Approximate identities and Young type inequalities in variable Lebesgue-Orlicz spaces $L^{p(\cdot)}(\log L)^{q(\cdot)}$

Fumi-Yuki Maeda, Yoshihiro Mizuta and Takao Ohno

December 16, 2009

Abstract

Our aim in this paper is to deal with approximate identities in generalized Lebesgue spaces $L^{p(\cdot)}(\log L)^{q(\cdot)}\left(\mathbf{R}^{n}\right)$. As a related topic, we also study Young type inequalities for convolution with respect to norms in such spaces.

1 Introduction

Following Cruz-Uribe and Fiorenza [2], we consider two variable exponents $p(\cdot)$: $\mathbf{R}^{n} \rightarrow[1, \infty)$ and $q(\cdot): \mathbf{R}^{n} \rightarrow \mathbf{R}$, which are continuous functions. Letting $\Phi_{p(\cdot), q(\cdot)}(x, t)=t^{p(x)}\left(\log \left(c_{0}+t\right)\right)^{q(x)}$, we define the space $L^{p(\cdot)}(\log L)^{q(\cdot)}(\Omega)$ of all measurable functions f on an open set Ω such that

$$
\int_{\Omega} \Phi_{p(\cdot), q(\cdot)}\left(y, \frac{|f(y)|}{\lambda}\right) d y<\infty
$$

for some $\lambda>0$; here we assume
$(\Phi) \Phi_{p(\cdot), q(\cdot)}(x, \cdot)$ is convex on $[0, \infty)$ for every fixed $x \in \mathbf{R}^{n}$.
Note that (Φ) holds for some $c_{0} \geq e$ if and only if there is a positive constant K such that

$$
\begin{equation*}
K(p(x)-1)+q(x) \geq 0 \quad \text { for all } x \in \mathbf{R}^{n} \tag{1.1}
\end{equation*}
$$

(see Appendix). Further, we see from (Φ) that $t^{-1} \Phi_{p(\cdot), q(\cdot)}(x, t)$ is nondecreasing in t.

[^0]We define the norm

$$
\|f\|_{\Phi_{p(\cdot), q(\cdot), \Omega}}=\inf \left\{\lambda>0: \int_{\Omega} \Phi_{p(\cdot), q(\cdot)}\left(y, \frac{|f(y)|}{\lambda}\right) d y \leq 1\right\}
$$

for $f \in L^{p(\cdot)}(\log L)^{q(\cdot)}(\Omega)$. Note that $L^{p(\cdot)}(\log L)^{q(\cdot)}(\Omega)$ is a Musielak-Orlicz space [9]. Such spaces have been studied in $[2,8,10]$. In case $q(\cdot)=0$ on $\mathbf{R}^{n}, L^{p(\cdot)}(\log L)^{q(\cdot)}(\Omega)$ is denoted by $L^{p(\cdot)}(\Omega)([7])$.

We assume throughout the article that our variable exponents $p(\cdot)$ and $q(\cdot)$ are continuous functions on \mathbf{R}^{n} satisfying:
(p1) $1 \leq p_{-}:=\inf _{x \in \mathbf{R}^{n}} p(x) \leq \sup _{x \in \mathbf{R}^{n}} p(x)=: p_{+}<\infty$;
(p2) $|p(x)-p(y)| \leq \frac{C}{\log (e+1 /|x-y|)} \quad$ whenever $x \in \mathbf{R}^{n}$ and $y \in \mathbf{R}^{n}$;
(p3) $|p(x)-p(y)| \leq \frac{C}{\log (e+|x|)} \quad$ whenever $|y| \geq|x| / 2$;
(q1) $-\infty<q_{-}:=\inf _{x \in \mathbf{R}^{n}} q(x) \leq \sup _{x \in \mathbf{R}^{n}} q(x)=: q_{+}<\infty$;
(q2) $|q(x)-q(y)| \leq \frac{C}{\log (e+\log (e+1 /|x-y|))} \quad$ whenever $x \in \mathbf{R}^{n}$ and $y \in \mathbf{R}^{n}$ for a positive constant C.

We choose $p_{0} \geq 1$ as follows: we take $p_{0}=p_{-}$if $t^{-p_{-}} \Phi_{p(\cdot), q(\cdot)}(x, t)$ is uniformly almost increasing in t; more precisely, if there exists $C>0$ such that $s^{-p_{-}} \Phi_{p(\cdot), q(\cdot)}(x, s) \leq C t^{-p_{-}} \Phi_{p(\cdot), q(\cdot)}(x, t)$ whenever $0<s<t$ and $x \in \mathbf{R}^{n}$. Otherwise we choose $1 \leq p_{0}<p_{-}$. Then note that $t^{-p_{0}} \Phi_{p(\cdot), q(\cdot)}(x, t)$ is uniformly almost increasing in t in any case.

Let ϕ be an integrable function on \mathbf{R}^{n}. For each $t>0$, define the function ϕ_{t} by $\phi_{t}(x)=t^{-n} \phi(x / t)$. Note that by a change of variables, $\left\|\phi_{t}\right\|_{L^{1}, \mathbf{R}^{n}}=\|\phi\|_{L^{1}, \mathbf{R}^{n}}$. We say that the family $\left\{\phi_{t}\right\}$ is an approximate identity if $\int_{\mathbf{R}^{n}} \phi(x) d x=1$. Define the radial majorant of ϕ to be the function

$$
\hat{\phi}(x)=\sup _{|y| \geq|x|}|\phi(y)| .
$$

If $\hat{\phi}$ is integrable, we say that the family $\left\{\phi_{t}\right\}$ is of potential-type.
Cruz-Uribe and Fiorenza [1] proved the following result:
Theorem A. Let $\left\{\phi_{t}\right\}$ be an approximate identity. Suppose that either:
(1) $\left\{\phi_{t}\right\}$ is of potential-type, or
(2) $\phi \in L^{\left(p_{-}\right)^{\prime}}\left(\mathbf{R}^{n}\right)$ and has compact support.

Then

$$
\sup _{0<t \leq 1}\left\|\phi_{t} * f\right\|_{L^{p(\cdot)}, \mathbf{R}^{n}} \leq C\|f\|_{L^{p(\cdot)}, \mathbf{R}^{n}}
$$

and

$$
\lim _{t \rightarrow+0}\left\|\phi_{t} * f-f\right\|_{L^{p(\cdot)}, \mathbf{R}^{n}}=0
$$

for all $f \in L^{p(\cdot)}\left(\mathbf{R}^{n}\right)$.
Our aim in this note is to extend their result to the space $L^{p(\cdot)}(\log L)^{q(\cdot)}(\Omega)$ of two variable exponents.

THEOREM 1.1. Let $\left\{\phi_{t}\right\}$ be a potential-type approximate identity. If $f \in L^{p(\cdot)}(\log L)^{q(\cdot)}\left(\mathbf{R}^{n}\right)$, then $\left\{\phi_{t} * f\right\}$ converges to f in $L^{p(\cdot)}(\log L)^{q(\cdot)}\left(\mathbf{R}^{n}\right)$:

$$
\lim _{t \rightarrow 0}\left\|\phi_{t} * f-f\right\|_{\Phi_{p(\cdot), q(\cdot)}, \mathbf{R}^{n}}=0
$$

Theorem 1.2. Let $\left\{\phi_{t}\right\}$ be an approximate identity. Suppose that $\phi \in L^{\left(p_{0}\right)^{\prime}}\left(\mathbf{R}^{n}\right)$ and has compact support. If $f \in L^{p(\cdot)}(\log L)^{q(\cdot)}\left(\mathbf{R}^{n}\right)$, then $\left\{\phi_{t} * f\right\}$ converges to f in $L^{p(\cdot)}(\log L)^{q(\cdot)}\left(\mathbf{R}^{n}\right)$:

$$
\lim _{t \rightarrow 0}\left\|\phi_{t} * f-f\right\|_{\Phi_{p(\cdot), q(\cdot)}, \mathbf{R}^{n}}=0
$$

We show by an example that the conditions on ϕ are necessary; see Remarks 3.5 and 3.6 below.

Finally, in Section 4, we give some Young type inequalities for convolution with respect to the norms in $L^{p(\cdot)}(\log L)^{q(\cdot)}\left(\mathbf{R}^{n}\right)$.

2 The case of potential-type

Throughout this paper, let C denote various positive constants independent of the variables in question.

Let us begin with the following result due to Stein [11].
Lemma 2.1. Let $1 \leq p<\infty$ and $\left\{\phi_{t}\right\}$ be a potential-type approximate identity. Then for every $f \in L^{p}\left(\mathbf{R}^{n}\right)$, $\left\{\phi_{t} * f\right\}$ converges to f in $L^{p}\left(\mathbf{R}^{n}\right)$.

We denote by $B(x, r)$ the open ball centered at $x \in \mathbf{R}^{n}$ and with radius $r>0$. For a measurable set E, we denote by $|E|$ the Lebesgue measure of E.

The following is due to Lemma 2.6 in [8].
Lemma 2.2. Let f be a nonnegative measurable function on \mathbf{R}^{n} with $\|f\|_{\Phi_{p(\cdot), q(\cdot)}, \mathbf{R}^{n}} \leq$ 1 such that $f(x) \geq 1$ or $f(x)=0$ for each $x \in \mathbf{R}^{n}$. Set

$$
J=J(x, r, f)=\frac{1}{|B(x, r)|} \int_{B(x, r)} f(y) d y
$$

and

$$
L=L(x, r, f)=\frac{1}{|B(x, r)|} \int_{B(x, r)} \Phi_{p(\cdot), q(\cdot)}(y, f(y)) d y
$$

Then

$$
J \leq C L^{1 / p(x)}\left(\log \left(c_{0}+L\right)\right)^{-q(x) / p(x)},
$$

where $C>0$ does not depend on x, r, f.
Further we need the following result.
Lemma 2.3. Let f be a nonnegative measurable function on \mathbf{R}^{n} such that $(1+$ $|y|)^{-n-1} \leq f(y) \leq 1$ or $f(y)=0$ for each $y \in \mathbf{R}^{n}$. Set

$$
J=J(x, r, f)=\frac{1}{|B(x, r)|} \int_{B(x, r)} f(y) d y
$$

and

$$
L=L(x, r, f)=\frac{1}{|B(x, r)|} \int_{B(x, r)} \Phi_{p(\cdot), q(\cdot)}(y, f(y)) d y
$$

Then

$$
J \leq C\left\{L^{1 / p(x)}+(1+|x|)^{-n-1}\right\},
$$

where $C>0$ does not depend on x, r, f.
Proof. We have by Jensen's inequality

$$
\begin{aligned}
J & \leq\left(\frac{1}{|B(x, r)|} \int_{B(x, r)} f(y)^{p(x)} d y\right)^{1 / p(x)} \\
& \leq\left(\frac{1}{|B(x, r)|} \int_{B(x, r) \cap B(0,|x| / 2)} f(y)^{p(x)} d y\right)^{1 / p(x)}+\left(\frac{1}{|B(x, r)|} \int_{B(x, r) \backslash B(0,|x| / 2)} f(y)^{p(x)} d y\right)^{1 / p(x)} \\
& =J_{1}+J_{2},
\end{aligned}
$$

We see from (p3) that

$$
J_{1} \leq C\left(\frac{1}{|B(x, r)|} \int_{B(x, r) \cap B(0,|x| / 2)} f(y)^{p(y)} d y\right)^{1 / p(x)}
$$

Similarly, setting $E_{2}=\left\{y \in \mathbf{R}^{n}: f(y) \geq(1+|x|)^{-n-1}\right\}$, we see from (p3) that

$$
\begin{aligned}
J_{2} \leq & C\left(\frac{1}{|B(x, r)|} \int_{\{B(x, r) \backslash B(0,|x| / 2)\} \cap E_{2}} f(y)^{p(y)} d y\right)^{1 / p(x)} \\
& +\left(\frac{1}{|B(x, r)|} \int_{\{B(x, r) \backslash B(0,|x| / 2)\} \backslash E_{2}}(1+|x|)^{-p(x)(n+1)} d y\right)^{1 / p(x)} \\
\leq & C\left\{\left(\frac{1}{|B(x, r)|} \int_{B(x, r)} f(y)^{p(y)} d y\right)^{1 / p(x)}+(1+|x|)^{-(n+1)}\right\} .
\end{aligned}
$$

Since $f(y) \leq 1, f(y)^{p(y)} \leq C \Phi_{p(\cdot), q(\cdot)}(y, f(y))$. Hence, we have the required estimate.

By using Lemmas 2.2 and 2.3, we show the following theorem.
Theorem 2.4. If $\left\{\phi_{t}\right\}$ is of potential-type, then

$$
\left\|\phi_{t} * f\right\|_{\Phi_{p(\cdot), q(\cdot)}, \mathbf{R}^{n}} \leq C\|\hat{\phi}\|_{L^{1}, \mathbf{R}^{n}}\|f\|_{\Phi_{p(\cdot), q(\cdot)}, \mathbf{R}^{n}}
$$

for all $t>0$ and $f \in L^{p(\cdot)}(\log L)^{q(\cdot)}\left(\mathbf{R}^{n}\right)$.
Proof. Suppose $\|\hat{\phi}\|_{L^{1}, \mathbf{R}^{n}}=1$ and take a nonnegative measurable function f on \mathbf{R}^{n} such that $\|f\|_{\Phi_{p(\cdot), q(\cdot)}, \mathbf{R}^{n}} \leq 1$. Write

$$
\begin{aligned}
f & =f \chi_{\left\{y \in \mathbf{R}^{n}: f(y) \geq 1\right\}}+f \chi_{\left\{y \in \mathbf{R}^{n}:(1+|y|)^{-n-1} \leq f(y)<1\right\}}+f \chi_{\left\{y \in \mathbf{R}^{n}: f(y) \leq(1+|y|)^{-n-1}\right\}} \\
& =f_{1}+f_{2}+f_{3},
\end{aligned}
$$

where χ_{E} denotes the characteristic function of a measurable set $E \subset \mathbf{R}^{n}$.
Since $\hat{\phi}_{t}$ is a radial function, we write $\hat{\phi}_{t}(r)$ for $\hat{\phi}_{t}(x)$ when $|x|=r$. First note that

$$
\begin{aligned}
\left|\phi_{t} * f(x)\right| & \leq \int_{\mathbf{R}^{n}} \hat{\phi}_{t}(|x-y|) f_{1}(y) d y \\
& =\int_{0}^{\infty}\left(\frac{1}{|B(x, r)|} \int_{B(x, r)} f_{1}(y) d y\right)|B(x, r)| d\left(-\hat{\phi}_{t}(r)\right)
\end{aligned}
$$

so that Jensen's inequality and Lemma 2.2 yield

$$
\begin{aligned}
& \Phi_{p(\cdot), q(\cdot)}\left(x,\left|\phi_{t} * f_{1}(x)\right|\right) \\
\leq & \int_{0}^{\infty} \Phi_{p(\cdot), q(\cdot)}\left(x, \frac{1}{|B(x, r)|} \int_{B(x, r)} f_{1}(y) d y\right)|B(x, r)| d\left(-\hat{\phi}_{t}(r)\right) \\
\leq & C \int_{0}^{\infty}\left(\frac{1}{|B(x, r)|} \int_{B(x, r)} \Phi_{p(\cdot), q(\cdot)}\left(y, f_{1}(y)\right) d y\right)|B(x, r)| d\left(-\hat{\phi}_{t}(r)\right) \\
= & C\left(\hat{\phi}_{t} * g\right)(x)
\end{aligned}
$$

where $g(y)=\Phi_{p(\cdot), q(\cdot)}(y, f(y))$. The usual Young inequality for convolution gives

$$
\begin{aligned}
\int_{\mathbf{R}^{n}} \Phi_{p(\cdot), q(\cdot)}\left(x,\left|\phi_{t} * f_{1}(x)\right|\right) d x & \leq C \int_{\mathbf{R}^{n}}\left(\hat{\phi}_{t} * g\right)(x) d x \\
& \leq C\left\|\hat{\phi}_{t}\right\|_{L^{1}, \mathbf{R}^{n}}\|g\|_{L^{1}, \mathbf{R}^{n}} \leq C
\end{aligned}
$$

Similarly, noting that $\frac{1}{|B(x, r)|} \int_{B(x, r)} f_{2}(y) d y \leq 1$ and applying Lemma 2.3, we derive the same result for f_{2}.

Finally, noting that $\left|\phi_{t} * f_{3}\right| \leq C\left\|\phi_{t}\right\|_{L^{1}, \mathbf{R}^{n}} \leq C$, we obtain

$$
\begin{aligned}
\int_{\mathbf{R}^{n}} \Phi_{p(\cdot), q(\cdot)}\left(x,\left|\phi_{t} * f_{3}(x)\right|\right) d x & \leq C \int_{\mathbf{R}^{n}}\left|\phi_{t} * f_{3}(x)\right| d x \\
& \leq C\left\|\phi_{t}\right\|_{L^{1}, \mathbf{R}^{n}}\left\|f_{3}\right\|_{L^{1}, \mathbf{R}^{n}} \leq C
\end{aligned}
$$

as required.

We are now ready to prove Theorem 1.1.
Proof of Theorem 1.1. Given $\varepsilon>0$, we find a bounded function g in $L^{p(\cdot)}(\log L)^{q(\cdot)}\left(\mathbf{R}^{n}\right)$ with compact support such that $\|f-g\|_{\Phi_{p(\cdot), q(\cdot)}, \mathbf{R}^{n}}<\varepsilon$. By Theorem 2.4 we have

$$
\begin{aligned}
& \left\|\phi_{t} * f-f\right\|_{\Phi_{p(\cdot), q(\cdot)}, \mathbf{R}^{n}} \\
\leq & \left\|\phi_{t} *(f-g)\right\|_{\Phi_{p(\cdot), q(\cdot)}, \mathbf{R}^{n}}+\left\|\phi_{t} * g-g\right\|_{\Phi_{p(\cdot), q(\cdot)}, \mathbf{R}^{n}}+\|f-g\|_{\Phi_{p(\cdot), q(\cdot)}, \mathbf{R}^{n}} \\
\leq & C \varepsilon+\left\|\phi_{t} * g-g\right\|_{\Phi_{p(\cdot), q(\cdot)}, \mathbf{R}^{n}} .
\end{aligned}
$$

Since $\left|\phi_{t} * g\right| \leq\|g\|_{L^{\infty}, \mathbf{R}^{n}}$,

$$
\left\|\phi_{t} * g-g\right\|_{\Phi_{p(\cdot), q(\cdot)}, \mathbf{R}^{n}} \leq C^{\prime}\left\|\phi_{t} * g-g\right\|_{L^{1}, \mathbf{R}^{n}} \rightarrow 0
$$

by Lemma 2.1. (Here C^{\prime} depends on $\|g\|_{L^{\infty}, \mathbf{R}^{n}}$). Hence

$$
\limsup _{t \rightarrow 0}\left\|\phi_{t} * f-f\right\|_{\Phi_{p(\cdot), q(\cdot)}, \mathbf{R}^{n}} \leq C \varepsilon
$$

which completes the proof.
As another application of Lemmas 2.2 and 2.3, we can prove the following result, which is an extension of [4, Theorem 1.5] and [8, Theorem 2.7] (see also [6]).

Let $M f$ be the Hardy-Littlewood maximal function of f.
Proposition 2.5. Suppose $p_{-}>1$. Then the operator M is bounded from $L^{p(\cdot)}(\log L)^{q(\cdot)}\left(\mathbf{R}^{n}\right)$ to $L^{p(\cdot)}(\log L)^{q(\cdot)}\left(\mathbf{R}^{n}\right)$.

Proof. Let f be a nonnegative measurable function on \mathbf{R}^{n} such that $\|f\|_{\Phi_{p(\cdot), q(\cdot)}, \mathbf{R}^{n}} \leq$ 1 and write $f=f_{1}+f_{2}+f_{3}$ as in the proof of Theorem 2.4. Take $1<p_{1}<p_{-}$ and apply Lemmas 2.2 and 2.3 with $p(\cdot)$ and $q(\cdot)$ replaced by $p(\cdot) / p_{1}$ and $q(\cdot) / p_{1}$, respectively. Then

$$
\Phi_{p(\cdot), q(\cdot)}\left(x, M f_{1}(x)\right) \leq C\left[M g_{1}(x)\right]^{p_{1}}
$$

and

$$
\Phi_{p(\cdot), q(\cdot)}\left(x, M f_{2}(x)\right) \leq C\left\{\left[M g_{1}(x)\right]^{p_{1}}+(1+|x|)^{-n-1}\right\},
$$

where $g_{1}(y)=\Phi_{p(\cdot) / p_{1}, q(\cdot) / p_{1}}(y, f(y))$. As to f_{3}, we have

$$
\Phi_{p(\cdot), q(\cdot)}\left(x, M f_{3}(x)\right) \leq C\left[M f_{3}(x)\right]^{p_{1}}
$$

Then the boundedness of the maximal operator in $L^{p_{1}}\left(\mathbf{R}^{n}\right)$ proves the proposition.

Remark 2.6. If $p_{-}>1$, then the function $\Phi_{p(\cdot), q(\cdot)}$ is a proper N-function and our Proposition 2.5 implies that this function is of class \mathcal{A} in the sense of Diening [5] (see [5, Lemma 3.2]). It would be an interesting problem to see whether "class \mathcal{A} " is also a sufficient condition or not for the boundedness of M on $L^{p(\cdot)}(\log L)^{q(\cdot)}\left(\mathbf{R}^{n}\right)$.

3 The case of compact support

We know the following result due to Zo [12]; see also [1, Theorem 2.2].
Lemma 3.1. Let $1 \leq p<\infty, 1 / p+1 / p^{\prime}=1$ and $\left\{\phi_{t}\right\}$ be an approximate identity. Suppose that $\phi \in L^{p^{\prime}}\left(\mathbf{R}^{n}\right)$ has compact support. Then for every $f \in L^{p}\left(\mathbf{R}^{n}\right)$, $\left\{\phi_{t} * f\right\}$ converges to f pointwise almost everywhere.

Set

$$
\bar{p}(x)=p(x) / p_{0} \quad \text { and } \quad \bar{q}(x)=q(x) / p_{0}
$$

recall that $p_{0} \in\left[1, p_{-}\right]$is chosen such that $t^{-p_{0}} \Phi_{p(\cdot), q(\cdot)}(x, t)$ is uniformly almost increasing in t.

For a proof of Theorem 1.2, the following is a key lemma.
Lemma 3.2. Let f be a nonnegative measurable function on \mathbf{R}^{n} with $\|f\|_{\Phi_{p(\cdot), q(\cdot),}, \mathbf{R}^{n}} \leq$ 1 such that $f(x) \geq 1$ or $f(x)=0$ for each $x \in \mathbf{R}^{n}$ and let ϕ have compact support in $B(0, R)$ with $\|\phi\|_{L^{\left(p_{0}\right)^{\prime}}, \mathbf{R}^{n}} \leq 1$. Set

$$
F=F(x, t, f)=\left|\phi_{t} * f(x)\right|
$$

and

$$
G=G(x, t, f)=\int_{\mathbf{R}^{n}}\left|\phi_{t}(x-y)\right| \Phi_{\bar{p}(\cdot), \bar{q}(\cdot)}(y, f(y)) d y
$$

Then

$$
F \leq C G^{1 / \bar{p}(x)}\left(\log \left(c_{0}+G\right)\right)^{-\bar{q}(x) / \bar{p}(x)}
$$

for all $0<t \leq 1$, where $C>0$ depends on R.
Proof. Let f be a nonnegative measurable function on \mathbf{R}^{n} with $\|f\|_{\Phi_{p(\cdot), q(\cdot)}, \mathbf{R}^{n}} \leq 1$ such that $f(x) \geq 1$ or $f(x)=0$ for each $x \in \mathbf{R}^{n}$ and let ϕ have compact support in $B(0, R)$ with $\|\phi\|_{L^{\left(p_{0}\right)^{\prime}}, \mathbf{R}^{n}} \leq 1$. By Hölder's inequality, we have

$$
G \leq\left\|\phi_{t}\right\|_{L^{\left(p_{0}\right)^{\prime}}, \mathbf{R}^{n}}\left(\int_{\mathbf{R}^{n}} \Phi_{p(\cdot), q(\cdot)}(y, f(y)) d y\right)^{1 / p_{0}} \leq t^{-n / p_{0}}
$$

First consider the case when $G \geq 1$. Since $G \leq t^{-n / p_{0}}$, for $y \in B(x, t R)$ we have by (p2)

$$
G^{-p(y)} \leq G^{-p(x)+C / \log \left(e+(t R)^{-1}\right)} \leq C G^{-p(x)}
$$

and by (q2)

$$
\left(\log \left(c_{0}+G\right)\right)^{q(y)} \leq C\left(\log \left(c_{0}+G\right)\right)^{q(x)}
$$

Hence it follows from the choice of p_{0} that

$$
\begin{aligned}
F \leq & G^{1 / \bar{p}(x)}\left(\log \left(c_{0}+G\right)\right)^{-\bar{q}(x) / \bar{p}(x)} \int_{\mathbf{R}^{n}}\left|\phi_{t}(x-y)\right| d y \\
& +C \int_{\mathbf{R}^{n}}\left|\phi_{t}(x-y)\right| f(y)\left\{\frac{f(y)}{G^{1 / \bar{p}(x)}\left(\log \left(c_{0}+G\right)\right)^{-\bar{q}(x) / \bar{p}(x)}}\right\}^{\bar{p}(y)-1} \\
& \times\left\{\frac{\log \left(c_{0}+f(y)\right)}{\log \left(c_{0}+G^{1 / \bar{p}(x)}\left(\log \left(c_{0}+G\right)\right)^{-\bar{q}(x) / \bar{p}(x)}\right)}\right\}^{\bar{q}(y)} d y \\
\leq & C G^{1 / \bar{p}(x)}\left(\log \left(c_{0}+G\right)\right)^{-\bar{q}(x) / \bar{p}(x)}
\end{aligned}
$$

(cf. the proof of [8, Lemma 2.6]).
In the case $G<1$, noting from the choice of p_{0} that $f(y) \leq C \Phi_{\bar{p}(\cdot), \bar{q}(\cdot)}(y, f(y))$ for $y \in \mathbf{R}^{n}$, we find

$$
F \leq C G \leq C G^{1 / \bar{p}(x)} \leq C G^{1 / \bar{p}(x)}\left(\log \left(c_{0}+G\right)\right)^{-\bar{q}(x) / \bar{p}(x)}
$$

Now the result follows.
Lemma 3.3. Suppose that $\|\phi\|_{L^{1}, \mathbf{R}^{n}} \leq 1$. Let f be a nonnegative measurable function on \mathbf{R}^{n} with $\|f\|_{\Phi_{p(\cdot), q(\cdot)}, \mathbf{R}^{n}} \leq 1$. Set

$$
I=I(x, t, f)=\int_{\left\{y \in \mathbf{R}^{n}:|y|>|x| / 2\right\}}\left|\phi_{t}(x-y)\right| f(y) d y
$$

and

$$
H=H(x, t, f)=\int_{\mathbf{R}^{n}}\left|\phi_{t}(x-y)\right| \Phi_{p(\cdot), q(\cdot)}(y, f(y)) d y
$$

If $A>0$ and $H \leq H_{0}$, then

$$
I \leq C\left(H^{1 / p(x)}+|x|^{-A / p(x)}\right)
$$

for $|x|>1$ and $0<t \leq 1$, where $C>0$ depends on A and H_{0}.
Proof. Suppose that $\|\phi\|_{L^{1}, \mathbf{R}^{n}} \leq 1$. Let f be a nonnegative measurable function on \mathbf{R}^{n} with $\|f\|_{\Phi_{p(\cdot), q(\cdot)}, \mathbf{R}^{n}} \leq 1$.

Let $|x|>1$. In the case $H_{0} \geq H \geq|x|^{-A}$ with $A>0$, we have by (p3)

$$
H^{-p(y)} \leq C H^{-p(x)-C / \log (e+|x|)} \leq C H^{-p(x)}
$$

for $|y| \geq|x| / 2$. Hence we find by (Φ)

$$
\begin{aligned}
& I \leq \leq\left\{H^{1 / p(x)}+\int_{\left\{y \in \mathbf{R}^{n}:|y|>|x| / 2\right\}}\left|\phi_{t}(x-y)\right| f(y)\right. \\
&\left.\times\left\{\frac{f(y)}{H^{1 / p(x)}}\right\}^{p(y)-1}\left\{\frac{\log \left(c_{0}+f(y)\right)}{\log \left(c_{0}+H^{1 / p(x)}\right)}\right\}^{q(y)} d y\right\} \\
& \leq C H^{1 / p(x)} .
\end{aligned}
$$

Next note from (p3) that

$$
|x|^{p(y)} \leq|x|^{p(x)+C / \log (e+|x|)} \leq C|x|^{p(x)}
$$

for $|y| \geq|x| / 2$. Hence, when $H \leq|x|^{-A}$, we obtain by (Φ)

$$
\begin{aligned}
I \leq & \leq\left\{|x|^{-A / p(x)}+\int_{\left\{y \in \mathbf{R}^{n}:|y|>|x| / 2\right\}}\left|\phi_{t}(x-y)\right| f(y)\right. \\
& \left.\times\left\{\frac{f(y)}{|x|^{-A / p(x)}}\right\}^{p(y)-1}\left\{\frac{\log \left(c_{0}+f(y)\right)}{\log \left(c_{0}+|x|^{-A / p(x)}\right)}\right\}^{q(y)} d y\right\} \\
& \leq C|x|^{-A / p(x)}
\end{aligned}
$$

which completes the proof.
Theorem 3.4. Suppose that $\phi \in L^{\left(p_{0}\right)^{\prime}}\left(\mathbf{R}^{n}\right)$ has compact support in $B(0, R)$. Then

$$
\left\|\phi_{t} * f\right\|_{\Phi_{p(\cdot), q(\cdot)}, \mathbf{R}^{n}} \leq C\|\phi\|_{L^{\left(p_{0}\right)^{\prime}}, \mathbf{R}^{n}}\|f\|_{\Phi_{p(\cdot), q(\cdot)}, \mathbf{R}^{n}}
$$

for all $0<t \leq 1$ and $f \in L^{p(\cdot)}(\log L)^{q(\cdot)}\left(\mathbf{R}^{n}\right)$, where $C>0$ depends on R.
Proof. Let f be a nonnegative measurable function on \mathbf{R}^{n} such that $\|f\|_{\Phi_{p(\cdot), q(\cdot)}, \mathbf{R}^{n}} \leq$ 1 and let ϕ have compact support in $B(0, R)$ with $\|\phi\|_{L^{\left(p_{0}\right)^{\prime}}, \mathbf{R}^{n}} \leq 1$. Write

$$
f=f \chi_{\left\{y \in \mathbf{R}^{n}: f(y) \geq 1\right\}}+f \chi_{\left\{y \in \mathbf{R}^{n}: f(y)<1\right\}}=f_{1}+f_{2} .
$$

We have by Lemma 3.2,

$$
\left|\phi_{t} * f_{1}(x)\right| \leq C\left(\left|\phi_{t}\right| * g(x)\right)^{p_{0} / p(x)}\left(\log \left(c_{0}+\left|\phi_{t}\right| * g(x)\right)\right)^{-q(x) / p(x)}
$$

where $g(y)=\Phi_{\bar{p}(\cdot), \bar{q} \cdot(\cdot)}(y, f(y))=\Phi_{p(\cdot), q(\cdot)}(y, f(y))^{1 / p_{0}}$, so that

$$
\begin{equation*}
\Phi_{p(\cdot), q(\cdot)}\left(x,\left|\phi_{t} * f_{1}(x)\right|\right) \leq C\left(\left|\phi_{t}\right| * g(x)\right)^{p_{0}} . \tag{3.1}
\end{equation*}
$$

Hence, since $g \in L^{p_{0}}\left(\mathbf{R}^{n}\right)$, the usual Young inequality for convolution gives

$$
\begin{aligned}
\int_{\mathbf{R}^{n}} \Phi_{p(\cdot), q(\cdot)}\left(x,\left|\phi_{t} * f_{1}(x)\right|\right) d x & \leq C \int_{\mathbf{R}^{n}}\left(\left|\phi_{t}\right| * g(x)\right)^{p_{0}} d x \\
& \leq C\left(\left\|\phi_{t}\right\|_{L^{1}, \mathbf{R}^{n}}\|g\|_{L^{p_{0}}, \mathbf{R}^{n}}\right)^{p_{0}} \leq C .
\end{aligned}
$$

Next we are concerned with f_{2}. Write

$$
f_{2}=f_{2} \chi_{B(0, R)}+f_{2} \chi_{\mathbf{R}^{n} \backslash B(0, R)}=f_{2}^{\prime}+f_{2}^{\prime \prime}
$$

Since $\left|\phi_{t} * f_{2}(x)\right| \leq C$ on \mathbf{R}^{n}, we have

$$
\int_{B(0,2 R)} \Phi_{p(\cdot), q(\cdot)}\left(x,\left|\phi_{t} * f_{2}(x)\right|\right) d x \leq C
$$

Further, noting that $\phi_{t} * f_{2}^{\prime}=0$ outside $B(0,2 R)$, we find

$$
\int_{\mathbf{R}^{n}} \Phi_{p(\cdot), q(\cdot)}\left(x,\left|\phi_{t} * f_{2}^{\prime}(x)\right|\right) d x \leq C
$$

Therefore it suffices to prove

$$
\int_{\mathbf{R}^{n} \backslash B(0,2 R)} \Phi_{p(\cdot), q(\cdot)}\left(x,\left|\phi_{t} * f_{2}^{\prime \prime}(x)\right|\right) d x \leq C .
$$

Thus, in the rest of the proof, we may assume that $0 \leq f<1$ on \mathbf{R}^{n} and $f=0$ on $B(0, R)$. Note that

$$
\int_{B(0,|x| / 2)} \phi_{t}(x-y) f(y) d y=0
$$

for $|x|>2 R$. Hence, applying Lemma 3.3, we have

$$
\left|\phi_{t} * f(x)\right|^{p(x)} \leq C\left(\left|\phi_{t}\right| * h(x)+|x|^{-A}\right)
$$

for $|x|>2 R$, where $h(y)=\Phi_{p(\cdot), q(\cdot)}(y, f(y))$. Thus the integration yields

$$
\int_{\mathbf{R}^{n} \backslash B(0,2 R)}\left|\phi_{t} * f(x)\right|^{p(x)} d x \leq C
$$

which completes the proof.
We are now ready to prove Theorem 1.2.
Proof of Theorem 1.2. Given $\varepsilon>0$, choose a bounded function g with compact support such that $\|f-g\|_{\Phi_{p(\cdot), q(\cdot)}, \mathbf{R}^{n}}<\varepsilon$. As in the proof of Theorem 1.1, using Theorem 3.4 this time, we have

$$
\left\|\phi_{t} * f-f\right\|_{\Phi_{p(\cdot), q(\cdot)}, \mathbf{R}^{n}} \leq C \varepsilon+\left\|\phi_{t} * g-g\right\|_{\Phi_{p(\cdot), q(\cdot)}, \mathbf{R}^{n}}
$$

Obviously, $g \in L^{p_{0}}\left(\mathbf{R}^{n}\right)$. Hence by Lemma 3.1, $\phi_{t} * g \rightarrow g$ almost everywhere in \mathbf{R}^{n}. Since there is a compact set S containing all the supports of $\phi_{t} * g$,

$$
\left\|\phi_{t} * g-g\right\|_{\Phi_{p(\cdot), q(\cdot)}, \mathbf{R}^{n}} \leq C^{\prime}\left\|\phi_{t} * g-g\right\|_{L^{p++1}, \mathbf{R}^{n}}
$$

with C^{\prime} depending on $|S|$, and the Lebesgue convergence theorem implies $\| \phi_{t} * g$ $g \|_{L^{p++1}, \mathbf{R}^{n}} \rightarrow 0$ as $t \rightarrow \infty$. Hence

$$
\limsup _{t \rightarrow 0}\left\|\phi_{t} * f-f\right\|_{\Phi_{p(\cdot), q(\cdot)}, \mathbf{R}^{n}} \leq C \varepsilon
$$

which completes the proof.

Remark 3.5. In Theorem 1.2 (and in Theorem A), the condition $\phi \in L^{\left(p_{-}\right)^{\prime}}\left(\mathbf{R}^{n}\right)$ cannot be weakened to $\phi \in L^{q}\left(\mathbf{R}^{n}\right)$ for $1 \leq q<\left(p_{-}\right)^{\prime}$. In fact, for given $p_{1}>1$ and $1 \leq q<\left(p_{1}\right)^{\prime}$, we can find a smooth exponent $p(\cdot)$ on \mathbf{R}^{n} such that $p_{-}=p_{1}$, $f \in L^{p(\cdot)}\left(\mathbf{R}^{n}\right)$ and $\phi \in L^{q}\left(\mathbf{R}^{n}\right)$ having compact support for which

$$
\|\phi * f\|_{L^{p(\cdot)}, \mathbf{R}^{n}}=\infty
$$

For this, let $a \in \mathbf{R}^{n}$ be a fixed point with $|a|>1$ and let p_{2} satisfy

$$
\frac{1}{\left(p_{1}\right)^{\prime}}+\frac{1}{p_{2}}<\frac{1}{q} .
$$

Then choose a smooth exponent $p(\cdot)$ on \mathbf{R}^{n} such that

$$
p(x)=p_{1} \text { for } x \in B(0,1 / 2), \quad p(x)=p_{2} \text { for } x \in B(a, 1 / 2)
$$

$p_{-}=p_{1}$ and $p(x)=$ const. outside $B(0,|a|+1)$. Take

$$
\phi_{j}=j^{n / q} \chi_{B\left(a, j^{-1}\right)} \quad \text { and } \quad f_{j}=j^{n / p_{1}} \chi_{B\left(0, j^{-1}\right)}, \quad j=2,3, \ldots
$$

Then

$$
\left\|\phi_{j}\right\|_{L^{q}, \mathbf{R}^{n}}=C<\infty \quad \text { and } \quad\left\|f_{j}\right\|_{L^{p(\cdot)}, \mathbf{R}^{n}}=\left\|f_{j}\right\|_{L^{p_{1}, B(0,1 / 2)}}=C<\infty .
$$

Note that if $x \in B\left(a, j^{-1}\right)$ then

$$
\phi_{j} * f_{j}(x)=j^{n / q+n / p_{1}}\left|B\left(a, j^{-1}\right) \cap B\left(x, j^{-1}\right)\right| \geq C j^{n / q+n / p_{1}} j^{-n},
$$

so that

$$
\begin{aligned}
\int_{\mathbf{R}^{n}}\left\{\phi_{j} * f_{j}(x)\right\}^{p(x)} d x & \geq \int_{B\left(a, j^{-1}\right)}\left\{\phi_{j} * f_{j}(x)\right\}^{p(x)} d x \\
& \geq C j^{p_{2}\left(n / q+n / p_{1}-n\right)} j^{-n} \\
& =C j^{p_{2} n\left(1 / q-1 /\left(p_{1}\right)^{\prime}-1 / p_{2}\right)}
\end{aligned}
$$

Now consider

$$
\phi=\sum_{j=2}^{\infty} j^{-2} \phi_{2 j} \quad \text { and } \quad f=\sum_{j=2}^{\infty} j^{-2} f_{2 j} .
$$

Then $\phi \in L^{q}\left(\mathbf{R}^{n}\right)$ and $f \in L^{p(\cdot)}\left(\mathbf{R}^{n}\right)$. On the other hand,

$$
\begin{aligned}
\int_{\mathbf{R}^{n}}\{\phi * f(x)\}^{p(x)} d x & \geq j^{-4} \int_{\mathbf{R}^{n}}\left\{\phi_{2^{j}} * f_{2^{j}}(x)\right\}^{p(x)} d x \\
& \geq C j^{-4} 2^{p_{2} n j\left(1 / q-1 /\left(p_{1}\right)^{\prime}-1 / p_{2}\right)} \rightarrow \infty
\end{aligned}
$$

as $j \rightarrow \infty$. Hence, $\|\phi * f\|_{L^{p(\cdot)}, \mathbf{R}^{n}}=\infty$.

Remark 3.6. Cruz-Uribe and Fiorenza [1] gave an example showing that it can occur

$$
\limsup _{t \rightarrow 0}\left\|\phi_{t} * f\right\|_{L^{p(\cdot)}, \mathbf{R}}=\infty
$$

for $f \in L^{p(\cdot)}(\mathbf{R})$ when ϕ does not have compact support.
By modifying their example, we can also find $p(\cdot)$ and $\phi \in L^{\left(p_{-}\right)^{\prime}}(\mathbf{R})$, whose support is not compact, such that

$$
\|\phi * f\|_{L^{p(\cdot)}, \mathbf{R}} \leq C\|f\|_{L^{p(\cdot)}, \mathbf{R}}
$$

does not hold, namely there exists $f_{N}(N=1,2, \ldots)$ such that $\left\|f_{N}\right\|_{L^{p(\cdot)}, \mathbf{R}} \leq 1$ and

$$
\lim _{N \rightarrow \infty}\left\|\phi * f_{N}\right\|_{L^{p(\cdot)}, \mathbf{R}}=\infty
$$

For this purpose, choose $p_{1}>1, p_{2}>p_{1}$ and $a>1$ such that

$$
-p_{1} / p_{2}-a p_{1}+2>0
$$

and let $p(\cdot)$ be a smooth variable exponent on \mathbf{R} such that

$$
p(x)=p_{1} \text { for } x \leq 0, \quad p(x)=p_{2} \text { for } x \geq 1
$$

and $p_{1} \leq p(x) \leq p_{2}$ for $0<x<1$. Set $\phi=\sum_{j=1}^{\infty} \chi_{j}$, where $\chi_{j}=\chi_{\left[-j,-j+j^{-a}\right)}$. Then

$$
\int_{\mathbf{R}} \phi(x)^{q} d x=\sum_{j=1}^{\infty} \int_{-j}^{-j+j^{-a}} \chi_{j}(x)^{q} d x=\sum_{j} j^{-a} \leq C(a)<\infty
$$

for any $q>0$. Further set $f_{N}=N^{-1 / p_{2}} \chi_{[1, N+1]}$. Note that for $1-j+j^{-a}<x<0$ and $j \leq N$

$$
\chi_{j} * f_{N}(x) \geq \int_{x+j-j-a}^{x+j} \chi_{j}(x-y) f_{N}(y) d y=N^{-1 / p_{2}} j^{-a}
$$

so that

$$
\begin{aligned}
\int_{\mathbf{R}}\left\{\phi * f_{N}(x)\right\}^{p(x)} d x & \geq \int_{-\infty}^{0}\left\{\sum_{j=1}^{\infty} \chi_{j} * f_{N}(x)\right\}^{p_{1}} d x \\
& \geq \sum_{j=2}^{N} \int_{1-j-j^{-a}}^{0}\left\{\chi_{j} * f_{N}(x)\right\}^{p_{1}} d x \\
& \geq N^{-p_{1} / p_{2}} \sum_{j=2}^{N} j^{-a p_{1}}\left(j-j^{-a}-1\right) \\
& \geq C N^{-p_{1} / p_{2}-a p_{1}+2} \rightarrow \infty \quad(N \rightarrow \infty) .
\end{aligned}
$$

4 Young type inequalities

Cruz-Uribe and Fiorenza [1] conjectured that Theorem A remains true if ϕ satisfies the additional condition

$$
\begin{equation*}
|\phi(x-y)-\phi(x)| \leq \frac{|y|}{|x|^{n+1}} \quad \text { when }|x|>2|y| \tag{4.1}
\end{equation*}
$$

Noting that this condition implies

$$
\sup _{x, z \in B\left(0,2^{j+1}\right) \backslash B\left(0,2^{j}\right)}|\phi(x)-\phi(z)| \leq C 2^{-n j}
$$

we see that $\lim _{|x| \rightarrow \infty} \phi(x)=0$ since $\phi \in L^{1}\left(\mathbf{R}^{n}\right)$ and

$$
\begin{equation*}
|\phi(x)| \leq C|x|^{-n} . \tag{4.2}
\end{equation*}
$$

if ϕ satisfies (4.1). In this connection we show
THEOREM 4.1. Let $p_{-}>1$. Suppose that $\phi \in L^{1}\left(\mathbf{R}^{n}\right) \cap L^{\left(p_{0}\right)^{\prime}}(B(0, R))$ and ϕ satisfies (4.2) for $|x| \geq R$. Then

$$
\|\phi * f\|_{\Phi_{p(\cdot), q(\cdot)}, \mathbf{R}^{n}} \leq C\left(\|\phi\|_{L^{1}, \mathbf{R}^{n}}+\|\phi\|_{\left.L^{(p)^{\prime}}\right), B(0, R)}\right)\|f\|_{\Phi_{p(\cdot), q(\cdot)}, \mathbf{R}^{n}}
$$

for all $f \in L^{p(\cdot)}(\log L)^{q(\cdot)}\left(\mathbf{R}^{n}\right)$.
Remark 4.2. Theorem 4.1 does not imply an inequality

$$
\left\|\phi_{t} * f\right\|_{\Phi_{p(\cdot), q(\cdot)}, \mathbf{R}^{n}} \leq C\|f\|_{\Phi_{p(\cdot), q(\cdot)}, \mathbf{R}^{n}}
$$

with a constant C independent of $t \in(0,1]$ even if ϕ satisfies (4.2) for all x, because $\left\{\left\|\phi_{t}\right\|_{L^{\left(p_{0}\right)^{\prime}, B(0, R)}}\right\}_{0<t \leq 1}$ is not bounded.

Proof of Theorem 4.1. Let f be a nonnegative measurable function on \mathbf{R}^{n} such that $\|f\|_{\Phi_{p(\cdot), q(\cdot),}, \mathbf{R}^{n}} \leq 1$. Suppose that ϕ satisfies (4.2) for $|x| \geq R$ and $\|\phi\|_{L^{1}, \mathbf{R}^{n}}+$ $\|\phi\|_{L^{\left(p_{0}\right)^{\prime}, B(0, R)}} \leq 1$. Decompose $\phi=\phi^{\prime}+\phi^{\prime \prime}$, where $\phi^{\prime}=\phi \chi_{B(0, R)}$. We first note by Theorem 1.2 that

$$
\left\|\phi^{\prime} * f\right\|_{\Phi_{p(\cdot), q(\cdot)}, \mathbf{R}^{n}} \leq C .
$$

Hence it suffices to show that

$$
\left\|\phi^{\prime \prime} * f\right\|_{\Phi_{p(\cdot), q(\cdot)}, \mathbf{R}^{n}} \leq C
$$

For this purpose, write

$$
f=f \chi_{\left\{y \in \mathbf{R}^{n}: f(y) \geq 1\right\}}+f \chi_{\left\{y \in \mathbf{R}^{n}: f(y)<1\right\}}=f_{1}+f_{2},
$$

as before. Then we have by (4.2) and (Φ)

$$
\begin{aligned}
\left|\phi^{\prime \prime} * f_{1}(x)\right| & \leq C \int_{\mathbf{R}^{n} \backslash B(x, R)}|x-y|^{-n} f_{1}(y) d y \\
& \leq C R^{-n} \int_{\mathbf{R}^{n}} f_{1}(y) d y \\
& \leq C R^{-n} \int_{\mathbf{R}^{n}} \Phi_{p(\cdot), q(\cdot)}(y, f(y)) d y \leq C .
\end{aligned}
$$

Noting that $\left|\phi^{\prime \prime} * f_{2}\right| \leq 1$, we obtain

$$
\int_{B(0, R)} \Phi_{p(\cdot), q(\cdot)}\left(x, \phi^{\prime \prime} * f(x)\right) d x \leq C .
$$

Next, let $h(y)=\Phi_{p(\cdot), q(\cdot)}(y, f(y))$. Then

$$
\left|\phi^{\prime \prime}\right| * h(x) \leq C R^{-n} \int_{\mathbf{R}^{n}} h(y) d y \leq C R^{-n}
$$

If $x \in \mathbf{R}^{n} \backslash B(0, R)$, then we have by (4.2) and Lemma 3.3

$$
\begin{aligned}
\left|\phi^{\prime \prime} * f(x)\right| & \leq \int_{B(0,|x| / 2)}\left|\phi^{\prime \prime}(x-y)\right| f(y) d y+\int_{\mathbf{R}^{n} \backslash B(0,|x| / 2)}\left|\phi^{\prime \prime}(x-y)\right| f(y) d y \\
& \leq C\left\{|x|^{-n} \int_{B(x, 3|x| / 2)} f(y) d y+\left(\left|\phi^{\prime \prime}\right| * h(x)\right)^{1 / p(x)}+|x|^{-A / p(x)}\right\} \\
& \leq C\left\{M f(x)+\left(\left|\phi^{\prime \prime}\right| * h(x)\right)^{1 / p(x)}+|x|^{-A / p(x)}\right\}
\end{aligned}
$$

with $A>n$. Now it follows from Proposition 2.5 that

$$
\begin{array}{rl}
\int_{\mathbf{R}^{n} \backslash B(0, R)} & \Phi_{p(\cdot), q(\cdot)}\left(x,\left|\phi^{\prime \prime} * f(x)\right|\right) d x \\
\leq C & C \\
& \quad \int_{\mathbf{R}^{n} \backslash B(0, R)} \Phi_{p(\cdot), q(\cdot)}(x, M f(x)) d x \\
\leq C & \left.|\phi| * h(x) d x+\int_{\mathbf{R}^{n} \backslash B(0, R)}|x|^{-A} d x\right\} \\
\leq
\end{array}
$$

as required.
Theorem 4.3. Let $1-p_{-} / p_{+} \leq \theta<1,1<\tilde{p}<p_{-}$,

$$
\frac{1}{s}=1-\frac{\theta}{\tilde{p}} \quad \text { and } \quad \frac{1}{r(x)}=\frac{1-\theta}{p(x)}
$$

Take $\nu=p_{-} / \tilde{p}$ if $t^{-p_{-} / \tilde{p}} \Phi_{p(\cdot) / \tilde{p}, q(\cdot)}(x, t)$ is uniformly almost increasing in t; otherwise choose $1 \leq \nu<p_{-} / \tilde{p}$. Suppose that $\phi \in L^{1}\left(\mathbf{R}^{n}\right) \cap L^{s}\left(\mathbf{R}^{n}\right) \cap L^{s \nu^{\prime}}(B(0, R))$ and ϕ satisfies

$$
|\phi(x)| \leq C|x|^{-n / s}
$$

for $|x| \geq R$. Then

$$
\|\phi * f\|_{\Phi_{r(\cdot), q(\cdot)}, \mathbf{R}^{n}} \leq C\left(\|\phi\|_{L^{1}, \mathbf{R}^{n}}+\|\phi\|_{L^{s}, \mathbf{R}^{n}}+\|\phi\|_{L^{s \nu^{\prime}}, B(0, R)}\right)\|f\|_{\Phi_{p(\cdot), q(\cdot)}, \mathbf{R}^{n}}
$$

for all $f \in L^{p(\cdot)}(\log L)^{q(\cdot)}\left(\mathbf{R}^{n}\right)$.
Proof. Suppose that $\|\phi\|_{L^{1}, \mathbf{R}^{n}}+\|\phi\|_{L^{s}, \mathbf{R}^{n}}+\|\phi\|_{L^{s v^{\prime}}, B(0, R)} \leq 1$ and ϕ satisfies

$$
|\phi(x)| \leq C|x|^{-n / s}
$$

for $|x| \geq R$. Let f be a nonnegative measurable function on \mathbf{R}^{n} such that $\|f\|_{\Phi_{p(\cdot), q(\cdot)}, \mathbf{R}^{n}} \leq 1$, and decompose

$$
f=f_{1}+f_{2}
$$

where $f_{1}=f \chi_{\left\{x \in \mathbf{R}^{n}: f(x) \geq 1\right\}}$. Let

$$
\frac{1}{r}=\frac{1-\theta}{p_{-}} \quad \text { and } \quad \frac{1}{s_{1}}=1+\frac{1}{r}-\frac{1}{p_{+}}
$$

By our assumption, $s_{1} \geq 1$. It follows from Young's inequality for convolution that

$$
\left\|\phi * f_{2}\right\|_{L^{r}, \mathbf{R}^{n}} \leq\|\phi\|_{L^{s_{1}}, \mathbf{R}^{n}}\left\|f_{2}\right\|_{L^{p_{1}}, \mathbf{R}^{n}} .
$$

Here note that $1 \leq s_{1}<s$, so that $\|\phi\|_{L^{s_{1}, \mathbf{R}^{n}}} \leq\|\phi\|_{L^{1}, \mathbf{R}^{n}}+\|\phi\|_{L^{s}, \mathbf{R}^{n}} \leq 1$. Since $0 \leq f_{2}<1,\left\|f_{2}\right\|_{L^{p+}, \mathbf{R}^{n}} \leq C\|f\|_{\Phi_{p(\cdot), q(\cdot)}, \mathbf{R}^{n}} \leq C$. Thus, noting that $\left|\phi * f_{2}\right| \leq 1$ and

$$
\frac{1}{r(x)}-\frac{1}{r}=\frac{1-\theta}{p(x)}-\frac{1-\theta}{p_{-}} \leq 0
$$

we see that

$$
\begin{equation*}
\left\|\phi * f_{2}\right\|_{\Phi_{r(\cdot), q(\cdot)}, \mathbf{R}^{n}} \leq C\left\|\phi * f_{2}\right\|_{L^{r}, \mathbf{R}^{n}} \leq C \tag{4.3}
\end{equation*}
$$

On the other hand, we have by Hölder's inequality

$$
\begin{align*}
\left|\phi * f_{1}(x)\right| \leq & \left(\int_{\mathbf{R}^{n}}|\phi(x-y)|^{s} f_{1}(y)^{\tilde{p}} d y\right)^{(1-\theta) / \tilde{p}}\left(\int_{\mathbf{R}^{n}}|\phi(x-y)|^{s} d y\right)^{1-1 / \tilde{p}} \\
& \times\left(\int_{\mathbf{R}^{n}}\left|f_{1}(y)\right|^{\tilde{p}} d y\right)^{\theta / \tilde{p}} \\
\leq & C\left(|\phi|^{s} * f_{1}^{\tilde{p}}(x)\right)^{(1-\theta) / \tilde{p}} \tag{4.4}
\end{align*}
$$

Noting that $|\phi|^{s} \in L^{1}\left(\mathbf{R}^{n}\right) \cap L^{\nu^{\prime}}(B(0, R)),|\phi|^{s}$ satisfies (4.2) for $|x| \geq R$ and $\left\|f_{1}^{\tilde{p}}\right\|_{\Phi_{p(\cdot) / \tilde{p}, q(\cdot)}}, \mathbf{R}^{n} \leq C$, we find by Theorem 4.1

$$
\left\|\phi^{s} * f_{1}^{\tilde{p}}\right\|_{\Phi_{p(\cdot) / \tilde{p}, q(\cdot)}, \mathbf{R}^{n}} \leq C
$$

Since (4.4) implies

$$
\Phi_{r(\cdot), q(\cdot)}\left(x, \phi * f_{1}(x)\right) \leq C \Phi_{p(\cdot) / \tilde{p}, q(\cdot)}\left(x,|\phi|^{s} * f_{1}^{p_{1}}(x)\right)
$$

it follows that

$$
\left\|\phi * f_{1}\right\|_{\Phi_{r(\cdot), q(\cdot)}, \mathbf{R}^{n}} \leq C .
$$

Thus, together with (4.3), we obtain

$$
\|\phi * f\|_{\Phi_{r(\cdot), q(\cdot)}, \mathbf{R}^{n}} \leq C,
$$

as required.

Remark 4.4. Cruz-Uribe and Fiorenza [1] conjectured that Theorem A remains true if ϕ satisfies the additional condition (4.1).

If $p_{-}>1$, this conjecture was shown to be true by D. Cruz-Uribe, A. Fiorenza, J.M. Martell and C. Pérez in [3], using an extrapolation theorem ([3, Theorem 1.3 or Corollary 1.11]). Using our Proposition 2.5, we can prove the following extension of [3, Theorem 1.3]:

Proposition 4.5. Let \mathcal{F} be a family of ordered pairs (f, g) of nonnegative measurable functions on \mathbf{R}^{n}. Suppose that for some $0<p_{0}<p^{-}$,

$$
\int_{\mathbf{R}^{n}} f(x)^{p_{0}} w(x) d x \leq C_{0} \int_{\mathbf{R}^{n}} g(x)^{p_{0}} w(x) d x
$$

for all $(f, g) \in \mathcal{F}$ and for all A_{1}-weights w, where C_{0} depends only on p_{0} and the A_{1}-constant of w. Then

$$
\|f\|_{\Phi_{p(\cdot)}, q(\cdot),}, \mathbf{R}^{n} \leq C\|g\|_{\Phi_{p(\cdot), q(\cdot)}, \mathbf{R}^{n}}
$$

for all $(f, g) \in \mathcal{F}$ such that $g \in L^{p(\cdot)}(\log L)^{q(\cdot)}\left(\mathbf{R}^{n}\right)$.
Then, as in [3, p. 249], we can prove:
Theorem 4.6. Assume that $p_{-}>1$. If ϕ is an integrable function on \mathbf{R}^{n} satisfying (4.1), then

$$
\left\|\phi_{t} * f\right\|_{\Phi_{p(\cdot), q(\cdot)}, \mathbf{R}^{n}} \leq C\|f\|_{\Phi_{p(\cdot), q(\cdot)}, \mathbf{R}^{n}}
$$

for all $t>0$ and $f \in L^{p(\cdot)}(\log L)^{q(\cdot)}\left(\mathbf{R}^{n}\right)$. If in addition $\int \phi(x) d x=1$, then

$$
\lim _{t \rightarrow 0}\left\|\phi_{t} * f-f\right\|_{\Phi_{p(\cdot), q(\cdot)}, \mathbf{R}^{n}}=0
$$

5 Appendix

For $p \geq 1, q \in \mathbf{R}$ and $c \geq e$, we consider the function

$$
\Phi(t)=\Phi(p, q, c ; t)=t^{p}(\log (c+t))^{q}, \quad t \in[0, \infty)
$$

In this appendix, we give a proof of the following elementary result:
Theorem 5.1. Let X be a non-empty set and let $p(\cdot)$ and $q(\cdot)$ be real valued functions on X such that $1 \leq p(x) \leq p_{0}<\infty$ for all $x \in X$. Then, the following (1) and (2) are equivalent to each other:
(1) There exists $c_{0} \geq e$ such that $\Phi\left(p(x), q(x), c_{0} ; \cdot\right)$ is convex on $[0, \infty)$ for every $x \in X$;
(2) There exists $K>0$ such that $K(p(x)-1)+q(x) \geq 0$ for all $x \in X$.

This theorem may be well known; however the authors fail to find any literature containing this result.

This theorem is a corollary to the following
Proposition 5.2. (1) If

$$
(1+\log c)(p-1)+q \geq 0
$$

then Φ is convex on $[0, \infty)$.
(2) Given $p_{0}>1$ and $c \geq e$, there exists $K=K\left(p_{0}, c\right)>0$ such that Φ is not convex on $[0, \infty)$ whenever $1 \leq p \leq p_{0}$ and $q<-K(p-1)$.
Proof. By elementary calculation we have

$$
\Phi^{\prime \prime}(t)=t^{p-2}(c+t)^{-2}(\log (c+t))^{q-2} G(t)
$$

with
$G(t)=p(p-1)(c+t)^{2}(\log (c+t))^{2}+2 p q t(c+t) \log (c+t)-q t^{2} \log (c+t)+q(q-1) t^{2}$ for $t>0 . \Phi(t)$ is convex on $[0, \infty)$ if and only if $G(t) \geq 0$ for all $t \in(0, \infty)$.
(1) If $q \geq 0$, then

$$
G(t) \geq q t(2 p(c+t)-t) \log (c+t)-q t^{2} \geq q t(2 p c+2(p-1) t) \geq 0
$$

for all $t \in(0, \infty)$, so that Φ is convex on $[0, \infty)$.
If $-(1+\log c)(p-1) \leq q<0$, then

$$
\begin{aligned}
G(t)= & p\left\{\sqrt{p-1}(c+t) \log (c+t)+\frac{q}{\sqrt{p-1}} t\right\}^{2} \\
& -\frac{p q^{2}}{p-1} t^{2}-q t^{2} \log (c+t)+q(q-1) t^{2} \\
\geq & (-q) t^{2}\left(\frac{p q}{p-1}+\log c-(q-1)\right) \\
= & (-q) t^{2}\left(\frac{q}{p-1}+\log c+1\right) \geq 0
\end{aligned}
$$

for all $t \in(0, \infty)$, so that Φ is convex on $[0, \infty)$.
(2) If $p=1$ and $q<0$, then

$$
G(t)=q t((t+2 c) \log (c+t)+(q-1) t) \rightarrow-\infty
$$

as $t \rightarrow \infty$. Hence Φ is not convex on $[0, \infty)$.
Next, let $1<p \leq p_{0}$ and $q=-k(p-1)$ with $k>0$. Then

$$
\begin{aligned}
\frac{G(t)}{p-1} & =p((c+t) \log (c+t)-k t)^{2}+k(\log (c+t)-k+1) t^{2} \\
& \leq p_{0}((c+t) \log (c+t)-k t)^{2}+k(\log (c+t)-k+1) t^{2}
\end{aligned}
$$

Let $\lambda=1-1 /\left(2 p_{0}\right)$. Then $0<\lambda<1$. If $k>(\log c) / \lambda$, there is (unique) $t_{k}>0$ such that $\log \left(c+t_{k}\right)=\lambda k$. Note that $t_{k} / k \rightarrow \infty$ as $k \rightarrow \infty$. We have

$$
\begin{aligned}
\frac{G\left(t_{k}\right)}{p-1} & \leq p_{0}\left(\left(c+t_{k}\right) \lambda k-k t_{k}\right)^{2}+k(\lambda k-k+1) t_{k}^{2} \\
& =k t_{k}^{2}\left\{\left(p_{0}(1-\lambda)-1\right)(1-\lambda) k+1-2 p_{0} c \lambda(1-\lambda) \frac{k}{t_{k}}+p_{0} c^{2} \lambda^{2} \frac{k}{t_{k}^{2}}\right\}
\end{aligned}
$$

Since $p_{0}(1-\lambda)-1=-1 / 2$, it follows that there is $K=K\left(c, p_{0}\right)>(\log c) / \lambda$ such that $G\left(t_{k}\right)<0$ whenever $k \geq K$. Hence Φ is not convex if $1<p \leq p_{0}$ and $q \leq-K(p-1)$.

Acknowledgement The authors are grateful to the referee for his/her valuable comments.

References

[1] D. Cruz-Uribe and A. Fiorenza, Approximate identities in variable L^{p} spaces, Math. Nachr. 280 (2007), 256-270.
[2] D. Cruz-Uribe and A. Fiorenza, $L \log L$ results for the maximal operator in variable L^{p} spaces, Trans. Amer. Math. Soc. 361 (2009), 2631-2647.
[3] D. Cruz-Uribe, A. Fiorenza, J.M. Martell and C. Pérez, The boundedness of classical operators on variable L^{p} spaces, Ann. Acad. Sci. Fenn. Math. 31 (2006), 239-264.
[4] D. Cruz-Uribe, A. Fiorenza and C. J. Neugebauer, The maximal function on variable L^{p} spaces, Ann. Acad. Sci. Fenn. Math. 28 (2003), 223-238; Ann. Acad. Sci. Fenn. Math. 29 (2004), 247-249.
[5] L. Diening, Maximal function on Musielak-Orlicz spaces, Bull. Sci. Math. 129, 657-700.
[6] L. Diening, P. Harjulehto, P. Hästö, Y. Mizuta and T. Shimomura, Maximal functions in variable exponent spaces: limiting cases of the exponent, Ann. Acad. Sci. Fenn. Math. 34 (2009), no. 2, 503-522.
[7] O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{k, p(x)}$, Czechoslovak Math. J. 41 (1991), 592-618.
[8] Y. Mizuta, T. Ohno and T. Shimomura, Sobolev's inequalities and vanishing integrability for Riesz potentials of functions in $L^{p(\cdot)}(\log L)^{q(\cdot)}$, J. Math. Anal. Appl. 345 (2008), 70-85.
[9] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer-Verlag, Berlin, 1983.
[10] W. Orlicz, Über konjugierte Exponentenfolgen, Studia Math. 3 (1931), 200211.
[11] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1970.
[12] F. Zo, A note on approximation of the identity, Studia. Math. 55 (1976), 111-122.

4-24 Furue-higashi-machi, Nishi-ku
Hiroshima 733-0872, Japan
E-mail: fymaeda@h6.dion.ne.jp
and
Department of Mathematics
Graduate School of Science Hiroshima University
Higashi-Hiroshima 739-8521, Japan
E-mail: yomizuta@hiroshima-u.ac.jp and
General Arts
Hiroshima National College of Maritime Technology
Higashino Oosakikamijima Toyotagun 725-0231, Japan
E-mail: ohno@hiroshima-cmt.ac.jp

[^0]: 2000 Mathematics Subject Classification : 46E30
 Key words and phrases : Lebesgue spaces of variable exponent, approximate identity, Young's inequality for convolution

