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Abstract. Our aim in this paper is to deal with boundedness of frac-
tional integral operators on Morrey spaces L(1,ϕ)(G) and the Sobolev
embeddings for generalized Riesz potentials. Target spaces are Orlicz-
Morrey, Orlicz-Campanato, and generalized Hölder spaces.

1. Introduction

The space introduced by Morrey [12] in 1938 has become a useful tool

of the study for the existence and regularity of solutions of partial differ-

ential equations. In the present paper, we aim to show boundedness of

fractional integral operators from Morrey spaces L(1,ϕ) to Orlicz-Morrey

spaces, to Orlicz-Campanato spaces, or, to generalized Hölder spaces, and

consequently establish Sobolev embeddings for generalized Riesz potentials,

as an extension of Trudinger [26], Serrin [23] and the authors [16, 10].

Let G be a bounded open subset of Rn whose diameter is denoted by

dG = sup{|x − y| : x, y ∈ G}. For an integrable function f on G, the Riesz

potential of order α (0 < α < n) is defined by

Iαf(x) =

∫
G

f(y)

|x − y|n−α
dy.

The operator Iα is also called the fractional integral operator.

We denote by B(z, r) the ball {x ∈ Rn : |x− z| < r} with center z and of

radius r > 0, and by |B(z, r)| its Lebesgue measure, i.e. |B(z, r)| = ωnrn,

where ωn is the volume of the unit ball in Rn. For u ∈ L1(G), we define the
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integral mean over B(z, r) by

uB(z,r) = −
∫

B(z,r)

u(x) dx =
1

|B(z, r)|

∫
G∩B(z,r)

u(x) dx.

Let 1 ≤ p < ∞. If ϕ is a positive function on the interval (0,∞) satisfying

the doubling condition, then we define the Morrey space L(p,ϕ)(G) to be the

family of all f ∈ Lp
loc(G) for which there is a positive constant C such that

−
∫

B(z,r)

|f(x)|p dx ≤ Cpϕ(r) whenever z ∈ G and 0 < r ≤ dG.

The norm of f ∈ L(p,ϕ)(G) is defined by the infimum of the constants C

satisfying the inequality. When ϕ(r) = r−λ, L(p,ϕ)(G) is denoted by Lp,λ(G).

There are many results for the case p > 1. Adams [1, Theorem 3.1] showed

the boundedness of Iα from Lp,λ(G) to Lq,λ(G) with 0 < α < n, 1 < p < q <

∞, 0 < λ ≤ n and 1/q = 1/p−α/λ. See also [22, 2, 13, 20, 9, 19, 5, 7, 25, 6].

On the other hand, a few results are known for the case p = 1. Trudinger

[26, Theorem 1] proved that, if f ∈ L1,1(G) then exp(a|I1f(x)|) ∈ L1(G)

for some constant a > 0; this implies that the operator I1 is bounded

from L1,1(G) to exp(L1)(G). See also Serrin [23] for another proof. In

[16] the boundedness from L(1,ϕ) to another Morrey space L(1,ψ) was shown.

Recently, the authors [10] gave a result on Sobolev embeddings for Riesz

potentials of functions in L(1,ϕ)(G) with ϕ(r) = r−β(log(2 + r−1))−β1 .

Our aim in this paper is to show that, for the case p = 1, the oper-

ator Iα and its generalization Iρ are bounded from Morrey spaces L(1,ϕ)

to Orlicz-Morrey spaces, to Orlicz-Campanato spaces, or, to generalized

Hölder spaces, whose definitions will be given in the next section. Our re-

sult is an extension of the results in [26, 16, 23, 10]. The definition of Iρ is

the following: Let ρ be a function from (0,∞) to itself with the doubling

condition and

∫ 1

0

ρ(t)

t
dt < +∞. We define

Iρf(x) =

∫
G

ρ(|x − y|)
|x − y|n

f(y) dy,

where f ∈ L1(G). If ρ(r) = rα for 0 < α < n, then Iρf coincides with

the usual Riesz potential of order α. Using the operator Iρ, we can give a

systematic proof and several new results as corollaries. For the boundedness

of Iρf , we also refer the reader to [14, 15, 7, 6, 17].
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In view of [16, Theorem 3.4], we know that the Orlicz space LΦ(G) is

included in the Morrey space L(1,ϕ)(G) when ϕ(r) = Φ−1(r−n). In the final

section we give a sufficient condition for the boundedness of Iρ from LΦ(G)

to LΨ(G) by applying the same discussions as in Morrey spaces L(1,ϕ)(G).

O’Neil [21, Theorem 5.2] gave a sufficient condition for the boundedness of

convolution operators in Orlicz spaces near L1. We give another sufficient

condition. Our statement and proof are simpler than O’Neil’s and we can

check easily whether the pair (ρ, Φ, Ψ) satisfies the assumption.

The next section is for the definitions of function spaces. Our main results

and their corollaries are in Section 3 and Section 4, respectively. Section 5

is for lemmas to prove the main results in Section 6. In Section 7 we give

results for Orlicz spaces.

2. Notation and terminologies

Let G be the set of all continuous functions from (0,∞) to itself with the

doubling condition; that is, there exists a constant cϕ ≥ 1 such that

(2.1)
1

cϕ

≤ ϕ(r)

ϕ(s)
≤ cϕ for

1

2
≤ r

s
≤ 2.

We call cϕ the doubling constant of ϕ. For ϕ ∈ G, we define the Morrey

space L(1,ϕ)(G) as follows:

L(1,ϕ)(G) =
{
f ∈ L1

loc(G) : ‖f‖L(1,ϕ)(G) < ∞
}

with the norm

‖f‖L(1,ϕ)(G) = sup
z∈G, 0<r≤dG

1

ϕ(r)
−
∫

B(z,r)

|f(x)| dx.

Then L(1,ϕ)(G) is a Banach space. Note here that if ϕ1, ϕ2 ∈ G and

ϕ1(r)/ϕ2(r) is bounded above, then

L(1,ϕ1)(G) ⊂ L(1,ϕ2)(G);

in particular, if there exists a constant C ≥ 1 such that C−1ϕ1(r) ≤ ϕ2(r) ≤
Cϕ1(r) for all r > 0, then

L(1,ϕ1)(G) = L(1,ϕ2)(G)

with equivalent norms.
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When ϕ(r) = r−λ, L(1,ϕ)(G) is denoted by L1,λ(G). If ϕ(r) = r−n/p with

1 ≤ p < ∞, then Jensen’s inequality yields

Lp(G) ⊂ L(1,ϕ)(G) = L1,n/p(G);

in particular, if ϕ(r) = r−n, then

L1(G) = L(1,ϕ)(G) = L1,n(G).

Note that L(1,ϕ)(G) = {0} when ϕ(r) → 0 as r → 0 by Lebesgue’s differen-

tiation theorem.

Let

G∗ = {x ∈ Rn : dist(x,G) < dG} =
∪

z∈G, 0<r≤dG

B(z, r).

For ϕ ∈ G, we define the generalized Campanato space L(1,ϕ)(G) as follows:

L(1,ϕ)(G) =
{
f ∈ L1

loc(G
∗) : ‖f‖L(1,ϕ)(G) < ∞

}
and

‖f‖L(1,ϕ)(G) = sup
z∈G, 0<r≤dG

1

ϕ(r)|B(z, r)|

∫
B(z,r)

|f(x) − fB(z,r)| dx.

Then ‖f‖L(1,ϕ)(G) is a norm modulo constants and thereby L(1,ϕ)(G) is a

Banach space.

Let us consider the family Y of all continuous, increasing, convex and

bijective functions from [0,∞) to itself. For Φ ∈ Y , the Orlicz space LΦ(G)

is defined by

LΦ(G) =
{
f ∈ L1

loc(G) : ‖f‖LΦ(G) < ∞
}

,

where

‖f‖LΦ(G) = inf

{
λ > 0 :

∫
G

Φ

(
|f(x)|

λ

)
dx ≤ 1

}
.

If Φ1, Φ2 ∈ Y and there exists a constant C ≥ 1 such that Φ1(C
−1r) ≤

Φ2(r) ≤ Φ1(Cr) for all r > 0, then we see easily that

LΦ1(G) = LΦ2(G)

with equivalent norms. If Φ ∈ Y and

Φ(r) = exp(rp), exp(exp(rp)), rp(log r)λ or rp(log r)q(log(log r))λ

for large r > 0, then LΦ(G) will be denoted by

exp(Lp)(G), exp exp(Lp)(G), Lp(log L)λ(G) or Lp(log L)q(log log L)λ(G),

respectively.
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We know that Orlicz spaces are included in Morrey spaces. For example,

if ϕ(r) = Φ−1(r−n), then we can show that

LΦ(G) ⊂ L(1,ϕ)(G)

(see e.g. [16, Theorem 3.4]); if in addition Φ(r)/r → ∞ as r → ∞, then

LΦ(G) is a proper subset of L(1,ϕ)(G) on account of [18, Theorem 4.9].

For Φ ∈ Y and ϕ ∈ G, the Orlicz-Morrey space L(Φ,ϕ)(G) is defined by

L(Φ,ϕ)(G) =
{
f ∈ L1

loc(G) : ‖f‖L(Φ,ϕ)(G) < ∞
}

,

where

‖f‖L(Φ,ϕ)(G) = sup
z∈G, 0<r≤dG

inf

{
λ > 0 :

1

ϕ(r)
−
∫

B(z,r)

Φ

(
|f(x)|

λ

)
dx ≤ 1

}
(see [17, 18]). Then ‖f‖L(Φ,ϕ)(G) is a norm and L(Φ,ϕ)(G) is a Banach space.

For Φ ∈ Y and ϕ ∈ G, we also define the Orlicz-Campanato space

L(Φ,ϕ)(G) as follows:

L(Φ,ϕ)(G) =
{
f ∈ L1

loc(G
∗) : ‖f‖L(Φ,ϕ)(G) < ∞

}
,

where

‖f‖L(Φ,ϕ)(G) = sup
z∈G, 0<r≤dG

inf

{
λ > 0 :

1

ϕ(r)|B(z, r)|

∫
B(z,r)

Φ

(
|f(x) − fB(z,r)|

λ

)
dx ≤ 1

}
.

Then ‖f‖L(Φ,ϕ)(G) is a norm modulo constants and thereby L(Φ,ϕ)(G) is a

Banach space.

For ϕ ∈ G such that ϕ is bounded, the generalized Hölder space is defined

by

Λϕ(G) =
{
f : ‖f‖Λϕ(G) < ∞

}
,

where

‖f‖Λϕ(G) = sup
x,y∈G,x6=y

|f(x) − f(y)|
ϕ(|x − y|)

.

Then ‖f‖Λϕ(G) is a norm modulo constants and thereby Λϕ(G) is a Banach

space. Since ϕ is bounded, every f ∈ Λϕ(G) is bounded. If ϕ(r) → 0 as

r → 0, then every f ∈ Λϕ(G) is continuous.
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3. Main results

In this section, we state our main theorems, whose proofs are given in

Section 6.

Throughout this paper, let G be a bounded open set in Rn and denote

by cρ, cϕ, cρ̃, the doubling constants of ρ, ϕ, ρ̃ ∈ G, respectively.

Let us begin with the following result.

Theorem 3.1. Let ρ, ϕ ∈ G, and define

(3.1) ψ(r) =

(∫ r

0

ρ(t)

t
dt

)
ϕ(r) +

∫ 2dG

r

ρ(t)ϕ(t)

t
dt

for 0 < r ≤ dG. Then Iρ is bounded from L(1,ϕ)(G) to L(1,ψ)(G). More

precisely,

‖Iρf‖L(1,ψ)(G) ≤ C‖f‖L(1,ϕ)(G),

where C > 0 is a constant depending only on n, cρ and cϕ.

Remark 3.1. Theorem 3.1 is proved in [16] when G = Rn and dG = ∞, under

the assumption that there exists C > 0 such that ρ(r)/rn ≤ Cρ(s)/sn for all

s < r. However, we don’t need this assumption. For example, the theorem

is valid in the case ρ(r) = rn(log r−1)−1/2 and ϕ(r) = r−n(log r−1)−1/2 for

small r > 0. We give a proof in Section 6 for convenience, though it is

almost same as [16].

Theorem 3.2. Let ρ, ϕ ∈ G such that

∫ 1

0

ρ(t)ϕ(t)

t
dt = ∞. Define

ψ1(r) =

∫ 2dG

r

ρ(t)ϕ(t)

t
dt

for 0 < r ≤ dG. For ρ̃ ∈ G such that ρ̃/ρ is continuous and decreasing,

consider

κ(r) = ψ1(r)ρ̃(r)/ρ(r)

and

ψ(r) =

(∫ r

0

ρ̃(t)

t
dt

)
ϕ(r) +

∫ 2dG

r

ρ̃(t)ϕ(t)

t
dt

for 0 < r ≤ dG. If Φ ∈ Y satisfies

CG = sup

{
(ψ1 ◦ κ−1)(s)

Φ−1(s)
: κ(dG) ≤ s < ∞

}
< ∞,

then there exists a constant A > 0 such that

−
∫

B(z,r)

Φ

(
|Iρf(x)|

A‖f‖L(1,ϕ)(G)

)
dx ≤ ψ(r)
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for z ∈ G, 0 < r ≤ dG and f ∈ L(1,ϕ)(G), that is,

‖Iρf‖L(Φ,ψ)(G) ≤ A‖f‖L(1,ϕ)(G),

where A > 0 is a constant depending only on n, cρ, cρ̃, cϕ and CG.

Remark 3.2. Note that κ is bijective from (0, dG] to [κ(dG),∞) by the as-

sumptions in the theorem.

In Theorems 3.3 and 3.4 below, we consider the following condition on ρ:

(3.2)

∣∣∣∣ρ(r)

rn
− ρ(s)

sn

∣∣∣∣ ≤ c′ρ|r − s| ρ(s)

sn+1
for

1

2
≤ r

s
≤ 2.

For f ∈ L(1,ϕ)(G), letting f = 0 outside G, we can regard Iρf as a function

on G∗.

Theorem 3.3. Let ρ, ϕ ∈ G and (3.2) hold. If

ψ(r) =

(∫ r

0

ρ(t)

t
dt

)
ϕ(r) + r

∫ 2dG

r

ρ(t)ϕ(t)

t2
dt for 0 < r ≤ dG,

then Iρ is bounded from L(1,ϕ)(G) to L(1,ψ)(G). More precisely,

‖Iρf‖L(1,ψ)(G) ≤ C‖f‖L(1,ϕ)(G),

where C > 0 is a constant depending only on n, cρ, c
′
ρ and cϕ.

Moreover, if there exists a constant A′ ≥ 1 such that ψ(t) ≤ A′ψ(r) for

0 < t ≤ r ≤ dG, then

‖Iρf‖L(Φ,ψ)(G) ≤ AC‖f‖L(1,ϕ)(G),

where Φ(r) = exp(r) − 1 and A > 0 is a constant depending only on n,A′

and ψ(dG).

Note that, if

∫ 1

0

ρ(t)ϕ(t)

t
dt < ∞, then r

∫ 2dG

r

ρ(t)ϕ(t)

t2
dt is bounded.

Theorem 3.4. Let ρ, ϕ ∈ G, (3.2) hold and

∫ 1

0

ρ(t)ϕ(t)

t
dt < ∞. If

(3.3) ψ(r) =

∫ r

0

ρ(t)ϕ(t)

t
dt + r

∫ 2dG

r

ρ(t)ϕ(t)

t2
dt for 0 < r ≤ dG,

then Iρ is bounded from L(1,ϕ)(G) to Λψ(G). More precisely,

‖Iρf‖Λψ(G) ≤ C‖f‖L(1,ϕ)(G),

where C > 0 is a constant depending only on n, cρ, cϕ and c′ρ.

7



Remark 3.3. In Theorem 3.4, if there exist cρ,ϕ > 0 and 0 < ε < 1 such that

(3.4)
ρ(r)ϕ(r)

rε
≤ cρ,ϕ

ρ(s)ϕ(s)

sε
for 0 < r ≤ s < ∞,

or

(3.5)
ρ(s)ϕ(s)

sε
≤ cρ,ϕ

ρ(r)ϕ(r)

rε
for 0 < r ≤ s < ∞,

then ψ(r) → 0 as r → 0, that is, Iρf is continuous. Actually, if (3.4) holds,

then

r

∫ 2dG

r

ρ(t)ϕ(t)

t2
dt ≤ cρ,ϕ

ρ(2dG)ϕ(2dG)

(2dG)ε
r

∫ 2dG

r

1

t2−ε
dt

≤ cρ,ϕ
ρ(2dG)ϕ(2dG)

(2dG)ε(1 − ε)
rε,

and if (3.5) holds, then

r

∫ 2dG

r

ρ(t)ϕ(t)

t2
dt ≤ cρ,ϕ

ρ(r)ϕ(r)

rε
r

∫ 2dG

r

1

t2−ε
dt ≤ cρ,ϕ

1 − ε
ρ(r)ϕ(r)

≤ cρ,ϕ

1 − ε

cρcϕ

log 2

∫ r

r/2

ρ(t)ϕ(t)

t
dt ≤ cρ,ϕ

1 − ε

cρcϕ

log 2

∫ r

0

ρ(t)ϕ(t)

t
dt.

Therefore, if (3.5) holds, then we can take ψ(r) =

∫ r

0

ρ(t)ϕ(t)

t
dt instead of

(3.3).

4. Corollaries

In this section we collect several results, which are special cases of our

theorems. Recall that we always assume that∫ 1

0

ρ(t)

t
dt < ∞

in the definition of Iρ. Note that, if ϕ ∈ G, θ > 0 and ϕ(r) = (log r−1)−θ for

small r > 0, then

L(1,ϕ)(G) = {0}.

If ϕ0(r) = r−n, ϕ ∈ G, θ < 0 and ϕ(r) = r−n(log r−1)−θ for small r > 0,

then

L(1,ϕ)(G) = L(1,ϕ0)(G) = L1(G).

Therefore we need the condition ”θ ≤ 0 if β = 0” and ”θ ≥ 0 if β = n” on

ϕ(r) = r−β(log r−1)−θ.
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Corollary 4.1. For 0 ≤ α < β ≤ n, γ > 1 and α1, β1 ∈ R (α1 ≥ γ if α =

0 : β1 ≥ 0 if β = n), let p = β/(β − α), ρ, ϕ, ψ ∈ G, Φ ∈ Y and

ρ(r) = rα(log r−1)−α1 , ϕ(r) = r−β(log r−1)−β1 for small r > 0,

ψ(r) = r−β(log r−1)−β1−γ+1 for small r > 0,

Φ(r) = rp(log r)−γ+(α1β+αβ1)/(β−α) for large r > 0.

Then

‖Iρf‖L(Φ,ψ)(G) ≤ A‖f‖L(1,ϕ)(G).

That is

−
∫

B(z,r)

Φ

(
|Iρf(x)|

A‖f‖L(1,ϕ)(G)

)
dx ≤ ψ(r)

for z ∈ G, 0 < r ≤ dG and f ∈ L(1,ϕ)(G).

Proof. We use Theorem 3.2. Let

ρ̃(r) = (log r−1)−γ for small r > 0.

Then we have

ψ(r) =

(∫ r

0

ρ̃(t)

t
dt

)
ϕ(r) +

∫ 2dG

r

ρ̃(t)ϕ(t)

t
dt

∼ (log r−1)−γ+1r−β(log r−1)−β1 + r−β(log r−1)−(β1+γ)

∼ r−β(log r−1)−β1−γ+1,

ψ1(r) =

∫ 2dG

r

ρ(t)ϕ(t)

t
dt ∼ r−(β−α)(log r−1)−(α1+β1),

κ(r) = ψ1(r)ρ̃(r)/ρ(r) ∼ r−β(log r−1)−(β1+γ)

for small r > 0, and

κ−1(s) ∼ s−1/β(log s)−(β1+γ)/β,

ψ1 ◦ κ−1(s) ∼ s(β−α)/β(log s)(γ(β−α)−αβ1−α1β)/β ∼ Φ−1(s)

for large s > 0. ¤

Let α1 = 0 in the above. Then we have the following.

Corollary 4.2 ([10, Theorem 1.2]). For 0 < α < β ≤ n, γ > 1 and β1 ∈ R
(β1 ≥ 0 if β = n), let p = β/(β − α), ϕ, ψ ∈ G, Φ ∈ Y and

ϕ(r) = r−β(log r−1)−β1 for small r > 0,

ψ(r) = r−β(log r−1)−β1−γ+1 for small r > 0,

Φ(r) = rp(log r)−γ+αβ1p/β for large r > 0.
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Then

‖Iαf‖L(Φ,ψ)(G) ≤ A‖f‖L(1,ϕ)(G).

In Corollary 4.2, we have

Ln/β(log L)β1n/β(G) $ L(1,ϕ)(G)
Iα−→ L(Φ,ψ)(G) $ LΦ(G).

Remark 4.1. O’Neil [21] proved the boundedness of Iα on Orlicz spaces.

Our results are independent of them. Let β = n and β1 = 1 − α/n > 0 in

Corollary 4.2, then we have the following:

Corollary 4.2: L(1,ϕ)(G)
Iα−→ L(Φ,ψ)(G)

$

$ $ LΦ(G)

$
O’Neil: L1(log L)1−α/n(G)

Iα−→ Ln/(n−α)(G)

For the inclusion above, see [18].

Corollary 4.3. For 0 ≤ α ≤ n, γ ≥ 0 and −∞ < α1 + β1 < 1 (α1 >

γ + 1 if α = 0 : β1 ≥ 0 if α = n), let p = (1 − α1 − β1 + γ)/(1 − α1 − β1),

ρ, ϕ, ψ ∈ G and

ρ(r) = rα(log r−1)−α1 , ϕ(r) = r−α(log r−1)−β1 for small r > 0,

ψ(r) = (log r−1)1−α1−β1+γ for small r > 0,

Φ(r) = rp for all r ≥ 0.

Then

‖Iρf‖L(Φ,ψ)(G) ≤ A‖f‖L(1,ϕ)(G).

That is

−
∫

B(z,r)

(
|Iρf(x)|

A‖f‖L(1,ϕ)(G)

)p

dx ≤ ψ(r)

for z ∈ G, 0 < r ≤ dG and f ∈ L(1,ϕ)(G).

Proof. We use Theorem 3.2. Let

ρ̃(r) = rα(log r−1)−α1+γ for small r > 0.
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Then we have

ψ(r) =

(∫ r

0

ρ̃(t)

t
dt

)
ϕ(r) +

∫ 2dG

r

ρ̃(t)ϕ(t)

t
dt

∼

{
rα(log r−1)−α1+γr−α(log r−1)−β1 + (log r−1)1−α1−β1+γ (α > 0)

(log r−1)1−α1+γ(log r−1)−β1 + (log r−1)1−α1−β1+γ (α = 0)

∼ (log r−1)1−α1−β1+γ,

ψ1(r) =

∫ 2dG

r

ρ(t)ϕ(t)

t
dt ∼ (log r−1)1−α1−β1 ,

κ(r) = ψ1(r)ρ̃(r)/ρ(r) ∼ (log r−1)1−α1−β1+γ

for small r > 0, and

κ−1(s) ∼ exp
(
−s1/(1−α1−β1+γ)

)
,

ψ1 ◦ κ−1(s) ∼ s(1−α1−β1)/(1−α1−β1+γ) = s1/p = Φ−1(s)

for large s > 0. ¤

Let α1 = 0 in the above. Then we have the following.

Corollary 4.4. For 0 < α < n, −∞ < β1 < 1 and γ ≥ 0, let p =

(1 − β1 + γ)/(1 − β1), ϕ, ψ ∈ G and

ϕ(r) = r−α(log r−1)−β1 for small r > 0,

ψ(r) = (log r−1)1−β1+γ for small r > 0,

Φ(r) = rp for all r ≥ 0.

Then

‖Iαf‖L(Φ,ψ)(G) ≤ A‖f‖L(1,ϕ)(G).

Corollary 4.5. For 0 < ε < α ≤ n and −∞ < α1 + β1 < 1, (β1 ≥ 0 if α =

n), let p = 1/(1 − α1 − β1), ρ, ϕ ∈ G, Φ ∈ Y and

ρ(r) = rα(log r−1)−α1 , ϕ(r) = r−α(log r−1)−β1 for small r > 0,

ψ(r) = r−α+ε for all r > 0,

Φ(r) = exp(rp) for large r > 0.

Then

‖Iρf‖L(Φ,ψ)(G) ≤ A‖f‖L(1,ϕ)(G).

That is

−
∫

B(z,r)

Φ

(
|Iρf(x)|

A‖f‖L(1,ϕ)(G)

)
dx ≤ r−α+ε

11



for z ∈ G, 0 < r ≤ dG and f ∈ L(1,ϕ)(G).

Proof. We use Theorem 3.2. Let

ρ̃(r) = rε(log r−1)β1 for small r > 0.

Then we have

ψ(r) =

(∫ r

0

ρ̃(t)

t
dt

)
ϕ(r) +

∫ 2dG

r

ρ̃(t)ϕ(t)

t
dt

∼ rε(log r−1)β1r−α(log r−1)−β1 + r−(α−ε)

∼ r−(α−ε),

ψ1(r) =

∫ 2dG

r

ρ(t)ϕ(t)

t
dt ∼ (log r−1)1−α1−β1 ,

κ(r) = ψ1(r)ρ̃(r)/ρ(r) ∼ r−(α−ε) log r−1

for small r > 0. Then

κ−1(s) ∼ s−1/(α−ε)(log s)1/(α−ε),

ψ1 ◦ κ−1(s) ∼ (log s)1−α1−β1 = Φ−1(s)

for large s > 0. ¤

Let α1 = 0 in the above. Then we have the following.

Corollary 4.6 (cf. [10, Theorem 1.1 (1)]). For 0 < ε < α < n and

−∞ < β1 < 1, let p = 1/(1 − β1), ϕ ∈ G, Φ ∈ Y and

ϕ(r) = r−α(log r−1)−β1 for small r > 0,

ψ(r) = r−α+ε for all r > 0,

Φ(r) = exp(rp) for large r > 0.

Then

‖Iαf‖L(Φ,ψ)(G) ≤ A‖f‖L(1,ϕ)(G).

In Corollary 4.6, we have

Ln/α(log L)β1n/α(G) $ L(1,ϕ)(G)
Iα−→ L(Φ,ψ)(G) $ LΦ(G)

for 0 < ε < α.

Remark 4.2. For the boundedness of Iα on Orlicz spaces, Edmunds, Gurka

and Opic [4] and Mizuta and Shimomura [11] proved

Iα : Ln/α(log L)λ(G) → exp
(
Ln/(n−α−λα)

)
(G) when λ < n/α − 1

12



and

Iα : Ln/α(log L)λ(G) → exp exp
(
Ln/(n−α)

)
(G) when λ ≥ n/α − 1.

Our results are independent of them.

Corollary 4.7. For 0 < ε < α ≤ n, α1 + β1 = 1 and −∞ < α2 + β2 < 1,

(β1 ≥ 0 if α = n : β2 ≥ 0 if α = n and β1 = 0), let p = 1/(1 − α2 − β2),

ρ, ϕ ∈ G, Φ ∈ Y and

ρ(r) = rα(log r−1)−α1(log log r−1)−α2 , for small r > 0,

ϕ(r) = r−α(log r−1)−β1(log log r−1)−β2 for small r > 0,

ψ(r) = r−α+ε for all r > 0,

Φ(r) = exp exp(rp) for large r > 0.

Then

‖Iρf‖L(Φ,ψ)(G) ≤ A‖f‖L(1,ϕ)(G).

That is

−
∫

B(z,r)

Φ

(
|Iρf(x)|

A‖f‖L(1,ϕ)(G)

)
dx ≤ r−α+ε

for z ∈ G, 0 < r ≤ dG and f ∈ L(1,ϕ)(G).

Proof. We use Theorem 3.2. Let

ρ̃(r) = rε(log r−1)β1(log log r−1)β2 for small r > 0.

Then we have

ψ(r) =

(∫ r

0

ρ̃(t)

t
dt

)
ϕ(r) +

∫ 2dG

r

ρ̃(t)ϕ(t)

t
dt ∼ r−(α−ε),

ψ1(r) =

∫ 2dG

r

ρ(t)ϕ(t)

t
dt ∼ (log log r−1)1−α2−β2 ,

κ(r) = ψ1(r)ρ̃(r)/ρ(r) ∼ r−(α−ε)(log r−1)(log log r−1)

for small r > 0. Then

κ−1(s) ∼ s−1/(α−ε)(log s)1/(α−ε)(log log s)1/(α−ε),

ψ1 ◦ κ−1(s) ∼ (log log s)1−α2−β2 = Φ−1(s)

for large s > 0. ¤

Let α1 = α2 = 0 in the above. Then we have the following.
13



Corollary 4.8. For 0 < ε < α < n and −∞ < β2 < 1, let p = 1/(1 − β2),

ϕ ∈ G, Φ ∈ Y and

ϕ(r) = r−α(log r−1)−1(log log r−1)−β2 for small r > 0,

ψ(r) = r−α+ε for all r > 0,

Φ(r) = exp exp(rp) for large r > 0.

Then

‖Iαf‖L(Φ,ψ)(G) ≤ A‖f‖L(1,ϕ)(G).

In Corollary 4.8, we have

Ln/α(log L)n/α(log log L)β2n/α(G) $ L(1,ϕ)(G)
Iα−→ L(Φ,ψ)(G) $ LΦ(G)

for 0 < ε < α.

Let β2 = 0 in the above. Then we have the following.

Corollary 4.9 (cf. [10, Theorem 1.1 (2)]). For 0 < ε < α < n, let ϕ ∈ G
and

ϕ(r) = r−α(log r−1)−1 for small r > 0,

ψ(r) = r−α+ε for all r > 0,

Φ(r) = exp exp r − e for all r ≥ 0.

Then

‖Iαf‖L(Φ,ψ)(G) ≤ A‖f‖L(1,ϕ)(G).

Corollary 4.10. For 0 ≤ α ≤ n and α1, β1 ∈ R (α1 > 1, β1 ≤ 0 if α = 0 :

β1 ≥ 0 if α = n), let ρ, ϕ, ψ ∈ G and

ρ(r) = rα(log r−1)−α1 , ϕ(r) = r−α(log r−1)−β1 for small r > 0,

ψ(r) =

{
(log r−1)−α1−β1 (α > 0)

(log r−1)1−α1−β1 (α = 0)
for small r > 0,

Φ(r) = exp r − 1 for all r ≥ 0.

Then

‖Iρf‖L(1,ψ)(G) ≤ A‖f‖L(1,ϕ)(G).

Moreover, if α1 + β1 ≥ 0 (α1 + β1 ≥ 1 if α = 0), then

‖Iρf‖L(Φ,ψ)(G) ≤ A‖f‖L(1,ϕ)(G).
14



That is

−
∫

B(z,r)

(
exp

(∣∣Iρf(x) − (Iρf)B(z,r)

∣∣
A‖f‖L(1,ϕ)(G)

)
− 1

)
dx ≤ ψ(r)

for z ∈ G, 0 < r ≤ dG and f ∈ L(1,ϕ)(G).

Proof. We use Theorem 3.3. Then we have

ψ(r) =

(∫ r

0

ρ(t)

t
dt

)
ϕ(r) + r

∫ 2dG

r

ρ(t)ϕ(t)

t2
dt

∼

{
(log r−1)−α1−β1 (α > 0)

(log r−1)1−α1−β1 (α = 0)

for small r > 0. ¤

Remark 4.3. In Corollary 4.10, if α1 + β1 = 0 (α1 + β1 = 1 if α = 0), then

L(1,ψ)(G) = BMO(G). In the case 0 < α < n and α1 = β1 = 0, the result is

proved by Peetre [22]. See also [14].

Remark 4.4. In Corollary 4.10, if α1 + β1 > 1 (α1 + β1 > 2 if α = 0), then

L(1,ψ)(G) ⊂ Λψ̃(G) for ψ̃(r) = (log r−1)−θ for small r > 0 with θ = α1+β1−1

(θ = α1 +β1−2 if α = 0) (Spanne [24, p. 601]). Therefore Iρf is continuous

for all f ∈ L(1,ϕ)(G). In this case, the assumption of Theorem 3.4 holds and

thereby we also get Iρf ∈ Λψ̃(G).

Let α1 = 0 in the above. Then we have the following.

Corollary 4.11 ([10, Theorem 1.1 (3)]). For 0 < α < n and β1 > 1, let

ϕ, ψ ∈ G and

ϕ(r) = r−α(log r−1)−β1 , ψ(r) = (log r−1)−β1+1 for small r > 0.

Then

‖Iαf‖Λψ(G) ≤ A‖f‖L(1,ϕ)(G).

5. Preliminary lemmas

For proofs of our theorems, we prepare several lemmas.

Lemma 5.1. Let k ≥ 0. If ρ, ϕ ∈ G, then

(5.1)

∫
B(x,r)

ρ(|x − y|)
|x − y|n

|f(y)| dy ≤
2nωnc2

ρcϕ

log 2

(∫ r

0

ρ(t)ϕ(t)

t
dt

)
‖f‖L(1,ϕ)(G)
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and

(5.2)∫
B(x,dG)\B(x,r)

ρ(|x − y|)
|x − y|n+k

|f(y)| dy ≤
2n+kωnc

2
ρcϕ

log 2

(∫ 2dG

r

ρ(t)ϕ(t)

t1+k
dt

)
‖f‖L(1,ϕ)(G).

Proof. If y ∈ B(x, 2jr) \ B(x, 2j−1r), j ∈ Z, then

ρ(|x − y|)
|x − y|n+k

≤ cρρ(2jr)

(2j−1r)n+k
.

Hence ∫
B(x,2jr)\B(x,2j−1r)

ρ(|x − y|)
|x − y|n+k

|f(y)| dy

≤ cρρ(2jr)

(2j−1r)n+k

∫
B(x,2jr)

|f(y)| dy

≤ 2n+kωncρ
ρ(2jr)ϕ(2jr)

(2jr)k
‖f‖L(1,ϕ)

≤
2n+kωnc

2
ρcϕ

log 2

(∫ 2jr

2j−1r

ρ(t)ϕ(t)

t1+k
dt

)
‖f‖L(1,ϕ) .

Noting that

∫
B(x,r)

ρ(|x − y|)
|x − y|n

|f(y)| dy =
∞∑

j=0

∫
B(x,2−jr)\B(x,2−j−1r)

ρ(|x − y|)
|x − y|n

|f(y)| dy

and

∫
B(x,dG)\B(x,r)

ρ(|x − y|)
|x − y|n+k

|f(y)| dy ≤
j0∑

j=1

∫
B(x,2jr)\B(x,2j−1r)

ρ(|x − y|)
|x − y|n+k

|f(y)| dy,

where dG ≤ 2j0 < 2dG, we have the conclusion. ¤

Lemma 5.2. If ρ ∈ G, then

−
∫

B(z,r)

(∫
B(z,r)

ρ(|x − y|)
|x − y|n

|f(y)| dy

)
dx ≤ nωncρϕ(r)

(∫ r

0

ρ(t)

t
dt

)
‖f‖L(1,ϕ)(G).
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Proof. By Fubini’s theorem we have∫
B(z,r)

(∫
B(z,r)

ρ(|x − y|)
|x − y|n

|f(y)| dy

)
dx

=

∫
B(z,r)

|f(y)|
(∫

B(z,r)

ρ(|x − y|)
|x − y|n

dx

)
dy

≤
∫

B(z,r)

|f(y)|
(∫

B(y,2r)

ρ(|x − y|)
|x − y|n

dx

)
dy

≤ nωncρ

(∫ r

0

ρ(t)

t
dt

) ∫
B(z,r)

|f(y)| dy

≤ nωncρϕ(r)|B(z, r)|
(∫ r

0

ρ(t)

t
dt

)
‖f‖L(1,ϕ)(G),

as required. ¤

6. Proofs of the theorems

We are now ready to prove our theorems.

Proof of Theorem 3.1. We write

−
∫

B(z,r)

|Iρf(x)| dx ≤ −
∫

B(z,r)

∣∣∣∣∫
B(x,r)

ρ(|x − y|)
|x − y|n

f(y) dy

∣∣∣∣ dx

+ −
∫

B(z,r)

∣∣∣∣∫
B(x,dG)\B(x,r)

ρ(|x − y|)
|x − y|n

f(y) dy

∣∣∣∣ dx

≤ −
∫

B(z,2r)

∣∣∣∣∫
B(z,2r)

ρ(|x − y|)
|x − y|n

f(y) dy

∣∣∣∣ dx

+ −
∫

B(z,r)

∣∣∣∣∫
B(x,dG)\B(x,r)

ρ(|x − y|)
|x − y|n

f(y) dy

∣∣∣∣ dx

= I1 + I2

for z ∈ G and 0 < r ≤ dG. By Lemma 5.2 we have

I1 ≤ C1ϕ(r)

(∫ 2r

0

ρ(t)

t
dt

)
‖f‖L(1,ϕ)(G)

≤ C1ψ(r)‖f‖L(1,ϕ)(G).

By Lemma 5.1 we have

I2 ≤ C2

(∫ 2dG

r

ρ(t)ϕ(t)

t
dt

)
‖f‖L(1,ϕ)(G)

≤ C2ψ(r)‖f‖L(1,ϕ)(G).
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Hence it follows that

−
∫

B(z,r)

|Iρf(x)| dx ≤ Cψ(r)‖f‖L(1,ϕ)(G),

where C > 0 depends only on n, cρ, cϕ. ¤

Proof of Theorem 3.2. By Theorem 3.1, we have

(6.1) −
∫

B(z,r)

|Iρ̃f(x)| dx ≤ C1ψ(r)‖f‖L(1,ϕ)(G)

for z ∈ G and 0 < r ≤ dG.

Let g = |f |/‖f‖L(1,ϕ)(G). For x ∈ G and 0 < δ ≤ dG, we have by Lemma

5.1

Iρg(x) =

∫
B(x,δ)

ρ(|x − y|)
|x − y|n

g(y) dy +

∫
B(x,dG)\B(x,δ)

ρ(|x − y|)
|x − y|n

g(y) dy

≤ ρ(δ)

ρ̃(δ)

∫
B(x,δ)

ρ̃(|x − y|)
|x − y|n

g(y) dy + C2

∫ 2dG

δ

ρ(t)ϕ(t)

t
dt

≤ ρ(δ)

ρ̃(δ)
Iρ̃g(x) + C2ψ1(δ).

Now let

δ =

{
κ−1(Iρ̃g(x)) when Iρ̃g(x) ≥ κ(dG),

dG when Iρ̃g(x) < κ(dG).

Then it follows that

Iρg(x) ≤ (1 + C2) max
{
ψ1(κ

−1(Iρ̃g(x))), ψ1(dG)
}

.

Note that

(ψ1 ◦ κ−1)(s) ≤ CGΦ−1(s) for κ(dG) ≤ s < ∞.

Hence, taking A = (1 + C2)CG(C1 + cρcρ̃), we establish

|Iρf(x)|
A‖f‖L(1,ϕ)(G)

≤ Iρg(x)

A
≤ max {Φ−1(Iρ̃g(x)), Φ−1(κ(dG))}

C1 + cρcρ̃

.

On the other hand, we see that

κ(dG) =

(∫ 2dG

dG

ρ(t)ϕ(t)

t
dt

)
ρ̃(dG)

ρ(dG)
≤ cρcρ̃

∫ 2dG

dG

ρ̃(t)ϕ(t)

t
dt

≤ cρcρ̃ψ(r).
18



Hence, with the aid of (6.1), we have

−
∫

B(z,r)

Φ

(
|Iρf(x)|

A‖f‖L(1,ϕ)(G)

)
dx

≤ 1

C1 + cρcρ̃

−
∫

B(z,r)

max {Iρ̃g(x), κ(dG)} dx

≤ 1

C1 + cρcρ̃

(
−
∫

B(z,r)

Iρ̃g(x) dx + −
∫

B(z,r)

κ(dG) dx

)
≤ 1

C1 + cρcρ̃

(C1ψ(r) + cρcρ̃ψ(r)) = ψ(r),

which proves the conclusion. ¤

Proof of Theorem 3.3. For f ∈ L(1,ϕ)(G), letting f = 0 outside G, we can

regard Iρf as a function on Rn. The first part

‖Iρf‖L(1,ψ)(G) ≤ C‖f‖L(1,ϕ)(G)

is proved in [16] when G = Rn and dG = ∞. Actually, we have

sup
B(z,r)⊂Rn, 0<r≤dG

1

|B(z, r)|

∫
B(z,r)

|Iρf(x)− (Iρf)B(z,r)| dx ≤ Cψ(r)‖f‖L(1,ϕ)(G).

The second part is shown by John-Nirenberg’s inequality [8]. Let

g(x) =
Iρf(x)

C‖f‖L(1,ϕ)(G)

.

Then, for 0 < t ≤ r ≤ dG, we have

1

|B(z, t)|

∫
B(z,t)

|g(x) − gB(z,t)| dx ≤ ψ(t) ≤ A′ψ(r).

By John-Nirenberg’s inequality, there exist constants c1, c2 > 0, depending

only on n, such that

1

|B(z, r)|

∫
B(z,r)

{
exp

(
c|g(x) − gB(z,r)|

)
− 1

}
dx ≤ c1c

(A′ψ(r))−1c2 − c

for 0 < c < (A′ψ(r))−1c2. Let A = c−1 max{1, c1/(A
′ψ(dG))} and c =

c2/(2A
′2ψ(dG)). Then 0 < c ≤ (A′ψ(r))−1c2/2, since ψ(r) ≤ A′ψ(dG).

Hence

c1c

(A′ψ(r))−1c2 − c
≤ c1c2/(2A

′2ψ(dG))

(A′ψ(r))−1c2/2
=

c1ψ(r)

A′ψ(dG)
.
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Using the inequality exp(r/a)− 1 ≤ (exp(r)− 1)/a for r ≥ 0 and a ≥ 1, we

have

1

|B(z, r)|

∫
B(z,r)

{
exp

(
|g(x) − gB(z,r)|

A

)
− 1

}
dx

≤ 1

max{1, c1/(A′ψ(dG))}
−
∫

B(z,r)

{
exp

(
c|g(x) − gB(z,r)|

)
− 1

}
dx

≤ 1

max{1, c1/(A′ψ(dG))}
c1ψ(r)

A′ψ(dG)
≤ ψ(r).

This shows the conclusion. ¤

Proof of Theorem 3.4. Write

Iρf(x) − Iρf(z)

=

∫
B(x,2|x−z|)

ρ(|x − y|)
|x − y|n

f(y) dy −
∫

B(x,2|x−z|)

ρ(|z − y|)
|z − y|n

f(y) dy

+

∫
G\B(x,2|x−z|)

(
ρ(|x − y|)
|x − y|n

− ρ(|z − y|)
|z − y|n

)
f(y) dy.

By (5.1), we have∫
B(x,2|x−z|)

ρ(|x − y|)
|x − y|n

|f(y)|dy ≤ C1ψ(|x − z|)‖f‖L(1,ϕ)(G)

and ∫
B(x,2|x−z|)

ρ(|z − y|)
|z − y|n

|f(y)| dy ≤
∫

B(z,3|x−z|)

ρ(|z − y|)
|z − y|n

|f(y)| dy

≤ C ′
1ψ(|x − z|)‖f‖L(1,ϕ)(G)

for x, z ∈ G. On the other hand, we have by (3.2) and (5.2)∫
G\B(x,2|x−z|)

∣∣∣∣ρ(|x − y|)
|x − y|n

− ρ(|z − y|)
|z − y|n

∣∣∣∣ |f(y)| dy

≤ c′ρ|x − z|
∫

G\B(x,2|x−z|)

ρ(|x − y|)
|x − y|n+1

|f(y)| dy

≤ C2|x − z|
(∫ 2dG

2|x−z|

ρ(t)ϕ(t)

t2
dt

)
‖f‖L(1,ϕ)(G)

≤ C2ψ(|x − z|)‖f‖L(1,ϕ)(G).

Now we establish

|Iρf(x) − Iρf(z)| ≤ Cψ(|x − z|)‖f‖L(1,ϕ)(G)

for x, z ∈ G, as required. ¤
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7. Orlicz spaces

Our discussions can be applicable to the study of the boundedness of Iρ

from LΦ(G) to LΨ(G) and Sobolev embeddings of Riesz potentials for Orlicz

spaces.

O’Neil [21, Theorem 5.2] gave a sufficient condition for the boundedness of

the convolution operators in Orlicz spaces near L1. He used other function

spaces MΦ in which LΦ is a proper subspace. In this section we give another

sufficient condition. Our statement and proof are simpler than O’Neil’s and

we can easily check whether the pair (ρ, Φ, Ψ) satisfies the assumption.

Let L be the set of all positive continuous functions ` on [0,∞) for which

there exists a constant c ≥ 1 such that

(7.1) c−1 ≤ `(s)

`(r)
≤ c whenever

1

2
≤ log s

log r
≤ 2.

Here we collect the fundamental properties on functions ` ∈ L.

(i) ` ∈ G and 1/` ∈ L.

(ii) `(et) satisfies the doubling condition, so that there exist positve con-

stants c and β such that

(7.2) `(r) ≤ c(log(2 + r))β for 0 < r < ∞.

(iii) For all α > 0, there exists a constant cα ≥ 1 such that

(7.3) c−1
α `(r) ≤ `(rα) ≤ cα`(r) for 0 < r < ∞.

(iv) For each ε > 0, rε`(r) is almost increasing, that is, there exists a

constant cε ≥ 1 such that

(7.4) rε`(r) ≤ cεs
ε`(s) for 0 < r < s < ∞.

(v) If `, `1 ∈ L and α > 0, then there exists a constant cα ≥ 1 such that

(7.5) cα
−1`(r) ≤ `(rα`1(r)) ≤ cα`(r) for 0 < r < ∞.

(vi) If p ≥ 1, ` ∈ L, Φ ∈ Y and Φ(r) ≤ rp`(r), then there exists a

constant c > 0 such that

(7.6) r1/p`(r)−1/p ≤ cΦ−1(r) for 0 < r < ∞.

7.1. Riesz potentials.

Theorem 7.1. Let 0 < α < n and p = n/(n−α). Let ρ ∈ G and Φ ∈ Y be

of the form

ρ(r) = rα`(r−1)−1
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and

Φ(r) = r`1(r),

where `, `1 ∈ L. Take functions `2 ∈ L and Ψ ∈ Y satisfying∫ r

d−1
G

`2(t)

t
dt ≤ `1(r) for d−1

G ≤ r < ∞,(7.7)

Ψ(r) ≤ rp`(r)p`1(r)
p−1`2(r) for 0 ≤ r < ∞.(7.8)

Then there exists a constant A > 0 such that

‖Iρf‖LΨ(G) ≤ A‖f‖LΦ(G).

Proof. We may assume that ‖f‖LΦ(G) = 1. Then∫
G

Φ(|f(y)|) dy ≤ 1.

Note that `1 is nondecreasing, since Φ is convex and Φ(0) = 0 by our

assumption.

For 0 < γ < α, let

J(x) =

∫
{y∈G:|x−y|−γ<|f(y)|}

`2(|x − y|−1)

|x − y|n
|f(y)| dy.

Then, for 0 < δ ≤ dG, which is determined later, we have by (7.3) and (7.4)∫
G∩B(x,δ)

ρ(|x − y|)
|x − y|n

|f(y)| dy

≤
∫
{y∈G∩B(x,δ):|x−y|−γ<|f(y)|}

ρ(|x − y|)
|x − y|n

|f(y)| dy +

∫
G∩B(x,δ)

`(|x − y|−1)−1

|x − y|n−α+γ
dy

≤ Cδα`(δ−1)−1`2(δ
−1)−1J(x) + Cδα−γ`(δ−1)−1.

Similarly, for α < γ′ < n, we obtain∫
G\B(x,δ)

ρ(|x − y|)
|x − y|n

|f(y)| dy

≤ C

∫
G\B(x,δ)

ρ(|x − y|)
|x − y|n

{
Φ(|f(y)|)`1(|x − y|−1)−1 + |x − y|−γ′

}
dy

≤ Cδα−n`(δ−1)−1`1(δ
−1)−1

∫
G

Φ(|f(y)|) dy + Cδα−γ′
`(δ−1)−1

≤ Cδα−n`(δ−1)−1`1(δ
−1)−1 + Cδα−γ′

`(δ−1)−1.
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Hence it follows that

|Iρf(x)| ≤
∫

G∩B(x,δ)

ρ(|x − y|)
|x − y|n

|f(y)| dy +

∫
G\B(x,δ)

ρ(|x − y|)
|x − y|n

|f(y)| dy

≤ Cδα`(δ−1)−1`2(δ
−1)−1J(x) + Cδα−γ`(δ−1)−1

+Cδα−n`(δ−1)−1`1(δ
−1)−1 + Cδα−γ′

`(δ−1)−1

= Cδα`(δ−1)−1`2(δ
−1)−1J(x)

+Cδα−n`(δ−1)−1`1(δ
−1)−1

(
1 + δn−γ`1(δ

−1) + δn−γ′
`1(δ

−1)

)
≤ Cδα`(δ−1)−1`2(δ

−1)−1J(x) + Cδα−n`(δ−1)−1`1(δ
−1)−1.

Now, let

δ = min
{
J(x)−1/n`1(J(x))−1/n`2(J(x))1/n, dG

}
.

If δ = J(x)−1/n`1(J(x))−1/n`2(J(x))1/n, then it follows from (7.5) that

`(δ−1) ∼ `(J(x)), `1(δ
−1) ∼ `1(J(x)), `2(δ

−1) ∼ `2(J(x)),

so that we have by (7.8) and (7.6)

|Iρf(x)| ≤ CJ(x)(n−α)/n`(J(x))−1`1(J(x))−α/n`2(J(x))−(n−α)/n

= CJ(x)1/p`(J(x))−1`1(J(x))−(p−1)/p`2(J(x))−1/p

≤ CΨ−1(J(x)).

If δ = dG, then

|Iρf(x)| ≤ C.

Therefore

Ψ

(
|Iρf(x)|

C

)
≤ J(x) + C.

By Fubini’s theorem and (7.7) we have∫
G

J(x) dx =

∫
G

(∫
{x∈G:|x−y|−γ<|f(y)|}

`2(|x − y|−1)

|x − y|n
dx

)
|f(y)| dy

=

∫
G

nωn

(∫ |f(y)|1/γ

d−1
G

`2(t)

t
dt

)
|f(y)| dy

≤ C

∫
G

`1(|f(y)|1/γ)|f(y)| dy ≤ C

∫
G

Φ(|f(y)|) dy ≤ C,

which proves the conclusion. ¤

As special cases of Theorem 7.1, we can easily get the following corollaries.
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Corollary 7.2. Let 0 < α < n, p = n/(n− α). For α1 ∈ R and β1 > 0, let

ρ(r) = rα(log(2 + r−1))−α1 ,

Φ(r) = r(log(c + r))β1 ,

Ψ(r) = rp(log(c + r))p(α1+β1)−1,

where c > e is chosen so that Φ, Ψ ∈ Y. Then

‖Iρf‖LΨ(G) ≤ A‖f‖LΦ(G).

In fact, we have only to consider a function `2(r) = c0(log(c + r))β1−1

with a suitable constant c0 > 0.

Remark 7.1. In Corollary 7.2 we cannot take β1 = 0. Actually, one can find

f ∈ L1(B) but ∫
B
|Iρf(x)|p(log(1 + |Iρf(x)|))pα1−1 dx = ∞,

where B = B(0, 1).

To show this, for 0 < γ < 1/p, let f be a nonnegative function on B such

that

f(y) = |y|−n(log(1 + |y|−1))−1(log(1 + log(1 + |y|−1)))−γ−1.

Then we have f ∈ L1(B) and, for x ∈ B,

Iρf(x) ≥
∫

B(0,|x|/2)

ρ(|x − y|)
|x − y|n

f(y) dy

≥ C|x|α−n(log(2 + 2|x|−1))−α1

×
∫

B(0,|x|/2)

|y|−n(log(1 + |y|−1))−1(log(1 + log(1 + |y|−1)))−γ−1 dy

≥ C|x|α−n(log(1 + |x|−1))−α1(log(1 + log(1 + |x|−1)))−γ.

Hence it follows that∫
B
|Iρf(x)|p(log(1 + |Iρf(x)|))pα1−1 dx

≥ C

∫
B
|x|−n(log(1 + |x|−1))−1(log(1 + log(1 + |x|−1)))−γp dx = ∞

when γ < 1/p.

Remark 7.2. Let α, α1, β1, p and Φ be as in Corollary 7.2. If γ > p(α1 +

β1) − 1, then one can find f ∈ LΦ(B) but∫
B
|Iρf(x)|p(log(1 + |Iρf(x)|))γ dx = ∞.
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For this purpose, let ε > 0 and f be a nonnegative function on B such

that

f(y) = |y|−n(log(1 + |y|−1))−β1−ε−1.

Then, as in Remark 7.1, we have∫
B
f(y)(log(1 + f(y)))β1 dy < ∞

and

|Iρf(x)|p(log(1 + |Iρf(x)|))γ ≥ C|x|−n(log(1 + |x|−1)γ−p(α1+β1+ε).

Hence, if 0 < ε < (γ − p(α1 + β1) + 1)/p, then∫
B
|Iρf(x)|p(log(1 + |Iρf(x)|))γ dx = ∞.

Corollary 7.3. Let 0 < α < n, p = n/(n−α). For α1, α2 ∈ R and β2 > 0,

let

ρ(r) = rα(log(2 + r−1))−α1(log log(4 + r−1))−α2 ,

Φ(r) = r(log log(c + r))β2 ,

Ψ(r) = rp(log(c + r))pα1−1(log log(c + r))p(α2+β2)−1,

where c > e is chosen so that Φ, Ψ ∈ Y. Then

‖Iρf‖LΨ(G) ≤ A‖f‖LΦ(G).

In fact, we have only to consider a function

`2(r) = c0(log(c + log(c + t)))β2−1(log(c + t))−1

with a suitable constant c0 > 0.

Remark 7.3. For the boundedness of Iα and Sobolev’s embeddings of Riesz

potentials in Orlicz spaces, see Edmunds, Gurka and Opic [4] and Cianchi [3].

7.2. Logarithmic potentials. A function θ : (0, +∞) → (0, +∞) is said

to be almost increasing if there exists a constant C > 0 such that

θ(r) ≤ Cθ(s) for r ≤ s.

Consider the logarithmic potential

Iρf(x) =

∫
G

ρ(|x − y|)
|x − y|n

f(y)dy,
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where ρ ∈ G is of the form ρ(r) = `(r−1)−1 with ` ∈ L satisfying

(7.9)

∫ 1

0

ρ(t)

t
dt < ∞.

For logarithmic potentials, we have the following.

Theorem 7.4. Let ρ ∈ G be of the form ρ(r) = `(r−1)−1 with ` ∈ L
satisfying (7.9). Let Φ ∈ Y be of the form

Φ(r) = r`1(r),

where `1 ∈ L. Let `2,m1,m2,m3,m4 be functions in L such that

(i) `m1, `1/m2, `/m3 and `1m4 are almost increasing;

(ii)

∫ r

d−1
G

m1(t)

t
dt ≤ c1m2(r) for d−1

G ≤ r < ∞;

(iii)

∫ ∞

r

1

m3(t)t
dt ≤ c2

m4(r)
for d−1

G ≤ r < ∞;

(iv)
m2(r)

m1(r)
+

m3(r)

m4(r)
≤ `2(r) for d−1

G ≤ r < ∞,

where c1, c2 are positive constants. Take a function Ψ ∈ Y satisfying

Ψ(r) ≤ r`(r)`1(r)`2(r)
−1 for 0 ≤ r < ∞.

Then there exists a constant A > 0 such that

‖Iρf‖LΨ(G) ≤ A‖f‖LΦ(G).

Proof. We may assume that ‖f‖LΦ(G) = 1. Then∫
G

Φ(|f(y)|) dy ≤ 1.

Let 0 < δ < 1. For x ∈ G and 0 < r < dG, write

G = E0 ∪ E1 ∪ E2 ∪ E3 ∪ E4,

where

E0 = {y ∈ B(x, r) : |f(y)| ≤ r−δ},

E1 = {y ∈ B(x, r) : |f(y)| > r−δ, |f(y)| > |x − y|−δ},

E2 = {y ∈ B(x, r) : |f(y)| > r−δ, |f(y)| ≤ |x − y|−δ},

E3 = {y ∈ G \ B(x, r) : |f(y)| ≤ |x − y|−δ},

E4 = {y ∈ G \ B(x, r) : |f(y)| > |x − y|−δ}.
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Then∫
E0

ρ(|x − y|)
|x − y|n

|f(y)| dy ≤ r−δ

∫
B(x,r)

ρ(|x − y|)
|x − y|n

dy ≤ Cr−δ,∫
E3

ρ(|x − y|)
|x − y|n

|f(y)| dy ≤
∫

G\B(x,r)

ρ(|x − y|)
|x − y|n

|x − y|−δ dy ≤ Cr−δ.

Noting that `1 is nondecreasing by our assumption that Φ is convex and

Φ(0) = 0, we see by (7.3) and (7.4) that∫
E4

ρ(|x − y|)
|x − y|n

|f(y)| dy ≤
∫

E4

ρ(|x − y|)
|x − y|n

|f(y)| `1(|f(y)|)
`1(|x − y|−δ)

dy

≤
∫

G\B(x,r)

Cρ(|x − y|)
|x − y|n`1(|x − y|−1)

Φ(|f(y)|) dy

≤ Cρ(r)

rn`1(r−1)

∫
G\B(x,r)

Φ(|f(y)|) dy ≤ C

rn`(r−1)`1(r−1)
.

Since r−δ ≤ C{rn`(r−1)`1(r
−1)}−1 by (7.4), we have∫

E0∪E3∪E4

ρ(|x − y|)
|x − y|n

|f(y)| dy ≤ C

rn`(r−1)`1(r−1)
.

Next let us consider the integral over E1 ∪ E2. Set

J(x) = J1(x) + J2(x),

where

J1(x) =

∫
Ẽ1

m1(|x − y|−1)

|x − y|n
Φ(|f(y)|)
m2(|f(y)|)

dy,

J2(x) =

∫
Ẽ2

m4(|f(y)|)Φ(|f(y)|)
|x − y|nm3(|x − y|−1)

dy

with

Ẽ1 = {y ∈ G : |f(y)| > |x − y|−δ},

Ẽ2 = {y ∈ G : |f(y)| ≤ |x − y|−δ}.

We insist by assumption (iv) that∫
E1

ρ(|x − y|)
|x − y|n

|f(y)| dy

≤ C

∫
E1

1

|x − y|n`(|x − y|−1)

m1(|x − y|−1)

m1(|x − y|−1)
|f(y)|`1(|f(y)|)/m2(|f(y)|)

`1(r−δ)/m2(r−δ)
dy

≤ C

`(r−1)m1(r−1)

m2(r
−1)

`1(r−1)
J1(x) ≤ C`2(r

−1)

`(r−1)`1(r−1)
J1(x),
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since `m1 and `1/m2 are almost increasing, and∫
E2

ρ(|x − y|)
|x − y|n

|f(y)| dy

≤ C

∫
E2

1

|x − y|n`(|x − y|−1)

m3(|x − y|−1)

m3(|x − y|−1)
|f(y)|`1(|f(y)|)m4(|f(y)|)

`1(r−δ)m4(r−δ)
dy

≤ C
m3(r

−1)

`(r−1)

1

`1(r−1)m4(r−1)
J2(x) ≤ C`2(r

−1)

`(r−1)`1(r−1)
J2(x),

since `/m3 and `1m4 are almost increasing. Noting that

`2(t) ≥
m3(t)

m4(t)
≥ c−1

2 m3(t)

∫ 2t

t

1

m3(s)s
ds ≥ C

for d−1
G ≤ t < ∞ by assumption (iii), we find

|Iρf(x)| ≤ C

`(r−1)`1(r−1)

(
1

rn
+ `2(r

−1)J(x)

)
≤ C`2(r

−1)

`(r−1)`1(r−1)

(
1

rn
+ J(x)

)
.

Let

r = min{J(x)−1/n, dG}.

If r = J(x)−1/n, then we have by (7.3) and (7.6)

|Iρf(x)| ≤ C`2(J(x))

`(J(x))`1(J(x))
J(x) ≤ CΨ−1(J(x)).

If r = dG, then J(x) ≤ dG
−n and

|Iρf(x)| ≤ C.

Hence

Ψ

(
|Iρf(x)|

C

)
≤ J(x) + C.

To end the proof, we have only to see from Fubini’s theorem and assump-

tions (ii), (iii) that∫
G

J1(x) dx =

∫
G

(∫
{x∈G:|x−y|−δ<|f(y)|}

m1(|x − y|−1)

|x − y|n
dx

)
Φ(|f(y)|)
m2(|f(y)|)

dy

=

∫
G

nωn

(∫ |f(y)|1/δ

d−1
G

m1(t)

t
dt

)
Φ(|f(y)|)
m2(|f(y)|)

dy

≤ C

∫
G

m2(|f(y)|1/δ)
Φ(|f(y)|)
m2(|f(y)|)

dy ≤ C

∫
G

Φ(|f(y)|) dy ≤ C,
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and ∫
G

J2(x) dx

=

∫
G

(∫
{x∈G:|x−y|−δ≥|f(y)|}

1

m3(|x − y|−1)|x − y|n
dx

)
Φ(|f(y)|)m4(|f(y)|) dy

=

∫
G

nωn

(∫ ∞

|f(y)|1/δ

1

m3(t)t
dt

)
Φ(|f(y)|)m4(|f(y)|) dy

≤ C

∫
G

1

m4(|f(y)|1/δ)
Φ(|f(y)|)m4(|f(y)|) dy ≤ C

∫
G

Φ(|f(y)|) dy ≤ C.

Thus the conclusion follows. ¤

As special cases of Theorem 7.4, we can easily get the following corollaries.

Corollary 7.5. For α1 > 0 and β1 > 0, let

ρ(r) = (log(2 + r−1))−α1−1,

Φ(r) = r(log(c + r))β1 ,

Ψ(r) = r(log(c + r))α1+β1 ,

where c > 0 is chosen so that Φ, Ψ ∈ Y. Then

‖Iρf‖LΨ(G) ≤ A‖f‖LΦ(G).

In fact, for 0 < ε < min{α1, β1}, we have only to consider

`(r) = (log r)α1+1, `1(r) = (log r)β1 , `2(r) = log r,

m1(r) = (log r)ε−1, m2(r) = (log r)ε,

m3(r) = (log r)ε+1, m4(r) = (log r)ε

for large r > 0.

Corollary 7.6. For α1 > 0 and β2 > 0, let

ρ(r) = (log(2 + r−1))−α1−1,

Φ(r) = r(log log(c + r))β2 ,

Ψ(r) = r(log(c + r))α1(log log(c + r))β2−1,

where c > 0 is chosen so that Φ, Ψ ∈ Y. Then

‖Iρf‖LΨ(G) ≤ A‖f‖LΦ(G).
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For this, letting 0 < ε < min{α1, β2}, we have only to take

`(r) = (log r)α1+1, `1(r) = (log log r)β2 , `2(r) = (log r)(log log r),

m1(r) = (log r)−1(log log r)ε−1, m2(r) = (log log r)ε,

m3(r) = (log r)ε+1, m4(r) = (log r)ε

for large r > 0.

Corollary 7.7. For α2 > 0, β1 > 0 and β2 ∈ R, let

ρ(r) = (log(2 + r−1))−1(log log(4 + r−1))−α2−1,

Φ(r) = r(log(c + r))β1(log log(c + r))β2 ,

Ψ(r) = r(log(c + r))β1(log log(c + r))α2+β2 ,

where c > 0 is chosen so that Φ, Ψ ∈ Y. Then

‖Iρf‖LΨ(G) ≤ A‖f‖LΦ(G).

To show this, letting 0 < ε < min{α2, β1}, we may consider

`(r) = (log r)(log log r)α2+1, `1(r) = (log r)β1(log log r)β2 ,

`2(r) = (log r)(log log r),

m1(r) = (log r)ε−1, m2(r) = (log r)ε,

m3(r) = (log r)(log log r)ε+1, m4(r) = (log log r)ε

for large r > 0.

Corollary 7.8. For α2 > 0 and β2 > 0, let

ρ(r) = (log(2 + r−1))−1(log log(4 + r−1))−α2−1,

Φ(r) = r(log log(c + r))β2 ,

Ψ(r) = r(log log(c + r))α2+β2 ,

where c > 0 is chosen so that Φ, Ψ ∈ Y. Then

‖Iρf‖LΨ(G) ≤ A‖f‖LΦ(G).

To show this, letting 0 < ε < min{α2, β2}, we may consider

`(r) = (log r)(log log r)α2+1, `1(r) = (log log r)β2 ,

`2(r) = (log r)(log log r),

m1(r) = (log r)−1(log log r)ε−1, m2(r) = (log log r)ε,

m3(r) = (log r)(log log r)ε+1, m4(r) = (log log r)ε,
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for large r > 0.

Corollary 7.9. For α1 > 0 and β1 > 0, let

ρ(r) = (log(2 + r−1))−α1−1,

Φ(r) = r,

Ψ(r) = r(log(c + r))α1(log log(c + r))−β1−1,

where c > 0 is chosen so that Φ, Ψ ∈ Y. Then

‖Iρf‖LΨ(G) ≤ A‖f‖L1(G).

To show this, letting ε > 0, we may consider

`(r) = (log r)α1+1, `1(r) = 1, `2(r) = (log r)(log log r)β1+1,

m1(r) = (log r)−1(log log r)−β1−1, m2(r) = 1,

m3(r) = (log r)(log log r)ε+1, m4(r) = (log log r)ε

for large r > 0.
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