in \mathcal{B}^{p(\cdot), \nu}\left(\mathbf{R}^{N}\right)
$$

When $0 \leq \nu<N$, this theorem is essentially proved by Almeida and Drihem [2, Corollary 4.7]. But, for the readers' convenience, we give a proof of Theorem 3.1 different from [2].

Before doing this, we prepare the following results.
Lemma 3.2 ([7, Corollary 4.5.9]). For all $R \geq 1$,

$$
\|1\|_{L^{p(\cdot)}(B(0, R))} \sim R^{N / p(\infty)},
$$

that is, $1 \in \mathcal{B}^{p(\cdot), N}\left(\mathbf{R}^{N}\right)$.
Lemma 3.3. There exists a constant $C>0$ such that

$$
\frac{1}{|B(0, R)|} \int_{B(0, R) \backslash B(0, R / 2)} f(y) d y \leq C R^{-(N-\nu) / p(\infty)}
$$

for all $R \geq 1$ and $f \geq 0$ such that $\|f\|_{\mathcal{B}^{p(\cdot), \nu}\left(\mathbf{R}^{N}\right)} \leq 1$.
Proof. Let $f$ be a nonnegative function on $\mathbf{R}^{N}$ such that $\|f\|_{\mathcal{B}^{p(\cdot), \nu}\left(\mathbf{R}^{N}\right)} \leq 1$. Then we see from Lemma 2.1 that

$$
R^{-\nu} \int_{B(0, R) \backslash B(0, R / 2)} f(y)^{p(y)} d y \leq C
$$

for all $R \geq 1$. Hence we find by (P3)

$$
\begin{aligned}
& \frac{1}{|B(0, R)|} \int_{B(0, R) \backslash B(0, R / 2)} f(y) d y \\
& \leq R^{-(N-\nu) / p(\infty)}+\frac{1}{|B(0, R)|} \int_{B(0, R) \backslash B(0, R / 2)} f(y)\left(\frac{f(y)}{R^{-(N-\nu) / p(\infty)}}\right)^{p(y)-1} d y \\
& \leq R^{-(N-\nu) / p(\infty)}+C R^{(N-\nu)(p(\infty)-1) / p(\infty)} \frac{1}{|B(0, R)|} \int_{B(0, R) \backslash B(0, R / 2)} f(y)^{p(y)} d y \\
& \leq C R^{-(N-\nu) / p(\infty)}
\end{aligned}
$$

for all $R \geq 1$, as required.
We denote by $\chi_{E}$ the characteristic function of $E$.
Lemma 3.4. Let $0 \leq \nu \leq N$. Then there exists a constant $C>0$ such that

$$
M\left(f \chi_{\mathbf{R}^{N} \backslash B(0,2 R)}\right)(x) \leq C R^{-(N-\nu) / p(\infty)}
$$

for all $x \in B(0, R)$ with $R \geq 1$ and $f \geq 0$ with $\|f\|_{\mathcal{B}^{p(\cdot), \nu}\left(\mathbf{R}^{N}\right)} \leq 1$.

Proof. Let $f$ be a nonnegative function on $\mathbf{R}^{N}$ such that $\|f\|_{\mathcal{B}^{p(\cdot), \nu}\left(\mathbf{R}^{N}\right)} \leq 1$. Let $R \geq 1$ and $x \in B(0, R)$. We have by Lemma 3.3

$$
\begin{aligned}
M\left(f \chi_{\mathbf{R}^{N} \backslash B(0,2 R)}\right)(x) & =\sup _{r>R} \frac{1}{|B(x, r)|} \int_{B(x, r) \backslash B(0,2 R)} f(y) d y \\
& \leq \sup _{r>R} \frac{1}{|B(0, r)|} \sum_{\left\{j \geq 1: 2^{j} R<2 r\right\}} \int_{B\left(0,2^{j+1} R\right) \backslash B\left(0,2^{j} R\right)} f(y) d y \\
& \leq C \sup _{r>R} \frac{1}{|B(0, r)|} \sum_{\left\{j \geq 1: 2^{j} R<2 r\right\}}\left(2^{j+1} R\right)^{N-(N-\nu) / p(\infty)} \\
& \leq C \sup _{r>R} \frac{1}{|B(0, r)|} r^{N-(N-\nu) / p(\infty)} \\
& \leq C R^{-(N-\nu) / p(\infty)},
\end{aligned}
$$

as required.
We know the following result.
Lemma 3.5 ([6, Theorem 1.5]). Suppose that $p(\cdot)$ satisfies (P1), (P2) and (P3).
Then there exists a constant $c_{0}>0$ such that

$$
\|M f\|_{L^{p(\cdot)}\left(\mathbf{R}^{N}\right)} \leq c_{0}\|f\|_{L^{p(\cdot)}\left(\mathbf{R}^{N}\right)}
$$

for all $f \in L^{p(\cdot)}\left(\mathbf{R}^{N}\right)$.
Now we are ready to prove Theorem 3.1.
Proof of Theorem 3.1. Let $f$ be a nonnegative function on $\mathbf{R}^{N}$ such that $\|f\|_{\mathcal{B}^{p \cdot(\cdot), \nu}\left(\mathbf{R}^{N}\right)} \leq$ 1. For $R \geq 1$, set

$$
f=f \chi_{B(0,2 R)}+f \chi_{\mathbf{R}^{N} \backslash B(0,2 R)}=f_{1}+f_{2} .
$$

First we find from Lemmas 3.2 and 3.4

$$
\begin{aligned}
\left\|M f_{2}\right\|_{L^{p(\cdot)}(B(0, R))} & \leq C R^{-(N-\nu) / p(\infty)}\|1\|_{L^{p(\cdot)}(B(0, R))} \\
& \leq C R^{-(N-\nu) / p(\infty)} R^{N / p(\infty)}=C R^{\nu / p(\infty)}
\end{aligned}
$$

Next we obtain by Lemma 3.5

$$
\begin{aligned}
\|M f\|_{L^{p(\cdot)}(B(0, R))} & \leq\left\|M f_{1}\right\|_{L^{p(\cdot)}(B(0, R))}+\left\|M f_{2}\right\|_{L^{p(\cdot)}(B(0, R))} \\
& \leq C\left\{\|f\|_{L^{p(\cdot)}(B(0,2 R))}+R^{\nu / p(\infty)}\right\} \\
& \leq C\left\{(2 R)^{\nu / p(\infty)}+R^{\nu / p(\infty)}\right\} \leq C R^{\nu / p(\infty)}
\end{aligned}
$$

so that

$$
\sup _{R \geq 1} R^{-\nu / p(\infty)}\|M f\|_{L^{p(\cdot)}(B(0, R))} \leq C
$$

Thus we establish the required result.
Remark 3.6. If $\nu>N$, then, as in the proof of Theorem 3.1, we find

$$
\sup _{R \geq 1} R^{-\nu / p(\infty)}\left\|M\left(f \chi_{B(0, R)}\right)\right\|_{L^{p(\cdot)}(B(0, R))} \leq C
$$

## 4 Sobolev's inequality

For $\nu \geq 0$, take the integer $k \geq 0$ such that

$$
\begin{equation*}
k-1 \leq \alpha-(N-\nu) / p(\infty)<k \tag{4.1}
\end{equation*}
$$

and consider the generalized Riesz potential

$$
I_{\alpha, k} f(x)=\int_{\mathbf{R}^{N} \backslash B(0,1)}\left\{I_{\alpha}(x-y)-\sum_{\{\mu \cdot \mid \mu \leq \leq k-1\}} \frac{x^{\mu}}{\mu!}\left(D^{\mu} I_{\alpha}\right)(-y)\right\} f(y) d y
$$

for a locally integrable function $f$ on $\mathbf{R}^{N}$.
The following estimates are fundamental (see [17] and [19]).
Lemma 4.1. Let $k \geq 1$ be an integer.
(1) If $2|x|<|y|$, then

$$
\left|I_{\alpha}(x-y)-\sum_{\{\mu:|\mu| \leq k-1\}} \frac{x^{\mu}}{\mu!}\left(D^{\mu} I_{\alpha}\right)(-y)\right| \leq C|x|^{k}|y|^{\alpha-N-k} ;
$$

(2) If $|x| / 2 \leq|y| \leq 2|x|$, then

$$
\left|I_{\alpha}(x-y)-\sum_{\{\mu:|\mu| \leq k-1\}} \frac{x^{\mu}}{\mu!}\left(D^{\mu} I_{\alpha}\right)(-y)\right| \leq C|x-y|^{\alpha-N} ;
$$

(3) If $1 \leq|y| \leq|x| / 2$, then

$$
\left|I_{\alpha}(x-y)-\sum_{\{\mu:|\mu| \leq k-1\}} \frac{x^{\mu}}{\mu!}\left(D^{\mu} I_{\alpha}\right)(-y)\right| \leq C|x|^{k-1}|y|^{\alpha-N-(k-1)} .
$$

Lemma 4.2. Let $k$ be the integer defined by (4.1). Then there exists a constant $C>0$ such that

$$
\left|I_{\alpha, k}\left(f \chi_{\mathbf{R}^{N} \backslash B(0,2 R)}\right)(x)\right| \leq C R^{\alpha-(N-\nu) / p(\infty)}
$$

for all $x \in B(0, R)$ with $R \geq 1$ and $f \geq 0$ with $\|f\|_{\mathcal{B}^{p(\cdot), \nu}\left(\mathbf{R}^{N}\right)} \leq 1$.
Proof. Let $f$ be a nonnegative function on $\mathbf{R}^{N}$ such that $\|f\|_{\mathcal{B}^{p}(\cdot), \nu\left(\mathbf{R}^{N}\right)} \leq 1$. Let $R \geq 1$ and $x \in B(0, R)$. First note from Lemma 4.1 (1) that

$$
\left|I_{\alpha, k}\left(f \chi_{\mathbf{R}^{N} \backslash B(0,2 R)}\right)(x)\right| \leq C R^{k} \int_{\mathbf{R}^{N} \backslash B(0,2 R)}|y|^{\alpha-N-k} f(y) d y
$$

Hence, we have by Lemma 3.3

$$
\begin{aligned}
\left|I_{\alpha, k}\left(f \chi_{\mathbf{R}^{N} \backslash B(0,2 R)}\right)(x)\right| & \leq C R^{k} \sum_{j=1}^{\infty} \int_{B\left(0,2^{j+1} R\right) \backslash B\left(0,2^{j} R\right)}|y|^{\alpha-N-k} f(y) d y \\
& \leq C R^{k} \sum_{j=1}^{\infty}\left(2^{j} R\right)^{\alpha-k} \frac{1}{\left|B\left(0,2^{j+1} R\right)\right|} \int_{B\left(0,2^{j+1} R\right) \backslash B\left(0,2^{j} R\right)} f(y) d y \\
& \leq C R^{k} \sum_{j=1}^{\infty}\left(2^{j} R\right)^{\alpha-k-(N-\nu) / p(\infty)} \\
& =C R^{\alpha-(N-\nu) / p(\infty)} \sum_{j=1}^{\infty} 2^{j\{\alpha-k-(N-\nu) / p(\infty)\}} \\
& \leq C R^{\alpha-(N-\nu) / p(\infty)},
\end{aligned}
$$

as required.
Lemma 4.3. Let $k \geq 1$ be an integer. Then there exists a constant $C>0$ such that
(1) in case $k-1<\alpha-(N-\nu) / p(\infty)<k$,

$$
|x|^{k-1} \int_{B(0,|x| / 2) \backslash B(0,1)}|y|^{\alpha-N-(k-1)} f(y) d y \leq C R^{\alpha-(N-\nu) / p(\infty)} ;
$$

(2) in case $k-1=\alpha-(N-\nu) / p(\infty)$,

$$
|x|^{k-1} \int_{B(0,|x| / 2) \backslash B(0,1)}|y|^{\alpha-N-(k-1)} f(y) d y \leq C R^{\alpha-(N-\nu) / p(\infty)} \log R
$$

for all $x \in B(0, R)$ with $R \geq 2$ and $f \geq 0$ with $\|f\|_{\mathcal{B}^{p(\cdot), \nu}\left(\mathbf{R}^{N}\right)} \leq 1$.
Proof. Let $f$ be a nonnegative function on $\mathbf{R}^{N}$ such that $\|f\|_{\mathcal{B}^{p}(\cdot), \nu\left(\mathbf{R}^{N}\right)} \leq 1$. Let $R \geq 2, k \geq 1$ and $x \in B(0, R)$. We may assume that $|x| \geq 2$. We take an integer $j_{0} \geq 1$ such that $2^{-j_{0}-1}|x|<1 \leq 2^{-j_{0}}|x|$.

First we show the case $k-1<\alpha-(N-\nu) / p(\infty)<k$. Then we have by Lemma 3.3

$$
\begin{aligned}
& |x|^{k-1} \int_{B(0,|x| / 2) \backslash B(0,1)}|y|^{\alpha-N-(k-1)} f(y) d y \\
& \leq|x|^{k-1} \sum_{j=1}^{j_{0}} \int_{B\left(0,2^{-j}|x|\right) \backslash B\left(0,2^{-j-1}|x|\right)}|y|^{\alpha-N-(k-1)} f(y) d y \\
& \leq C|x|^{k-1} \sum_{j=1}^{\infty}\left(2^{-j}|x|\right)^{\alpha-(k-1)} \frac{1}{\left|B\left(0,2^{-j}|x|\right)\right|} \int_{B\left(0,2^{-j}|x|\right) \backslash B\left(0,2^{-j}|x|\right)} f(y) d y \\
& \leq C R^{k-1} \sum_{j=1}^{j_{0}}\left(2^{-j} R\right)^{\alpha-(k-1)-(N-\nu) / p(\infty)} \\
& \leq C R^{\alpha-(N-\nu) / p(\infty)}
\end{aligned}
$$

Next we deal with the case $k-1=\alpha-(N-\nu) / p(\infty)$. Since $j_{0} \leq \log |x| / \log 2<$ $j_{0}+1$, we see from Lemma 3.3 that

$$
\begin{aligned}
|x|^{k-1} \int_{B(0,|x| / 2) \backslash B(0,1)}|y|^{\alpha-N-(k-1)} f(y) d y & \leq C R^{k-1} \sum_{j=1}^{j_{0}}\left(2^{-j} R\right)^{\alpha-(k-1)-(N-\nu) / p(\infty)} \\
& \leq C R^{\alpha-(N-\nu) / p(\infty)} j_{0} \\
& \leq C R^{\alpha-(N-\nu) / p(\infty)} \log R
\end{aligned}
$$

as required.
Set

$$
1 / p^{\sharp}(x)=1 / p(x)-\alpha / N .
$$

Lemma 4.4 ([18, Theorem 4.1]). Suppose $1 / p^{+}-\alpha / N>0$. Then there exists a constant $c_{1}>0$ such that

$$
\left\|I_{\alpha} f\right\|_{L^{p^{\sharp(\cdot)}\left(\mathbf{R}^{N}\right)}} \leq C\|f\|_{L^{p(\cdot)}\left(\mathbf{R}^{N}\right)}
$$

for all $f \in L^{p(\cdot)}\left(\mathbf{R}^{N}\right)$ with compact support.
Now we show the Sobolev type inequality for generalized Riesz potentials in the central Morrey spaces of variable exponents, as an extension of Fu, Lin and Lu [9] in the constant exponent case.

Theorem 4.5 (cf. [9, Proposition 1.1]). Suppose $1 / p^{+}-\alpha / N>0$ and $k-1<$ $\alpha-(N-\nu) / p(\infty)<k$. Then there exists a constant $C>0$ such that

$$
\sup _{R \geq 1} R^{-\nu / p(\infty)}\left\|I_{\alpha, k} f\right\|_{L^{p^{\sharp}(\cdot)(B(0, R))}} \leq C
$$

for all $f \geq 0$ with $\|f\|_{\mathcal{B}^{p(\cdot), \nu}\left(\mathbf{R}^{N}\right)} \leq 1$.
Proof. Let $f$ be a nonnegative function on $\mathbf{R}^{N}$ such that $\|f\|_{\mathcal{B}^{p}(\cdot), \nu\left(\mathbf{R}^{N}\right)} \leq 1$. For $R \geq 1$, set

$$
f=f \chi_{B(0,2 R)}+f \chi_{\mathbf{R}^{N} \backslash B(0,2 R)}=f_{1}+f_{2} .
$$

First we find by Lemmas 3.2 and 4.2

$$
\begin{aligned}
\left\|I_{\alpha, k} f_{2}\right\|_{L^{p^{\sharp} \cdot()(B(0, R))}} & \leq C R^{\alpha-(N-\nu) / p(\infty)}\|1\|_{L^{\sharp}(\cdot)(B(0, R))} \\
& \leq C R^{\alpha-(N-\nu) / p(\infty)} R^{N / p^{\sharp}(\infty)} \\
& =C R^{\nu / p(\infty)} .
\end{aligned}
$$

Next, we see from Lemmas 4.1 and 4.3 (1) that

$$
\begin{aligned}
& \left|I_{\alpha, k} f_{1}(x)\right| \\
& \leq\left|I_{\alpha, k}\left(f \chi_{B(0,2 R) \backslash B(0,2|x|)}\right)(x)\right|+\left|I_{\alpha, k}\left(f \chi_{B(0,2|x|) \backslash B(0,|x| / 2)}\right)(x)\right|+\left|I_{\alpha, k}\left(f \chi_{B(0,|x| / 2) \backslash B(0,1)}\right)(x)\right| \\
& \leq C\left\{I_{\alpha} f_{1}(x)+R^{\alpha-(N-\nu) / p(\infty)}\right\}
\end{aligned}
$$

for $x \in B(0, R)$ since $|x|^{k}|y|^{\alpha-N-k} \leq C|x-y|^{\alpha-N}$ for $2|x|<|y|$, so that we have by Lemmas 3.2 and 4.4

$$
\begin{aligned}
\left\|I_{\alpha, k} f\right\|_{L^{p^{\sharp(\cdot)}(B(0, R))}} & \leq\left\|I_{\alpha, k} f_{1}\right\|_{L^{p^{\sharp}(\cdot)(B(0, R))}}+\left\|I_{\alpha, k} f_{2}\right\|_{L^{p^{\sharp(\cdot)}(B(0, R))}} \\
& \leq C\left\{\|f\|_{L^{p(\cdot)}(B(0,2 R))}+R^{\nu / p(\infty)}\right\} \\
& \leq C\left\{(2 R)^{\nu / p(\infty)}+R^{\nu / p(\infty)}\right\} \leq C R^{\nu / p(\infty)},
\end{aligned}
$$

so that

$$
\sup _{R \geq 1} R^{-\nu / p(\infty)}\left\|I_{\alpha, k} f\right\|_{L^{p^{\sharp}(\cdot)}(B(0, R))} \leq C .
$$

Thus we completes the proof.
Remark 4.6. Suppose $1 / p^{+}-\alpha / N>0$ and $k-1=\alpha-(N-\nu) / p(\infty)$. Then there exists a constant $C>0$ such that

$$
\sup _{R \geq 2} R^{-\nu / p(\infty)}(\log R)^{-1}\left\|I_{\alpha, k} f\right\|_{L^{p^{\sharp}(\cdot)}(B(0, R))} \leq C
$$

for all $f \geq 0$ with $\|f\|_{\mathcal{B}^{p(\cdot), \nu}\left(\mathbf{R}^{N}\right)} \leq 1$.

## 5 Exponential integrability

Our aim in this section is to discuss the exponential integrability.
Theorem 5.1. Let $p=N / \alpha$ and $k-1<\alpha-(N-\nu) / p<k$. Then there exist constants $c_{1}, c_{2}>0$ such that

$$
\sup _{R \geq 1} R^{-N} \int_{B(0, R)} \exp \left(\left\{c_{1} R^{-\nu / p}\left|I_{\alpha, k} f(x)\right|\right\}^{p^{\prime}}\right) d x \leq c_{2}
$$

for all $f \geq 0$ with $\|f\|_{\mathcal{B}^{p, \nu}}\left(\mathbf{R}^{N}\right) \leq 1$.
Proof. Let $f$ be a nonnegative function on $\mathbf{R}^{N}$ such that $\|f\|_{\mathcal{B}^{p, \nu}\left(\mathbf{R}^{N}\right)} \leq 1$ and let $x \in B(0, R)$. For $R \geq 1$, set

$$
f=f \chi_{B(0,2 R)}+f \chi_{\mathbf{R}^{N} \backslash B(0,2 R)}=f_{1}+f_{2} .
$$

For $0<\delta \leq R$, write

$$
\begin{aligned}
I_{\alpha} f_{1}(x) & =\int_{B(x, \delta)}|x-y|^{\alpha-N} f(y) d y+\int_{B(0,2 R) \backslash B(x, \delta)}|x-y|^{\alpha-N} f(y) d y \\
& =U_{1}(x)+U_{2}(x)
\end{aligned}
$$

First we find

$$
U_{1}(x) \leq C \delta^{\alpha} M f_{1}(x)
$$

Next we have by Hölder's inequality

$$
U_{2}(x) \leq C(\log (2 R / \delta))^{1 / p^{\prime}}\left\|f_{1}\right\|_{L^{p}(B(0,2 R))}
$$

so that

$$
I_{\alpha} f_{1}(x) \leq C\left\{\delta^{\alpha} M f_{1}(x)+(\log (2 R / \delta))^{1 / p^{\prime}} R^{\nu / p}\right\}
$$

Here, letting $\delta /(2 R)=\left\{R^{-\nu / p+\alpha} M f_{1}(x)\right\}^{-1 / \alpha}\left(\log \left(R^{-\nu / p+\alpha} M f_{1}(x)\right)\right)^{1 /\left(\alpha p^{\prime}\right)}<1$, we establish

$$
I_{\alpha} f_{1}(x) \leq C\left(\log \left(R^{-\nu / p+\alpha} M f_{1}(x)\right)\right)^{1 / p^{\prime}} R^{\nu / p}
$$

if $\left\{R^{-\nu / p+\alpha} M f_{1}(x)\right\}^{-1 / \alpha}\left(\log \left(R^{-\nu / p+\alpha} M f_{1}(x)\right)\right)^{1 /\left(\alpha p^{\prime}\right)} \geq 1$, then, letting $\delta=R$, we have

$$
I_{\alpha} f_{1}(x) \leq C R^{\nu / p}
$$

As in the proof of Theorem 4.5, we see from Lemmas 4.1 and 4.3 (1) that

$$
\left|I_{\alpha, k} f_{1}(x)\right| \leq C\left\{I_{\alpha} f_{1}(x)+R^{\alpha-(N-\nu) / p}\right\}=C\left\{I_{\alpha} f_{1}(x)+R^{\nu / p}\right\}
$$

for $x \in B(0, R)$, since $\alpha=N / p$. Therefore, we obtain

$$
\left|I_{\alpha, k} f_{1}(x)\right| \leq C\left\{\left(\log \left(e+R^{-\nu / p+\alpha} M f_{1}(x)\right)\right)^{1 / p^{\prime}} R^{\nu / p}+R^{\nu / p}\right\} .
$$

On the other hand, we obtain by Lemma 4.2

$$
\left|I_{\alpha, k} f_{2}(x)\right| \leq C R^{\alpha-(N-\nu) / p}=C R^{\nu / p}
$$

since $\alpha=N / p$. Hence, we find

$$
\left\{c_{1} R^{-\nu / p}\left|I_{\alpha, k} f(x)\right|\right\}^{p^{\prime}} \leq \log \left(e+R^{(N-\nu) / p} M f_{1}(x)\right)
$$

so that we have by boundedness of maximal operators on $L^{p}\left(\mathbf{R}^{N}\right)$

$$
\begin{aligned}
\int_{B(0, R)} \exp \left(\left\{c_{1} R^{-\nu / p}\left|I_{\alpha, k} f(x)\right|\right\}^{p^{\prime}}\right) d x & \leq C \int_{B(0, R)}\left[1+R^{N-\nu}\left\{M f_{1}(x)\right\}^{p}\right] d x \\
& \leq C\left(R^{N}+R^{N-\nu} \int_{\mathbf{R}^{N}} f_{1}(y)^{p} d y\right) \\
& \leq C R^{N}
\end{aligned}
$$

as required.
Remark 5.2. Let $p=N / \alpha$ and $k-1=\alpha-(N-\nu) / p$. Then there exist constants $c_{1}, c_{2}>0$ such that

$$
\sup _{R \geq 2} R^{-N} \int_{B(0, R)} \exp \left(\left\{c_{1} R^{-\nu / p}(\log R)^{-1}\left|I_{\alpha, k} f(x)\right|\right\}^{p^{\prime}}\right) d x \leq c_{2}
$$

for all $f \geq 0$ with $\|f\|_{\mathcal{B}^{p}, \nu}\left(\mathbf{R}^{N}\right) \leq 1$.

REMARK 5.3. If $p^{-} \geq p(\infty)$, then $\mathcal{B}^{p(\cdot), \nu}\left(\mathbf{R}^{N}\right) \subset \mathcal{B}^{p(\infty), \nu}\left(\mathbf{R}^{N}\right)$, and moreover

$$
\|f\|_{\mathcal{B}^{p}(\infty), \nu\left(\mathbf{R}^{N}\right)} \leq C\|f\|_{\mathcal{B}^{p}(\cdot), \nu\left(\mathbf{R}^{N}\right)} .
$$

In fact, for $R \geq 1$ and $a>N / p(\infty)$,

$$
\begin{aligned}
R^{-\nu} \int_{B(0, R)}|f(x)|^{p(\infty)} d x= & R^{-\nu} \int_{\{x \in B(0, R):|f(x)| \geq 1\}}|f(x)|^{p(\infty)} d x \\
& +R^{-\nu} \int_{\left\{x \in B(0, R):(1+|x|)^{-a}<|f(x)| \leq 1\right\}}|f(x)|^{p(\infty)} d x \\
& +R^{-\nu} \int_{\left\{x \in B(0, R):|f(x)| \leq(1+|x|)^{-a}\right\}}|f(x)|^{p(\infty)} d x \\
\leq & R^{-\nu} \int_{\{x \in B(0, R):|f(x)| \geq 1\}}|f(x)|^{p(x)} d x \\
& +R^{-\nu} \int_{\left\{x \in B(0, R):(1+|x|)^{-a}<|f(x)| \leq 1\right\}}|f(x)|^{p(x)}|f(x)|^{p(\infty)-p(x)} d x \\
& +C R^{-\nu} \int_{B(0, R)}(1+|x|)^{-a p(\infty)} d x \\
\leq & C\left\{R^{-\nu} \int_{B(0, R)}|f(x)|^{p(x)} d x+R^{-\nu}\right\} \\
\leq & C
\end{aligned}
$$

when $\|f\|_{\mathcal{B}^{p(\cdot), \nu}\left(\mathbf{R}^{N}\right)} \leq 1$.

## References

[1] D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory, Springer, 1996.
[2] A. Almeida and D. Drihem, Maximal, potential and singular type operators on Herz spaces with variable exponents. J. Math. Anal. Appl. 394 (2012), no. 2, 781-795.
[3] J. Alvarez, M. Guzmán-Partida and J. Lakey, Spaces of bounded $\lambda$-central mean oscillation, Morrey spaces, and $\lambda$-central Carleson measures, Collect. Math. 51 (2000), 1-47.
[4] A. Beurling, Construction and analysis of some convolution algebras, Ann. Inst. Fourier 14 (1964), 1-32.
[5] B. Bojarski and P. Hajłasz, Pointwise inequalities for Sobolev functions and some applications, Studia Math. 106(1) (1993), 77-92.
[6] D. Cruz-Uribe, A. Fiorenza and C. J. Neugebauer, The maximal function on variable $L^{p}$ spaces, Ann. Acad. Sci. Fenn. Math. 28 (2003), 223-238; Ann. Acad. Sci. Fenn. Math. 29 (2004), 247-249.
[7] L. Diening, P. Harjulehto, P. Hästö and M. Ružiččka, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, 2017, Springer, Heidelberg, 2011.
[8] H. Feichtinger, An elementary approach to Wiener's third Tauberian theorem on Euclidean $n$-space, Proceedings, Conference at Cortona 1984, Symposia Mathematica 29 (Academic Press, New York, 1987), 267-301.
[9] Z. Fu, Y. Lin and S. Lu, $\lambda$-central BMO estimates for commutators of singular integral operators with rough kernels, Acta Math. Sin. (Engl. Ser.) 24 (2008), no. 3, 373-386.
[10] J. García-Cuerva, Hardy spaces and Beurling algebras, J. London Math. Soc. 39 (1989), 499-513.
[11] J. García-Cuerva and M. J. L. Herrero, A theory of Hardy spaces assosiated to the Herz spaces, Proc. London Math. Soc. 69 (1994), 605-628
[12] C. Herz, Lipschitz spaces and Bernstein's theorem on absolutely convergent Fourier transforms, J. Math. Mech. 18 (1968), 283-324.
[13] Y. Komori, Notes on singular integrals on some inhomogeneous Herz spaces, Taiwanese J. Math. 8 (2004), 547-556.
[14] J. L. Lewis, On very weak solutions of certain elliptic systems, Comm. Partial Differential Equations 18(9) (10) (1993), 1515-1537.
[15] K. Matsuoka and E. Nakai, Fractional integral operators on $B^{p, \lambda}$ with MorreyCampanato norms, Function Spaces IX (Krakow, Poland, 2009), 249-264, Banach Center Publications, Vol.92, Institute of Mathematics, Polish Academy of Sciences, Warszawa, 2011.
[16] Y. Mizuta, Potential theory in Euclidean spaces, Gakkōtosho, Tokyo, 1996.
[17] Y. Mizuta, Integral representations, differentiability properties and limits at infinity for Beppo Levi functions, Potential Analysis 6 (1997), 237-276.
[18] Y. Mizuta, E. Nakai, T. Ohno and T. Shimomura, Maximal functions, Riesz potentials and Sobolev embeddings on Musielak-Orlicz-Morrey spaces of variable exponent in $\mathbf{R}^{n}$, Rev. Mat. Complut. 25 (2012), no. 2, 413-434.
[19] T. Shimomura and Y. Mizuta, Taylor expansion of Riesz potentials, Hiroshima Math. J. 25 (1995), 595-621.
[20] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, 1970.
[21] N. Wiener, Generalized harmonic analysis, Acta Math. 55 (1930), 117-258.
[22] N. Wiener, Taubcrian theorems, Ann. Math. 33 (1932), 1-100.

Department of Mechanical Systems Engineering
Hiroshima Institute of Technology
2-1-1 Miyake Saeki-ku Hiroshima 731-5193, Japan
E-mail : yoshihiromizuta3@gmail.com and
Faculty of Education and Welfare Science
Oita University Dannoharu Oita-city 870-1192, Japan

E-mail : t-ohno@oita-u.ac.jp and
Department of Mathematics
Graduate School of Education
Hiroshima University
Higashi-Hiroshima 739-8524, Japan
E-mail: tshimo@hiroshima-u.ac.jp


[^0]:    2000 Mathematics Subject Classification : Primary 31B15, 46E35
    Key words and phrases : Maximal operator, non-homogeneous central Morrey spaces of variable exponent, Riesz potentials, Sobolev's theorem, Sobolev's inequality, Trudinger's exponential integrability

