Approximate identities and Young type inequalities in variable Lebesgue-Orlicz spaces $L^{p(\cdot)}(\log L)^{q(\cdot)}$

Fumi-Yuki Maeda, Yoshihiro Mizuta and Takao Ohno

December 16, 2009

Abstract

Our aim in this paper is to deal with approximate identities in generalized Lebesgue spaces $L^{p(\cdot)}(\log L)^{q(\cdot)}$. As a related topic, we also study Young type inequalities for convolution with respect to norms in such spaces.

1 Introduction

Following Cruz-Uribe and Fiorenza [2], we consider two variable exponents $p(\cdot) : \mathbb{R}^n \to [1, \infty)$ and $q(\cdot) : \mathbb{R}^n \to \mathbb{R}$, which are continuous functions. Letting $\Phi_{p(\cdot),q(\cdot)}(x,t) = t^{p(x)}(\log(c_0 + t))^{q(x)}$, we define the space $L^{p(\cdot)}(\log L)^{q(\cdot)}(\Omega)$ of all measurable functions f on an open set Ω such that

$$\int_{\Omega} \Phi_{p(\cdot),q(\cdot)} \left(y, \frac{|f(y)|}{\lambda} \right) dy < \infty$$

for some $\lambda > 0$; here we assume

(Φ) $\Phi_{p(\cdot),q(\cdot)}(x,\cdot)$ is convex on $[0, \infty)$ for every fixed $x \in \mathbb{R}^n$.

Note that (Φ) holds for some $c_0 \geq e$ if and only if there is a positive constant K such that

$$K(p(x) - 1) + q(x) \geq 0 \quad \text{for all } x \in \mathbb{R}^n$$

(1.1) (see Appendix). Further, we see from (Φ) that $t^{-1}\Phi_{p(\cdot),q(\cdot)}(x,t)$ is nondecreasing in t.

2000 Mathematics Subject Classification : 46E30

Key words and phrases : Lebesgue spaces of variable exponent, approximate identity, Young’s inequality for convolution
We define the norm
\[\|f\|_{\Phi_p,q(\cdot),\Omega} = \inf \left\{ \lambda > 0 : \int_{\Omega} \Phi_p(q(\cdot), \left(y, \frac{|f(y)|}{\lambda} \right)) \, dy \leq 1 \right\} \]
for \(f \in L^p(\log L)^q(\Omega) \). Note that \(L^p(\log L)^q(\Omega) \) is a Musielak–Orlicz space [9]. Such spaces have been studied in [2, 8, 10]. In case \(q(\cdot) = 0 \) on \(\mathbb{R}^n \), \(L^p(\log L)^q(\Omega) \) is denoted by \(L^p(\Omega) \) ([7]).

We assume throughout the article that our variable exponents \(p(\cdot) \) and \(q(\cdot) \) are continuous functions on \(\mathbb{R}^n \) satisfying:

1. \(1 \leq p_- := \inf_{x \in \mathbb{R}^n} p(x) \leq \sup_{x \in \mathbb{R}^n} p(x) =: p_+ < \infty; \)
2. \(|p(x) - p(y)| \leq \frac{C}{\log(e + 1/|x - y|)} \) whenever \(x \in \mathbb{R}^n \) and \(y \in \mathbb{R}^n; \)
3. \(|p(x) - p(y)| \leq \frac{C}{\log(e + |x|)} \) whenever \(|y| \geq |x|/2; \)
4. \(-\infty < q_- := \inf_{x \in \mathbb{R}^n} q(x) \leq \sup_{x \in \mathbb{R}^n} q(x) =: q_+ < \infty; \)
5. \(|q(x) - q(y)| \leq \frac{C}{\log(e + \log(e + 1/|x - y|))} \) whenever \(x \in \mathbb{R}^n \) and \(y \in \mathbb{R}^n \)

for a positive constant \(C \).

We choose \(p_0 \geq 1 \) as follows: we take \(p_0 = p_- \) if \(t^{-p_0} \Phi_{p(\cdot),q(\cdot)}(x,t) \) is uniformly almost increasing in \(t; \) more precisely, if there exists \(C > 0 \) such that \(s^{-p_0} \Phi_{p(\cdot),q(\cdot)}(x,s) \leq Ct^{-p_0} \Phi_{p(\cdot),q(\cdot)}(x,t) \) whenever \(0 < s < t \) and \(x \in \mathbb{R}^n \). Otherwise we choose \(1 \leq p_0 < p_- \). Then note that \(t^{-p_0} \Phi_{p(\cdot),q(\cdot)}(x,t) \) is uniformly almost increasing in \(t \) in any case.

Let \(\phi \) be an integrable function on \(\mathbb{R}^n \). For each \(t > 0 \), define the function \(\phi_t \) by \(\phi_t(x) = t^{-n}\phi(x/t) \). Note that by a change of variables, \(\|\phi_t\|_{L^1,\mathbb{R}^n} = \|\phi\|_{L^1,\mathbb{R}^n} \). We say that the family \(\{\phi_t\} \) is an approximate identity if \(\int_{\mathbb{R}^n} \phi(x) \, dx = 1 \). Define the radial majorant of \(\phi \) to be the function
\[\hat{\phi}(x) = \sup_{|y| \geq |x|} |\phi(y)|. \]
If \(\hat{\phi} \) is integrable, we say that the family \(\{\phi_t\} \) is of potential-type.

Theorem A. Let \(\{\phi_t\} \) be an approximate identity. Suppose that either:

1. \(\{\phi_t\} \) is of potential-type, or
2. \(\phi \in L^{p(\cdot)'}(\mathbb{R}^n) \) and has compact support.
Then
\[\sup_{0 < t \leq 1} \| \phi_t * f \|_{L^p(\mathbb{R}^n)} \leq C \| f \|_{L^p(\mathbb{R}^n)} \]
and
\[\lim_{t \to +0} \| \phi_t * f - f \|_{L^p(\mathbb{R}^n)} = 0 \]
for all \(f \in L^p(\mathbb{R}^n) \).

Our aim in this note is to extend their result to the space \(L^p(\log L)^q(\Omega) \) of two variable exponents.

Theorem 1.1. Let \(\{ \phi_t \} \) be a potential-type approximate identity. If \(f \in L^p(\log L)^q(\mathbb{R}^n) \), then \(\{ \phi_t * f \} \) converges to \(f \) in \(L^p(\log L)^q(\mathbb{R}^n) \):

\[\lim_{t \to 0} \| \phi_t * f - f \|_{\Phi^p,q(\mathbb{R}^n)} = 0. \]

Theorem 1.2. Let \(\{ \phi_t \} \) be an approximate identity. Suppose that \(\phi \in L^{(p_0)^\prime}(\mathbb{R}^n) \) and has compact support. If \(f \in L^p(\log L)^q(\mathbb{R}^n) \), then \(\{ \phi_t * f \} \) converges to \(f \) in \(L^p(\log L)^q(\mathbb{R}^n) \):

\[\lim_{t \to 0} \| \phi_t * f - f \|_{\Phi^p,q(\mathbb{R}^n)} = 0. \]

We show by an example that the conditions on \(\phi \) are necessary; see Remarks 3.5 and 3.6 below.

Finally, in Section 4, we give some Young type inequalities for convolution with respect to the norms in \(L^p(\log L)^q(\mathbb{R}^n) \).

2 The case of potential-type

Throughout this paper, let \(C \) denote various positive constants independent of the variables in question.

Let us begin with the following result due to Stein [11].

Lemma 2.1. Let \(1 \leq p < \infty \) and \(\{ \phi_t \} \) be a potential-type approximate identity. Then for every \(f \in L^p(\mathbb{R}^n) \), \(\{ \phi_t * f \} \) converges to \(f \) in \(L^p(\mathbb{R}^n) \).

We denote by \(B(x, r) \) the open ball centered at \(x \in \mathbb{R}^n \) and with radius \(r > 0 \). For a measurable set \(E \), we denote by \(|E| \) the Lebesgue measure of \(E \).

The following is due to Lemma 2.6 in [8].

Lemma 2.2. Let \(f \) be a nonnegative measurable function on \(\mathbb{R}^n \) with \(\| f \|_{\Phi^p,q(\mathbb{R}^n)} \leq 1 \) such that \(f(x) \geq 1 \) or \(f(x) = 0 \) for each \(x \in \mathbb{R}^n \). Set

\[J = J(x, r, f) = \frac{1}{|B(x, r)|} \int_{B(x, r)} f(y)dy \]
and
\[L = L(x, r, f) = \frac{1}{|B(x, r)|} \int_{B(x, r)} \Phi_{p(\cdot), q(\cdot)}(y, f(y)) dy. \]

Then
\[J \leq CL^{1/p(x)}(\log(c_0 + L))^{-q(x)/p(x)}, \]
where \(C > 0 \) does not depend on \(x, r, f \).

Further we need the following result.

Lemma 2.3. Let \(f \) be a nonnegative measurable function on \(\mathbb{R}^n \) such that \((1 + |y|)^{-n-1} \leq f(y) \leq 1 \) or \(f(y) = 0 \) for each \(y \in \mathbb{R}^n \). Set
\[J = J(x, r, f) = \frac{1}{|B(x, r)|} \int_{B(x, r)} f(y) dy \]
and
\[L = L(x, r, f) = \frac{1}{|B(x, r)|} \int_{B(x, r)} \Phi_{p(\cdot), q(\cdot)}(y, f(y)) dy. \]

Then
\[J \leq C \{ L^{1/p(x)} + (1 + |x|)^{-n-1} \}, \]
where \(C > 0 \) does not depend on \(x, r, f \).

Proof. We have by Jensen’s inequality
\[J \leq \left(\frac{1}{|B(x, r)|} \int_{B(x, r)} f(y)^{p(x)} dy \right)^{1/p(x)} \]
\[\leq \left(\frac{1}{|B(x, r)|} \int_{B(x, r) \cap B(0, |x|/2)} f(y)^{p(x)} dy \right)^{1/p(x)} + \left(\frac{1}{|B(x, r)|} \int_{B(x, r) \setminus B(0, |x|/2)} f(y)^{p(x)} dy \right)^{1/p(x)} \]
\[= J_1 + J_2, \]
We see from (p3) that
\[J_1 \leq C \left(\frac{1}{|B(x, r)|} \int_{B(x, r) \cap B(0, |x|/2)} f(y)^{p(y)} dy \right)^{1/p(x)}. \]

Similarly, setting \(E_2 = \{ y \in \mathbb{R}^n : f(y) \geq (1 + |x|)^{-n-1} \} \), we see from (p3) that
\[J_2 \leq C \left(\frac{1}{|B(x, r)|} \int_{B(x, r) \setminus B(0, |x|/2) \setminus E_2} f(y)^{p(y)} dy \right)^{1/p(x)} \]
\[+ \left(\frac{1}{|B(x, r)|} \int_{B(x, r) \setminus B(0, |x|/2) \setminus E_2} (1 + |x|)^{-p(x)(n+1)} dy \right)^{1/p(x)} \]
\[\leq C \left\{ \left(\frac{1}{|B(x, r)|} \int_{B(x, r)} f(y)^{p(y)} dy \right)^{1/p(x)} + (1 + |x|)^{-(n+1)} \right\}. \]

Since \(f(y) \leq 1, f(y)^{p(y)} \leq C \Phi_{p(\cdot), q(\cdot)}(y, f(y)) \). Hence, we have the required estimate. \(\square \)
By using Lemmas 2.2 and 2.3, we show the following theorem.

Theorem 2.4. If \(\{\phi_t\} \) is of potential-type, then
\[
\|\phi_t \ast f\|_{p(t),q(t)} \leq C \|\hat{\phi}\|_{L^1,R^n} \|f\|_{p(t),q(t)} R^n
\]
for all \(t > 0 \) and \(f \in L^{p(t)}(\log L)^{q(t)}(R^n) \).

Proof. Suppose \(\|\hat{\phi}\|_{L^1,R^n} = 1 \) and take a nonnegative measurable function \(f \) on \(R^n \) such that \(\|f\|_{p(t),q(t)} \leq 1 \). Write
\[
f = \chi_{\{y \in R^n: f(y) \geq 1\}} + \chi_{\{y \in R^n: (1+|y|)^{-n-1} \leq f(y) < 1\}} + \chi_{\{y \in R^n: f(y) \leq (1+|y|)^{-n-1}\}}
\]
where \(\chi_E \) denotes the characteristic function of a measurable set \(E \subset R^n \).

Since \(\phi_t \) is a radial function, we write \(\hat{\phi}_t(r) \) for \(\hat{\phi}_t(x) \) when \(|x| = r \). First note that
\[
|\phi_t \ast f(x)| \leq \int_{R^n} \hat{\phi}_t(|x-y|) f_1(y) dy
\]
so that Jensen’s inequality and Lemma 2.2 yield
\[
\Phi_{p(t),q(t)}(x, |\phi_t \ast f_1(x)|) \leq \int_0^\infty \Phi_{p(t),q(t)} \left(x, \frac{1}{|B(x,r)|} \int_{B(x,r)} f_1(y) dy \right) |B(x,r)| d(-\hat{\phi}_t(r))
\]
\[
\leq C \int_0^\infty \left(\frac{1}{|B(x,r)|} \int_{B(x,r)} \Phi_{p(t),q(t)}(y, f_1(y)) dy \right) |B(x,r)| d(-\hat{\phi}_t(r))
\]
\[
= C(\hat{\phi}_t \ast g)(x),
\]
where \(g(y) = \Phi_{p(t),q(t)}(y, f(y)) \). The usual Young inequality for convolution gives
\[
\int_{R^n} \Phi_{p(t),q(t)}(x, |\phi_t \ast f_1(x)|) dx \leq C \int_{R^n} (\hat{\phi}_t \ast g)(x) dx
\]
\[
\leq C\|\hat{\phi}_t\|_{L^1,R^n} \|g\|_{L^1,R^n} \leq C.
\]

Similarly, noting that \(\frac{1}{|B(x,r)|} \int_{B(x,r)} f_2(y) dy \leq 1 \) and applying Lemma 2.3, we derive the same result for \(f_2 \).

Finally, noting that \(|\phi_t \ast f_3| \leq C \|\phi_t\|_{L^1,R^n} \leq C \), we obtain
\[
\int_{R^n} \Phi_{p(t),q(t)}(x, |\phi_t \ast f_3(x)|) dx \leq C \int_{R^n} |\phi_t \ast f_3(x)| dx
\]
\[
\leq C\|\phi_t\|_{L^1,R^n} \|f_3\|_{L^1,R^n} \leq C,
\]
as required. \(\square \)
We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Given \(\varepsilon > 0 \), we find a bounded function \(g \) in \(L^{p(\cdot)}(\log L)^{q(\cdot)}(\mathbb{R}^n) \) with compact support such that \(\|f - g\|_{\Phi_{p(\cdot),q(\cdot)}(\mathbb{R}^n)} < \varepsilon \). By Theorem 2.4 we have

\[
\|\phi_t * f - f\|_{\Phi_{p(\cdot),q(\cdot)}(\mathbb{R}^n)} \\
\leq \|\phi_t * (f - g)\|_{\Phi_{p(\cdot),q(\cdot)}(\mathbb{R}^n)} + \|\phi_t * g - g\|_{\Phi_{p(\cdot),q(\cdot)}(\mathbb{R}^n)} + \|f - g\|_{\Phi_{p(\cdot),q(\cdot)}(\mathbb{R}^n)} \\
\leq C\varepsilon + \|\phi_t * g - g\|_{\Phi_{p(\cdot),q(\cdot)}(\mathbb{R}^n)}.
\]

Since \(|\phi_t * g| \leq \|g\|_{L^\infty(\mathbb{R}^n)} \),

\[
\|\phi_t * g - g\|_{\Phi_{p(\cdot),q(\cdot)}(\mathbb{R}^n)} \leq C'\|\phi_t * g - g\|_{L^1(\mathbb{R}^n)} \rightarrow 0
\]

by Lemma 2.1. (Here \(C' \) depends on \(\|g\|_{L^\infty(\mathbb{R}^n)} \)). Hence

\[
\lim sup_{t \rightarrow 0} \|\phi_t * f - f\|_{\Phi_{p(\cdot),q(\cdot)}(\mathbb{R}^n)} \leq C\varepsilon,
\]

which completes the proof.\(\square \)

As another application of Lemmas 2.2 and 2.3, we can prove the following result, which is an extension of [4, Theorem 1.5] and [8, Theorem 2.7] (see also [6]).

Let \(Mf \) be the Hardy-Littlewood maximal function of \(f \).

Proposition 2.5. Suppose \(p_- > 1 \). Then the operator \(M \) is bounded from \(L^{p(\cdot)}(\log L)^{q(\cdot)}(\mathbb{R}^n) \) to \(L^{p(\cdot)}(\log L)^{q(\cdot)}(\mathbb{R}^n) \).

Proof. Let \(f \) be a nonnegative measurable function on \(\mathbb{R}^n \) such that \(\|f\|_{\Phi_{p(\cdot),q(\cdot)}(\mathbb{R}^n)} \leq 1 \) and write \(f = f_1 + f_2 + f_3 \) as in the proof of Theorem 2.4. Take \(1 < p_1 < p_- \) and apply Lemmas 2.2 and 2.3 with \(p(\cdot) \) and \(q(\cdot) \) replaced by \(p(\cdot)/p_1 \) and \(q(\cdot)/p_1 \), respectively. Then

\[
\Phi_{p(\cdot),q(\cdot)}(x, Mf_1(x)) \leq C[Mg_1(x)]^{p_1}
\]

and

\[
\Phi_{p(\cdot),q(\cdot)}(x, Mf_2(x)) \leq C \left\{ [Mg_1(x)]^{p_1} + (1 + |x|)^{-n-1} \right\},
\]

where \(g_1(y) = \Phi_{p(\cdot)/p_1,q(\cdot)/p_1}(y, f(y)) \). As to \(f_3 \), we have

\[
\Phi_{p(\cdot),q(\cdot)}(x, Mf_3(x)) \leq C[Mf_3(x)]^{p_1}.
\]

Then the boundedness of the maximal operator in \(L^{p_1}(\mathbb{R}^n) \) proves the proposition.\(\square \)

Remark 2.6. If \(p_- > 1 \), then the function \(\Phi_{p(\cdot),q(\cdot)} \) is a proper \(N \)-function and our Proposition 2.5 implies that this function is of class \(\mathcal{A} \) in the sense of Diening [5] (see [5, Lemma 3.2]). It would be an interesting problem to see whether “class \(\mathcal{A} \)” is also a sufficient condition or not for the boundedness of \(M \) on \(L^{p(\cdot)}(\log L)^{q(\cdot)}(\mathbb{R}^n) \).
3 The case of compact support

We know the following result due to Zo [12]; see also [1, Theorem 2.2].

Lemma 3.1. Let $1 \leq p < \infty$, $1/p + 1/p' = 1$ and $\{\phi_t\}$ be an approximate identity. Suppose that $\phi \in L^p(\mathbb{R}^n)$ has compact support. Then for every $f \in L^p(\mathbb{R}^n)$, $\{\phi_t \ast f\}$ converges to f pointwise almost everywhere.

Set

$$\tilde{p}(x) = p(x)/p_0 \quad \text{and} \quad \tilde{q}(x) = q(x)/p_0;$$

recall that $p_0 \in [1, p_-]$ is chosen such that $t^{-p_0} \Phi_{p_0}^{\cdot, q_0}(\cdot, t)$ is uniformly almost increasing in t.

For a proof of Theorem 1.2, the following is a key lemma.

Lemma 3.2. Let f be a nonnegative measurable function on \mathbb{R}^n with $\|f\|_{L^{p_0}(\mathbb{R}^n)} \leq 1$ such that $f(x) \geq 1$ or $f(x) = 0$ for each $x \in \mathbb{R}^n$ and let ϕ have compact support in $B(0, R)$ with $\|\phi\|_{L^{p_0}(\mathbb{R}^n)} \leq 1$. Set

$$F = F(x, t, f) = |\phi_t \ast f(x)|$$

and

$$G = G(x, t, f) = \int_{\mathbb{R}^n} |\phi_t(x - y)| \Phi_{\tilde{p}(\cdot), \tilde{q}(\cdot)}(y, f(y)) dy.$$

Then

$$F \leq CG^{1/\tilde{p}(x)}(\log(c_0 + G))^{-\tilde{q}(x)/\tilde{p}(x)}$$

for all $0 < t \leq 1$, where $C > 0$ depends on R.

Proof. Let f be a nonnegative measurable function on \mathbb{R}^n with $\|f\|_{L^{p_0}(\mathbb{R}^n)} \leq 1$ such that $f(x) \geq 1$ or $f(x) = 0$ for each $x \in \mathbb{R}^n$ and let ϕ have compact support in $B(0, R)$ with $\|\phi\|_{L^{p_0}(\mathbb{R}^n)} \leq 1$. By Hölder’s inequality, we have

$$G \leq \|\phi_t\|_{L^{p_0}(\mathbb{R}^n)} \left(\int_{\mathbb{R}^n} \Phi_{p_0}^{\cdot, q_0}(y, f(y)) dy \right)^{1/p_0} \leq t^{-n/p_0}.$$

First consider the case when $G \geq 1$. Since $G \leq t^{-n/p_0}$, for $y \in B(x, tR)$ we have by (p2)

$$G^{-p(y)} \leq G^{-p(y) + C/\log(c_0 + (tR)^{-1})} \leq CG^{-p(x)}$$

and by (q2)

$$(\log(c_0 + G))^{q(y)} \leq C(\log(c_0 + G))^{q(x)}.$$
Hence it follows from the choice of p_0 that
\[
F \leq G^{1/p(x)} (\log(c_0 + G))^{-\tilde{q}(x)/\tilde{p}(x)} \int_{\mathbb{R}^n} |\phi_t(x-y)| dy \\
+ C \int_{\mathbb{R}^n} |\phi_t(x-y)| f(y) \left\{ \frac{f(y)}{G^{1/p(x)} (\log(c_0 + G))^{-\tilde{q}(x)/\tilde{p}(x)}} \right\} \tilde{q}(y) \tilde{p}(y)^{-1} \times \left\{ \frac{\log(c_0 + G^{1/p(x)} (\log(c_0 + G))^{-\tilde{q}(x)/\tilde{p}(x)})}{\log(c_0 + f(y))} \right\} dy \\
\leq C G^{1/p(x)} (\log(c_0 + G))^{-\tilde{q}(x)/\tilde{p}(x)}.
\]
(cf. the proof of [8, Lemma 2.6]).

In the case $G < 1$, noting from the choice of p_0 that $f(y) \leq C \Phi p(y, q(y), y, f(y))$ for $y \in \mathbb{R}^n$, we find
\[
F \leq CG \leq C G^{1/p(x)} \leq C G^{1/p(x)} (\log(c_0 + G))^{-\tilde{q}(x)/\tilde{p}(x)}.
\]
Now the result follows.

Lemma 3.3. Suppose that $\|\phi\|_{L^1(\mathbb{R}^n)} \leq 1$. Let f be a nonnegative measurable function on \mathbb{R}^n with $\|f\|_{\Phi p(y, q(y), \mathbb{R}^n)} \leq 1$. Set
\[
I = I(x, t, f) = \int_{\{y \in \mathbb{R}^n : |y| > |x|/2\}} |\phi_t(x-y)| f(y) dy
\]
and
\[
H = H(x, t, f) = \int_{\mathbb{R}^n} |\phi_t(x-y)| \Phi p(y, q(y), y, f(y)) dy.
\]
If $A > 0$ and $H \leq H_0$, then
\[
I \leq C (H^{1/p(x)} + |x|^{-A/p(x)})
\]
for $|x| > 1$ and $0 < t \leq 1$, where $C > 0$ depends on A and H_0.

Proof. Suppose that $\|\phi\|_{L^1(\mathbb{R}^n)} \leq 1$. Let f be a nonnegative measurable function on \mathbb{R}^n with $\|f\|_{\Phi p(y, q(y), \mathbb{R}^n)} \leq 1$.

Let $|x| > 1$. In the case $H_0 \geq H \geq |x|^{-A}$ with $A > 0$, we have by (p3)
\[
H^{-p(y)} \leq CH^{-p(x)} \leq CH^{-p(x)}
\]
for $|y| \geq |x|/2$. Hence we find by (Φ)
\[
I \leq C \left\{ H^{1/p(x)} + \int_{\{y \in \mathbb{R}^n : |y| > |x|/2\}} |\phi_t(x-y)| f(y) \times \left\{ \frac{f(y)}{H^{1/p(x)}} \right\} p(y)^{-1} \times \left\{ \frac{\log(c_0 + f(y))}{\log(c_0 + H^{1/p(x)})} \right\} q(y) dy \right\} \leq CH^{1/p(x)}.
\]
Next note from (p3) that

\[|x|^{p(y)} \leq |x|^{p(x) + C/\log(e + |x|)} \leq C|x|^{p(x)} \]

for \(|y| \geq |x|/2 \). Hence, when \(H \leq |x|^{-A} \), we obtain by (\(\Phi \))

\[I \leq C \left\{ |x|^{-A/p(x)} + \int_{\{y \in \mathbb{R}^n : |y| > |x|/2\}} \left| \phi_t(x - y) \right| f(y) \right\}
\times \left\{ \left| f(y) \right|^{p(y)-1} \left(\frac{\log(c_0 + f(y))}{\log(c_0 + |x|^{-A/p(x)})} \right)^{q(y)} dy \right\}
\leq C|x|^{-A/p(x)}, \]

which completes the proof. \(\square \)

Theorem 3.4. Suppose that \(\phi \in L^{(p_0)' \mathbb{R}^n} \) has compact support in \(B(0, R) \). Then

\[\| \phi_t * f \|_{L^{p_0}' \mathbb{R}^n} \leq C \| \phi \|_{L^{p_0}' \mathbb{R}^n} \| f \|_{L^{(p_0)' \mathbb{R}^n}} \]

for all \(0 < t \leq 1 \) and \(f \in L^{p(\cdot)}(\log L)^{q(\cdot)}(\mathbb{R}^n) \), where \(C > 0 \) depends on \(R \).

Proof. Let \(f \) be a nonnegative measurable function on \(\mathbb{R}^n \) such that \(\|f\|_{L^{p_0}' \mathbb{R}^n} \leq 1 \) and let \(\phi \) have compact support in \(B(0, R) \) with \(\|\phi\|_{L^{p_0}' \mathbb{R}^n} \leq 1 \). Write

\[f = f\chi_{\{y \in \mathbb{R}^n : f(y) \geq 1\}} + f\chi_{\{y \in \mathbb{R}^n : f(y) < 1\}} = f_1 + f_2. \]

We have by Lemma 3.2,

\[|\phi_t * f_1(x)| \leq C(|\phi_t| * g(x))^{p_0/p(x)}(\log(c_0 + |\phi_t| * g(x)))^{-q(x)/p(x)}, \]

where \(g(y) = \Phi^{(p_0)}(y, f(y)) = \Phi^{(p_0)}(y, f(y))^{1/p_0} \), so that

\[\Phi^{(p_0)}(x, |\phi_t * f_1(x)|) \leq C(|\phi_t| * g(x))^{p_0}. \quad (3.1) \]

Hence, since \(g \in L^{p_0}(\mathbb{R}^n) \), the usual Young inequality for convolution gives

\[\int_{\mathbb{R}^n} \Phi^{(p_0)}(x, |\phi_t * f_1(x)|)dx \leq C \int_{\mathbb{R}^n} (|\phi_t| * g(x))^{p_0}dx \leq C \left(\|\phi_t\|_{L^{1, \mathbb{R}^n}} \|g\|_{L^{p_0, \mathbb{R}^n}} \right)^{p_0} \leq C. \]

Next we are concerned with \(f_2 \). Write

\[f_2 = f_2\chi_{B(0, R)} + f_2\chi_{B(0, R)^c} = f'_2 + f''_2. \]

Since \(|\phi_t * f_2(x)| \leq C \) on \(\mathbb{R}^n \), we have

\[\int_{B(0, 2R)} \Phi^{(p_0)}(x, |\phi_t * f_2(x)|)dx \leq C. \]
Further, noting that $\phi_t * f'_2 = 0$ outside $B(0, 2R)$, we find
\[\int_{\mathbb{R}^n} \Phi_{p(\cdot), q(\cdot)}(x, |\phi_t * f'_2(x)|)dx \leq C. \]

Therefore it suffices to prove
\[\int_{\mathbb{R}^n \setminus B(0, 2R)} \Phi_{p(\cdot), q(\cdot)}(x, |\phi_t * f''_2(x)|)dx \leq C. \]

Thus, in the rest of the proof, we may assume that $0 \leq f < 1$ on \mathbb{R}^n and $f = 0$ on $B(0, R)$. Note that
\[\int_{B(0, |x|/2)} \phi_t(x - y)f(y)dy = 0 \]
for $|x| > 2R$. Hence, applying Lemma 3.3, we have
\[|\phi_t * f(x)|^{p(x)} \leq C(|\phi_t| * h(x) + |x|^{-A}) \]
for $|x| > 2R$, where $h(y) = \Phi_{p(\cdot), q(\cdot)}(y, f(y))$. Thus the integration yields
\[\int_{\mathbb{R}^n \setminus B(0, 2R)} |\phi_t * f(x)|^{p(x)}dx \leq C, \]
which completes the proof.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Given $\varepsilon > 0$, choose a bounded function g with compact support such that $\|f - g\|_{\Phi_{p(\cdot), q(\cdot)}(\mathbb{R}^n)} < \varepsilon$. As in the proof of Theorem 1.1, using Theorem 3.4 this time, we have
\[\|\phi_t * f - f\|_{\Phi_{p(\cdot), q(\cdot)}(\mathbb{R}^n)} \leq C\varepsilon + \|\phi_t * g - g\|_{\Phi_{p(\cdot), q(\cdot)}(\mathbb{R}^n)}. \]

Obviously, $g \in L^p(\mathbb{R}^n)$. Hence by Lemma 3.1, $\phi_t * g \to g$ almost everywhere in \mathbb{R}^n. Since there is a compact set S containing all the supports of $\phi_t * g$,
\[\|\phi_t * g - g\|_{\Phi_{p(\cdot), q(\cdot)}(\mathbb{R}^n)} \leq C'\|\phi_t * g - g\|_{L^{p+1}(\mathbb{R}^n)}, \]
with C' depending on $|S|$, and the Lebesgue convergence theorem implies $\|\phi_t * g - g\|_{L^{p+1}(\mathbb{R}^n)} \to 0$ as $t \to \infty$. Hence
\[\limsup_{t \to 0} \|\phi_t * f - f\|_{\Phi_{p(\cdot), q(\cdot)}(\mathbb{R}^n)} \leq C\varepsilon, \]
which completes the proof.
Remark 3.5. In Theorem 1.2 (and in Theorem A), the condition $\phi \in L^{(p_\cdot')}(\mathbb{R}^n)$ cannot be weakened to $\phi \in L^q(\mathbb{R}^n)$ for $1 \leq q < (p_\cdot')$. In fact, for given $p_1 > 1$ and $1 \leq q < (p_1)'$, we can find a smooth exponent $p(\cdot)$ on \mathbb{R}^n such that $p_- = p_1$, $f \in L^{p(\cdot)}(\mathbb{R}^n)$ and $\phi \in L^q(\mathbb{R}^n)$ having compact support for which

$$\|\phi * f\|_{L^p(\cdot), \mathbb{R}^n} = \infty.$$

For this, let $a \in \mathbb{R}^n$ be a fixed point with $|a| > 1$ and let p_2 satisfy

$$\frac{1}{(p_1)'} + \frac{1}{p_2} < \frac{1}{q}.$$

Then choose a smooth exponent $p(\cdot)$ on \mathbb{R}^n such that

$$p(x) = p_1 \text{ for } x \in B(0, 1/2), \quad p(x) = p_2 \text{ for } x \in B(a, 1/2),$$

$p_- = p_1$ and $p(x) =$ const. outside $B(0, |a| + 1)$. Take

$$\phi_j = j^{n/q} \chi_{B(a,j^{-1})} \quad \text{and} \quad f_j = j^{n/p_1} \chi_{B(0,j^{-1})}, \quad j = 2, 3, \ldots.$$

Then

$$\|\phi_j\|_{L^q, \mathbb{R}^n} = C < \infty \quad \text{and} \quad \|f_j\|_{L^{p(\cdot), \mathbb{R}^n}} = \|f_j\|_{L^{p_1, B(0,1/2)}} = C < \infty.$$

Note that if $x \in B(a,j^{-1})$ then

$$\phi_j * f_j(x) = j^{n/q+n/p_1} |B(a,j^{-1}) \cap B(x,j^{-1})| \geq C j^{n/q+n/p_1} j^{-n},$$

so that

$$\int_{\mathbb{R}^n} \{\phi_j * f_j(x)\}^{p(x)} dx \geq \int_{B(a,j^{-1})} \{\phi_j * f_j(x)\}^{p(x)} dx \geq C j^{p_2(n/q+n/p_1)-n} = C j^{p_2 n(1/q-1/(p_1)'-1/p_2)}.$$

Now consider

$$\phi = \sum_{j=2}^{\infty} j^{-2} \phi_{2j} \quad \text{and} \quad f = \sum_{j=2}^{\infty} j^{-2} f_{2j}.$$

Then $\phi \in L^q(\mathbb{R}^n)$ and $f \in L^{p(\cdot)}(\mathbb{R}^n)$. On the other hand,

$$\int_{\mathbb{R}^n} \{\phi * f(x)\}^{p(x)} dx \geq j^{-4} \int_{\mathbb{R}^n} \{\phi_{2j} * f_{2j}(x)\}^{p(x)} dx \geq C j^{-4j^{p_2 n(1/q-1/(p_1)'-1/p_2)}} \to \infty$$

as $j \to \infty$. Hence, $\|\phi * f\|_{L^p(\cdot), \mathbb{R}^n} = \infty.$
Remark 3.6. Cruz-Uribe and Fiorenza [1] gave an example showing that it can occur
\[\limsup_{t \to 0} \| \phi_t \ast f \|_{L^p(R)} = \infty \]
for \(f \in L^{p(\cdot)}(R) \) when \(\phi \) does not have compact support.

By modifying their example, we can also find \(p(\cdot) \) and \(\phi \in L^{(p-\cdot)'}(R) \), whose support is not compact, such that
\[\| \phi \ast f \|_{L^p(R)} \leq C \| f \|_{L^p(R)} \]
does not hold, namely there exists \(f_N (N = 1, 2, \ldots) \) such that \(\| f_N \|_{L^p(R)} \leq 1 \) and
\[\lim_{N \to \infty} \| \phi \ast f_N \|_{L^p(R)} = \infty. \]

For this purpose, choose \(p_1 > 1, \ p_2 > p_1 \) and \(a > 1 \) such that
\[-\frac{p_1}{p_2} - ap_1 + 2 > 0 \]
and let \(p(\cdot) \) be a smooth variable exponent on \(R \) such that
\[p(x) = p_1 \text{ for } x \leq 0, \quad p(x) = p_2 \text{ for } x \geq 1 \]
and \(p_1 \leq p(x) \leq p_2 \) for \(0 < x < 1 \). Set \(\phi = \sum_{j=1}^{\infty} \chi_j \), where \(\chi_j = \chi_{[-j, -j+j^{-a}]} \). Then
\[\int_{R} \phi(x)^q dx = \sum_{j=1}^{\infty} \int_{-j}^{-j+j^{-a}} \chi_j(x)^q dx = \sum_{j} j^{-a} \leq C(a) < \infty \]
for any \(q > 0 \). Further set \(f_N = N^{-1/p_2} \chi_{[1,N+1]} \). Note that for \(1-j+j^{-a} < x < 0 \) and \(j \leq N \)
\[\chi_j \ast f_N(x) \geq \int_{x+j-j^{-a}}^{x+j} \chi_j(x-y)f_N(y)dy = N^{-1/p_2} j^{-a}, \]
so that
\[
\int_{R} \{ \phi \ast f_N(x) \}^{p(x)} dx \geq \int_{-\infty}^{0} \left\{ \sum_{j=1}^{\infty} \chi_j \ast f_N(x) \right\}^{p_1} dx \\
\geq \sum_{j=2}^{N} \int_{-j-j^{-a}}^{0} \{ \chi_j \ast f_N(x) \}^{p_1} dx \\
\geq N^{-p_1/p_2} \sum_{j=2}^{N} j^{-ap_1} (j - j^{-a} - 1) \\
\geq CN^{-p_1/p_2-ap_1+2} \to \infty \quad (N \to \infty). \]
4 Young type inequalities

Cruz-Uribe and Fiorenza [1] conjectured that Theorem A remains true if \(\phi \) satisfies the additional condition

\[
|\phi(x - y) - \phi(x)| \leq \frac{|y|}{|x|^{n+1}} \quad \text{when } |x| > 2|y|.
\] (4.1)

Noting that this condition implies

\[
\sup_{x, z \in B(0, 2^{j+1}) \setminus B(0, 2^j)} |\phi(x) - \phi(z)| \leq C 2^{-nj},
\]
we see that \(\lim_{|x| \to \infty} \phi(x) = 0 \) since \(\phi \in L^1(\mathbb{R}^n) \) and

\[
|\phi(x)| \leq C|x|^{-n}.
\] (4.2)

if \(\phi \) satisfies (4.1). In this connection we show

Theorem 4.1. Let \(p_+ > 1 \). Suppose that \(\phi \in L^1(\mathbb{R}^n) \cap L^{(p_0)'}(B(0, R)) \) and \(\phi \) satisfies (4.2) for \(|x| \geq R \). Then

\[
\|\phi * f\|_{\Phi_{p(-)},q(-),\mathbb{R}^n} \leq C(\|\phi\|_{L^1,\mathbb{R}^n} + \|\phi\|_{L^{(p_0)'},B(0,R)})\|f\|_{\Phi_{p(-)},q(-),\mathbb{R}^n}
\]

for all \(f \in L^{p(-)}(\log L)^{q(-)}(\mathbb{R}^n) \).

Remark 4.2. Theorem 4.1 does not imply an inequality

\[
\|\phi_t * f\|_{\Phi_{p(-)},q(-),\mathbb{R}^n} \leq C\|f\|_{\Phi_{p(-)},q(-),\mathbb{R}^n}
\]

with a constant \(C \) independent of \(t \in (0, 1] \) even if \(\phi \) satisfies (4.2) for all \(x \), because \(\{\|\phi_t\|_{L^{(p_0)'},B(0,R)}\}_{0 < t \leq 1} \) is not bounded.

Proof of Theorem 4.1. Let \(f \) be a nonnegative measurable function on \(\mathbb{R}^n \) such that \(\|f\|_{\Phi_{p(-)},q(-),\mathbb{R}^n} \leq 1 \). Suppose that \(\phi \) satisfies (4.2) for \(|x| \geq R \) and \(\|\phi\|_{L^1,\mathbb{R}^n} + \|\phi\|_{L^{(p_0)'},B(0,R)} \leq 1 \). Decompose \(\phi = \phi' + \phi'' \), where \(\phi' = \phi \chi_{B(0,R)} \). We first note by Theorem 1.2 that

\[
\|\phi' * f\|_{\Phi_{p(-)},q(-),\mathbb{R}^n} \leq C.
\]

Hence it suffices to show that

\[
\|\phi'' * f\|_{\Phi_{p(-)},q(-),\mathbb{R}^n} \leq C.
\]

For this purpose, write

\[
f = f \chi_{\{y \in \mathbb{R}^n : f(y) \geq 1\}} + f \chi_{\{y \in \mathbb{R}^n : f(y) < 1\}} = f_1 + f_2,
\]

where

f_1 = \int_{\{y \in \mathbb{R}^n : f(y) \geq 1\}} f(y) dy
\]

and

f_2 = \int_{\{y \in \mathbb{R}^n : f(y) < 1\}} f(y) dy.

as before. Then we have by (4.2) and (Φ)

\[|\phi'' * f_1(x)| \leq C \int_{\mathbb{R}^n \setminus B(x, R)} |x - y|^{-n} f_1(y) \, dy \]

\[\leq CR^{-n} \int_{\mathbb{R}^n} f_1(y) \, dy \]

\[\leq CR^{-n} \int_{\mathbb{R}^n} \Phi_{p,q}(y, f(y)) \, dy \leq C. \]

Noting that \(|\phi'' * f_2| \leq 1\), we obtain

\[\int_{B(0,R)} \Phi_{p,q}(x, \phi'' * f(x)) \, dx \leq C. \]

Next, let \(h(y) = \Phi_{p,q}(y, f(y))\). Then

\[|\phi''| * h(x) \leq CR^{-n} \int_{\mathbb{R}^n} h(y) \, dy \leq CR^{-n}. \]

If \(x \in \mathbb{R}^n \setminus B(0, R)\), then we have by (4.2) and Lemma 3.3

\[|\phi'' * f(x)| \leq \int_{B(0,|x|/2)} |\phi''(x - y)| f(y) \, dy + \int_{\mathbb{R}^n \setminus B(0,|x|/2)} |\phi''(x - y)| f(y) \, dy \]

\[\leq C \left\{ |x|^{-n} \int_{B(|x|,|x|/2)} f(y) \, dy + \left(|\phi''| * h(x) \right)^{1/p(x)} + |x|^{-A/p(x)} \right\} \]

\[\leq C \left\{ Mf(x) + \left(|\phi''| * h(x) \right)^{1/p(x)} + |x|^{-A/p(x)} \right\} \]

with \(A > n\). Now it follows from Proposition 2.5 that

\[\int_{\mathbb{R}^n \setminus B(0, R)} \Phi_{p,q}(x, |\phi'' * f(x)|) \, dx \]

\[\leq C \left\{ \int_{\mathbb{R}^n \setminus B(0, R)} \Phi_{p,q}(x, Mf(x)) \, dx \right\}

+ \int_{\mathbb{R}^n} |\phi| * h(x) \, dx + \int_{\mathbb{R}^n \setminus B(0, R)} |x|^{-A} \, dx \]

\[\leq C, \]

as required. \(\square\)

Theorem 4.3. Let \(1 - p_-/p_+ \leq \theta < 1, 1 < \tilde{p} < p_-\),

\[\frac{1}{s} = 1 - \frac{\theta}{\tilde{p}} \quad \text{and} \quad \frac{1}{r(x)} = \frac{1 - \theta}{p(x)}. \]

Take \(\nu = p_- / \tilde{p}\) if \(t^{-\nu - \tilde{p}} \Phi_{p,q}(x, t)\) is uniformly almost increasing in \(t\); otherwise choose \(1 \leq \nu < p_- / \tilde{p}\). Suppose that \(\phi \in L^1(\mathbb{R}^n) \cap L^s(\mathbb{R}^n) \cap L^{\nu'}(B(0, R))\) and \(\phi\) satisfies

\[|\phi(x)| \leq C|x|^{-n/s} \]

14
for $|x| \geq R$. Then
\[\| \phi * f \|_{L^r, \mathbb{R}^n} \leq C(\| \phi \|_{L^1, \mathbb{R}^n} + \| \phi \|_{L^s, \mathbb{R}^n} + \| \phi \|_{L^{s'}, B(0, R)}) \|f\|_{\Phi_{\phi, \eta}} \mathbb{R}^n \]
for all $f \in L^{p'}(\log L)^{q'}(\mathbb{R}^n)$.

Proof. Suppose that $\| \phi \|_{L^1, \mathbb{R}^n} + \| \phi \|_{L^s, \mathbb{R}^n} + \| \phi \|_{L^{s'}, B(0, R)} \leq 1$ and ϕ satisfies
\[|\phi(x)| \leq C|x|^{-n/s} \]
for $|x| \geq R$. Let f be a nonnegative measurable function on \mathbb{R}^n such that $\| f \|_{\Phi_{\phi, \eta}} \mathbb{R}^n \leq 1$, and decompose
\[f = f_1 + f_2, \]
where $f_1 = f \chi_{\{x \in \mathbb{R}^n : f(x) \geq 1\}}$. Let
\[\frac{1}{r} = \frac{1 - \theta}{p_-} \quad \text{and} \quad \frac{1}{s_1} = 1 + \frac{1}{r} - \frac{1}{p_+}. \]

By our assumption, $s_1 \geq 1$. It follows from Young’s inequality for convolution that
\[\| \phi * f_2 \|_{L^r, \mathbb{R}^n} \leq \| \phi \|_{L^{s_1}, \mathbb{R}^n} \| f_2 \|_{L^{p_1}, \mathbb{R}^n}. \]

Here note that $1 \leq s_1 < s$, so that $\| \phi \|_{L^{s_1}, \mathbb{R}^n} \leq \| \phi \|_{L^1, \mathbb{R}^n} + \| \phi \|_{L^s, \mathbb{R}^n} \leq 1$. Since $0 \leq f_2 < 1$, $\| f_2 \|_{L^{p_1}, \mathbb{R}^n} \leq C \| f \|_{\Phi_{\phi, \eta}} \mathbb{R}^n \leq C$. Thus, noting that $|\phi * f_2| \leq 1$ and
\[\frac{1}{r(x)} - \frac{1}{r} = \frac{1 - \theta}{p(x)} - \frac{1 - \theta}{p_-} \leq 0, \]
we see that
\[\| \phi * f_2 \|_{\Phi_{\phi, \eta}} \mathbb{R}^n \leq C \| \phi * f_2 \|_{L^r, \mathbb{R}^n} \leq C. \quad (4.3) \]

On the other hand, we have by Hölder’s inequality
\[
|\phi * f_1(x)| \leq \left(\int_{\mathbb{R}^n} |\phi(x - y)|^s f_1(y)^{p} dy \right)^{1 - \theta/p} \left(\int_{\mathbb{R}^n} |\phi(x - y)|^s dy \right)^{-1/p} \\
\times \left(\int_{\mathbb{R}^n} |f_1(y)|^{p_1} dy \right)^{\theta/p} \\
\leq C \left(|\phi|^s * f_1^p(x) \right)^{(1 - \theta)/p} \quad (4.4)
\]

Noting that $|\phi|^s \in L^1(\mathbb{R}^n) \cap L^{s'}(B(0, R))$, $|\phi|^s$ satisfies (4.2) for $|x| \geq R$ and $\|f_1^p\|_{\Phi_{\phi, \eta}} \mathbb{R}^n \leq C$, we find by Theorem 4.1
\[\|\phi^s * f_1^p\|_{\Phi_{\phi, \eta}} \mathbb{R}^n \leq C. \]
Since (4.4) implies
\[\Phi_{r,q}(x, \phi * f_1(x)) \leq C \Phi_{p,q}(x, |\phi|^s f_1^p(x)), \]
it follows that
\[\|\phi * f_1\|_{\Phi_{r,q}, R^n} \leq C. \]
Thus, together with (4.3), we obtain
\[\|\phi * f\|_{\Phi_{r,q}, R^n} \leq C, \]
as required.

Remark 4.4. Cruz-Uribe and Fiorenza [1] conjectured that Theorem A remains true if \(\phi \) satisfies the additional condition (4.1).

If \(p_- > 1 \), this conjecture was shown to be true by D. Cruz-Uribe, A. Fiorenza, J.M. Martell and C. Pérez in [3], using an extrapolation theorem ([3, Theorem 1.3 or Corollary 1.11]). Using our Proposition 2.5, we can prove the following extension of [3, Theorem 1.3]:

Proposition 4.5. Let \(\mathcal{F} \) be a family of ordered pairs \((f, g)\) of nonnegative measurable functions on \(\mathbb{R}^n \). Suppose that for some \(0 < p_0 < p_- \),
\[\int_{\mathbb{R}^n} f(x)^{p_0} w(x) \, dx \leq C_0 \int_{\mathbb{R}^n} g(x)^{p_0} w(x) \, dx \]
for all \((f, g)\) \(\in \mathcal{F} \) and for all \(A_1 \)-weights \(w \), where \(C_0 \) depends only on \(p_0 \) and the \(A_1 \)-constant of \(w \). Then
\[\|f\|_{\Phi_{p,q}, R^n} \leq C \|g\|_{\Phi_{p,q}, R^n} \]
for all \((f, g)\) \(\in \mathcal{F} \) such that \(g \in L^{p_0}(\log L)^{q_0}(\mathbb{R}^n) \).

Then, as in [3, p. 249], we can prove:

Theorem 4.6. Assume that \(p_- > 1 \). If \(\phi \) is an integrable function on \(\mathbb{R}^n \) satisfying (4.1), then
\[\|\phi_t * f\|_{\Phi_{p,q}, R^n} \leq C \|f\|_{\Phi_{p,q}, R^n} \]
for all \(t > 0 \) and \(f \in L^{p_0}(\log L)^{q_0}(\mathbb{R}^n) \). If in addition \(\int \phi(x) \, dx = 1 \), then
\[\lim_{t \to 0} \|\phi_t * f - f\|_{\Phi_{p,q}, R^n} = 0. \]
5 Appendix

For \(p \geq 1, q \in \mathbb{R} \) and \(c \geq e \), we consider the function
\[
\Phi(t) = \Phi(p, q, c; t) = t^p (\log(c + t))^q, \quad t \in [0, \infty).
\]

In this appendix, we give a proof of the following elementary result:

Theorem 5.1. Let \(X \) be a non-empty set and let \(p(\cdot) \) and \(q(\cdot) \) be real valued functions on \(X \) such that \(1 \leq p(x) \leq p_0 < \infty \) for all \(x \in X \). Then, the following (1) and (2) are equivalent to each other:

1. There exists \(c_0 \geq e \) such that \(\Phi(p(x), q(x), c_0; \cdot) \) is convex on \([0, \infty)\) for every \(x \in X \);
2. There exists \(K > 0 \) such that \(K(p(x) - 1) + q(x) \geq 0 \) for all \(x \in X \).

This theorem may be well known; however the authors fail to find any literature containing this result.

This theorem is a corollary to the following

Proposition 5.2. (1) If
\[
(1 + \log c)(p - 1) + q \geq 0,
\]
then \(\Phi \) is convex on \([0, \infty)\).

(2) Given \(p_0 > 1 \) and \(c \geq e \), there exists \(K = K(p_0, c) > 0 \) such that \(\Phi \) is not convex on \([0, \infty)\) whenever \(1 \leq p \leq p_0 \) and \(q < -K(p - 1) \).

Proof. By elementary calculation we have
\[
\Phi''(t) = t^{p-2}(c + t)^{-2}(\log(c + t))^{q-2}G(t)
\]
with
\[
G(t) = p(p-1)(c+t)^2(\log(c+t))^2 + 2pqt(c+t)\log(c+t) - qt^2\log(c+t) + q(q-1)t^2
\]
for \(t > 0 \). \(\Phi(t) \) is convex on \([0, \infty)\) if and only if \(G(t) \geq 0 \) for all \(t \in (0, \infty) \).

1. If \(q \geq 0 \), then
\[
G(t) \geq qt(2p(c + t) - t) \log(c + t) - qt^2 \geq qt(2pc + 2(p - 1)t) \geq 0
\]
for all \(t \in (0, \infty) \), so that \(\Phi \) is convex on \([0, \infty)\).

If \(-1 + \log c)(p - 1) \leq q < 0 \), then
\[
G(t) = p \left\{ \sqrt{p - 1} (c + t) \log(c + t) + \frac{q}{\sqrt{p - 1}} t \right\}^2
\]
\[\quad - \frac{pq^2}{p - 1} t^2 - qt^2 \log(c + t) + q(q - 1)t^2 \]
\[\geq (-q)t^2 \left(\frac{pq}{p - 1} + \log c - (q - 1) \right) \]
\[= (-q)t^2 \left(\frac{q}{p - 1} + \log c + 1 \right) \geq 0
\]
for all \(t \in (0, \infty) \), so that \(\Phi \) is convex on \([0, \infty)\).

(2) If \(p = 1 \) and \(q < 0 \), then
\[
G(t) = qt((t + 2c) \log(c + t) + (q - 1)t) \to -\infty
\]
as \(t \to \infty \). Hence \(\Phi \) is not convex on \([0, \infty)\).

Next, let \(1 < p \leq p_0 \) and \(q = -k(p - 1) \) with \(k > 0 \). Then
\[
\frac{G(t)}{p - 1} = p((c + t) \log(c + t) - kt)^2 + k(\log(c + t) - k + 1)t^2
\leq p_0((c + t) \log(c + t) - kt)^2 + k(\log(c + t) - k + 1)t^2.
\]
Let \(\lambda = 1 - 1/(2p_0) \). Then \(0 < \lambda < 1 \). If \(k > (\log c)/\lambda \), there is (unique) \(t_k > 0 \) such that \(\log(c + t_k) = \lambda k \). Note that \(t_k/k \to \infty \) as \(k \to \infty \). We have
\[
\frac{G(t_k)}{p - 1} \leq p_0((c + t_k)\lambda k - kt_k)^2 + k(\lambda k - k + 1)t_k^2
= kt_k^2 \left\{ (p_0(1 - \lambda) - 1)(1 - \lambda)k + 1 - 2p_0c\lambda(1 - \lambda)\frac{k}{t_k} + p_0c^2\lambda^2\frac{k}{t_k^2} \right\}.
\]
Since \(p_0(1 - \lambda) - 1 = -1/2 \), it follows that there is \(K = K(c, p_0) > (\log c)/\lambda \) such that \(G(t_k) < 0 \) whenever \(k \geq K \). Hence \(\Phi \) is not convex if \(1 < p \leq p_0 \) and \(q \leq -K(p - 1) \).

\[\square \]

Acknowledgement The authors are grateful to the referee for his/her valuable comments.

References

4-24 Furuie-higashi-machi, Nishi-ku
Hiroshima 733-0872, Japan
E-mail: fyamaeda@h6.dion.ne.jp

and

Department of Mathematics
Graduate School of Science
Hiroshima University
Higashi-Hiroshima 739-8521, Japan
E-mail: yomizuta@hiroshima-u.ac.jp

and

General Arts
Hiroshima National College of Maritime Technology
Higashino Oosakamijima Toyotagun 725-0231, Japan
E-mail: ohno@hiroshima-cmt.ac.jp