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Abstract

Our aim in this paper is to deal with approximate identities in generalized
Lebesgue spaces LP() (log L)4)(R™). As a related topic, we also study Young
type inequalities for convolution with respect to norms in such spaces.

1 Introduction

Following Cruz-Uribe and Fiorenza [2], we consider two variable exponents p(-) :
R" — [1,00) and ¢(-) : R® — R, which are continuous functions. Letting
Dy g0y (T, t) = 7@ (log(co + 1)1, we define the space LP0)(log L)10)(€2) of all
measurable functions f on an open set {2 such that

/ Pp(y.a() (% &Ay)') dy < oo
Q

for some A > 0; here we assume
(®) Ppryq)(2,-) is convex on [0, 00) for every fixed z € R™.

Note that (@) holds for some ¢q > e if and only if there is a positive constant K
such that
K(p(z) —1)+q(x) >0 foralzeR" (1.1)

(see Appendix). Further, we see from (®) that ¢~'®,.) o) (x, ) is nondecreasing in
t.
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We define the norm

Hf”<1>p<<>,q<l>,ﬂ = inf {>\ >0: /Qq)p(.m(.) (y, @) dy < 1}

for f € L) (log L)1) (Q). Note that L) (log L)?")(Q) is a Musielak-Orlicz space
[9]. Such spaces have been studied in [2, 8, 10]. In case ¢(-) = 0 on R", L") (log L)7")(Q2)
is denoted by LPO)(Q) ([7]).

We assume throughout the article that our variable exponents p(-) and ¢(-) are
continuous functions on R" satisfying :

(pl) 1 <p_ :=inf,ern p(z) < sUp,er» p(T) =: py < 00;

C
p2) |p(z) —ply)| < whenever x € R" and y € R";
(42) o) =20 <
(p3) |p(z) —p(y)| < _c whenever |y| > |x|/2;
P p pPy)| = log(e + |z]) Yyl = )

(ql) —oo < ¢— :==infern ¢(x) < sup,cpn ¢(x) =: ¢+ < 00;

C

< h R"™ and R"
< log(e+10g(e+1/|x—y|)) whenever r € and y €

(a2) [g(z) = q(y)

for a positive constant C'.

We choose pg > 1 as follows: we take py = p_ if t7P-®p) 4y (2,t) is uni-
formly almost increasing in ¢; more precisely, if there exists C' > 0 such that
5Py gy (@, 5) < CtP= Dy gy (w,t) whenever 0 < s < ¢t and z € R". Other-
wise we choose 1 < pg < p—. Then note that t7P°®, . ;) (x,t) is uniformly almost
increasing in ¢ in any case.

Let ¢ be an integrable function on R". For each ¢t > 0, define the function ¢,
by ¢i(x) = t™"¢(z/t). Note that by a change of variables, ||¢¢||L1 rn = ||@||L2 rn-
We say that the family {¢} is an approximate identity if [g, ¢(z)dz = 1. Define
the radial majorant of ¢ to be the function

o(z) = sup |p(y)|.

y|=|x|

If ¢ is integrable, we say that the family {¢,} is of potential-type.
Cruz-Uribe and Fiorenza [1] proved the following result:

THEOREM A. Let {¢;} be an approximate identity. Suppose that either:
(1) {¢:} is of potential-type, or
(2) ¢ € LP-)'(R™) and has compact support.
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Then
sup ||¢t * f”LP(‘),R" < C||f||LP<'>,R"
0<t<1

and
Jim 1615 f = fll oo o =0

for all f € LPO(R™).

Our aim in this note is to extend their result to the space LP")(log L)?")(Q2) of
two variable exponents.

THEOREM 1.1. Let {¢,} be a potential-type approximate identity. If f € LP")(log L)?")(R"),
then {¢, * f} converges to f in L") (log L)1) (R"):

1{% ||¢t * f - f”q)p(,),q(.),R" =0.

THEOREM 1.2. Let {¢;} be an approximate identity. Suppose that ¢ € LP)' (R")
and has compact support. If f € LP")(log L)2")(R™), then {¢; * f} converges to f
in LP0)(log L)1) (R"):

}5% ||¢t * f - f”q)p(.%q(.),R” = 0.

We show by an example that the conditions on ¢ are necessary; see Remarks
3.5 and 3.6 below.

Finally, in Section 4, we give some Young type inequalities for convolution with
respect to the norms in LP0)(log L)?")(R™).

2 The case of potential-type

Throughout this paper, let C' denote various positive constants independent of the
variables in question.
Let us begin with the following result due to Stein [11].

LEMMA 2.1. Let 1 < p < oo and {¢;} be a potential-type approximate identity.
Then for every f € LP(R"™), {¢; * f} converges to f in LP(R").

We denote by B(x,r) the open ball centered at € R™ and with radius r > 0.
For a measurable set E, we denote by |E| the Lebesgue measure of E.
The following is due to Lemma 2.6 in [§].

LEMMA 2.2. Let f be a nonnegative measurable function on R" with || f||e
1 such that f(x) > 1 or f(z) =0 for each x € R". Set

p(-).a() R <

1
J=J(x,r f)= ‘B(:C—;TM/B(:E,T) f(y)dy
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and

L=L(z,r f)= x”/ D)0 (Y f(y))dy

Then
J < C’Ll/”(’”)(log(co + L))—Q(ﬂﬂ)/?(m)7

where C' > 0 does not depend on z,r, f.
Further we need the following result.

LEMMA 2.3. Let f be a nonnegative measurable function on R™ such that (1 +
ly|)™" 1 < f(y) <1 or f(y) =0 for each y € R™. Set

1

J=1J -
D = B Lo

f(y)dy

and
1

L =1 - -
@ D = B o

Dpiy.a() (Y, f(y)dy

Then
J < C{LYP® (14 |z))™ 7},

where C' > 0 does not depend on x,r, f.

Proof. We have by Jensen’s inequality

1 @ 1/p(x)
J < —/ Jy)™* dy)
(]B(:z:,r)\ B(z,r) ( )

1 (@) 1/p(x) 1 (@) 1/p(x)
S sorian) (o | iy )
( |B(z,7)] /B(z,r)ﬂB(0,|z|/2) |B(z,7)] B(z,r)\B(0,|z|/2)
= Ji+ Jo,

We see from (p3) that

1 W 1/p(x)
B o< c(— / f(y)”dy) .
|B(z, 1) B(z,r)NB(0,|z|/2)

Similarly, setting Fy = {y € R": f(y) > (1 + |x|)™™ '}, we see from (p3) that

1 1/p(z)
ho<C (— /. iy )
|B(x,r)| (z,7)\B(0,|z|/2) }NEs

1/p(z)
(1 + |x|)—p(x)(n+1)dy)

IN

m /
(@, 7)] J (BBl /2) 1\ Bs
/()
C{ f(y)p(y)dy) + (14 [a))~ D } -

Since f(y) < 1, f(y)P¥) < CPpy 41 (y, f(y)). Hence, we have the required esti-
mate. [

|B T, T | B(z,r)



By using Lemmas 2.2 and 2.3, we show the following theorem.

THEOREM 2.4. If {¢,} is of potential-type, then
||¢t * f”q)p(.)yq(.),Rn S CHngLl,R"||f||¢‘p(.),q(.),R"

for all t > 0 and f € LPV)(log L)1) (R™).

Proof. Suppose ||¢|| 1 re = 1 and take a nonnegative measurable function f on R"
such that || f[ls,., ., re < 1. Write

[ = IXwernfw)=1 + [X{yerm i) —-1<r <1} T FX{yeRrmf)<+y) 1}
= fit+fot fs

where xp denotes the characteristic function of a measurable set £ C R".
Since ¢, is a radial function, we write ¢;(r) for ¢;(x) when |z| = r. First note
that

|60 f2)] < - dillr =y fiy)dy

_ A”<E§%7ﬂﬂ¥wfuw@0|B@nﬂa—@w»,

so that Jensen’s inequality and Lemma 2.2 yield

Dy .q() (2, [0 * fr(z)])

< [ oo (o gy L A0 ) 8GNt

<cf Qm 5 ol B ) 1B =60
= C(éix9)(@),
where g(y) = Pp)q¢) (¥, f(y)). The usual Young inequality for convolution gives

| v losn@hts < ¢ [ (@Geg@as
n Rn
<l gl < C.

Similarly, noting that ngw)' i) Blar) fo(y)dy < 1 and applying Lemma 2.3, we
derive the same result for fs.
Finally, noting that |¢; * f3| < C||¢¢]| 1 r» < C, we obtain

/ Dpyq() (@, @ x fa(z))de < C | | * f3(z)|dw
n Rn
< Cllollp rell fsll e < C,

as required. O



We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Given e > 0, we find a bounded function g in L") (log L)?")(R")
with compact support such that ||f — g||e < e. By Theorem 2.4 we have

H(bt * f - f”@p(.),q(.),R"
”d)t * (f - g)”¢p(~),q(~)7Rn + qut *g— g"¢p(4)7q(4),Rn + Hf - g|"1)p(.)7q(.),R"
05 + ||¢t *g — qu)p(.),q(.),R"‘

p(),a()R"

<
<

Since |¢ * g| < ||g]|Lo R,
H¢t *g — g”qﬁ)(.),q(.),R" g Cl”¢t *g — gHL17R" - O

by Lemma 2.1. (Here C’ depends on ||g||z~ r~). Hence
hI? SOup ||¢t * f — f||¢p(-)’q(-)7Rn < Ck,

which completes the proof. O]

As another application of Lemmas 2.2 and 2.3, we can prove the following
result, which is an extension of [4, Theorem 1.5] and [8, Theorem 2.7] (see also

[6])-

Let M f be the Hardy-Littlewood maximal function of f.

ProproOSITION 2.5. Suppose p_ > 1. Then the operator M is bounded from
L0 (log L)?)(R™) to LPY) (log L)) (R™).

Proof. Let f be anonnegative measurable function on R" such that || f{|s,, ., & <
1 and write f = f1 + fo + f5 as in the proof of Theorem 2.4. Take 1 < p; < p_
and apply Lemmas 2.2 and 2.3 with p(:) and ¢(-) replaced by p(:)/p1 and q(-)/p1,
respectively. Then

Dp(yq) (@, M fi(z)) < C[M gy ()"

and
Dp(y,q0) (@, M fo()) < C{[Mgy () + (1+[z]) "'},

where g1(y) = ®p)/p1a)/m Y, f(y)). As to f5, we have
Pp(yq (@, M f3(x)) < C[M f3(x)]”.

Then the boundedness of the maximal operator in LP*(R™) proves the proposition.
]

REMARK 2.6. If p_ > 1, then the function @, 4 is a proper N-function and our
Proposition 2.5 implies that this function is of class A in the sense of Diening [5]
(see [5, Lemma 3.2]). It would be an interesting problem to see whether “class A”
is also a sufficient condition or not for the boundedness of M on LP()(log L)?")(R™).



3 The case of compact support
We know the following result due to Zo [12]; see also [1, Theorem 2.2].

LEMMA 3.1. Let 1 <p <oo, 1/p+1/p' =1 and {¢;} be an approximate identity.
Suppose that ¢ € L (R") has compact support. Then for every f € LP(R"),
{¢: x [} converges to [ pointwise almost everywhere.

Set

p(x) =p(x)/po  and  G(z) = q(z)/po:

recall that py € [1,p_] is chosen such that ¢t7P0®,. (2, t) is uniformly almost
increasing in t.
For a proof of Theorem 1.2, the following is a key lemma.

LEMMA 3.2. Let f be a nonnegative measurable function on R" with || fl[e,, ,., R <

1 such that f(x) > 1 or f(x) =0 for each x € R™ and let ¢ have compact support
in B(0, R) with |||l ey gn < 1. Set

F =F(x,t f)=|¢ % f(2)]

and

G =Gzt f)= /R 9e(x = 9)|Pp()a0) (W, [ (y))dy.

Then
F < CGYP@) (log(co 4+ G))~1®)/P(@)

for all 0 <t < 1, where C' > 0 depends on R.
Proof. Let f be a nonnegative measurable function on R™ with || f|ls,, ., r <1

such that f(z) > 1 or f(z) = 0 for each z € R™ and let ¢ have compact support
in B(0, R) with ||| ey gn < 1. By Holder’s inequality, we have

1/po
G < ||¢t||L(F0)/7Rn (/ @p(.),q(,)(y,f(y)) dy) < /o

First consider the case when G > 1. Since G < ¢t~/ for y € B(z,tR) we have
by (p2)

GPW < GP@+C/ log(e+(tR) 1) < CGr@
and by (q2)
(log(co + G))q(y) < C(log(co + G))Q(“).
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Hence it follows from the choice of pg that

F < gY@ (log(co + G))~ a(@)/p(= / |pe(z — y)|dy

) py)—1
C’/Rn |pe(7 — y)| f(y) {Gl/p(x) (log(co _?T_ G))~1=)/p() }

{ log(co + f(y)) } (y)d
log(co + G1/P(@) (log(co + G))-1@)/p@) Y

< CGYP@)(log(cy + G))1)/P@)

(cf. the proof of [8, Lemma 2.6]).
In the case G < 1, noting from the choice of py that f(y) < CPp)z0)(v, f(v))
for y € R", we find

F<OG< oGY/p@) < CGl/ﬁ(z)aOg(Co + G))—a(ao)/ﬁ(x)_
Now the result follows. O

LEMMA 3.3. Suppose that ||¢|p1re < 1. Let f be a nonnegative measurable
function on R"™ with | f{le,, ., r» < 1. Set

(ot f) = / 6e(x — )| £ (y)dy
{yeR™:|y|>|x|/2}

H =1t )= [l = )0 ()l
If A >0 and H < H,, then

and

1< C(Hl/p + |z~ A/p(w))
for x| > 1 and 0 <t <1, where C' > 0 depends on A and H,.

Proof. Suppose that ||¢[/: r» < 1. Let f be a nonnegative measurable function
on R™ with |’qu>p(<),q(<)7Rn S 1.
Let |z| > 1. In the case Hy > H > |z|~* with A > 0, we have by (p3)

H Y < gg-p@)-C/legletlz) < o fr—r)

for |y| > |z|/2. Hence we find by (P)

I < c{me N / ez — )£ ()
{yeR":|y|>|z|/2}

Fly) "7 [ log(eo + f(y) ™Y
A} ooy )

< C HY/P@)




Next note from (p3) that

‘x’p(y) < ‘x|p(w)+0/log(e+\wl) §C|:c|p(’”)

for |y| > |x|/2. Hence, when H < |z|=4, we obtain by (®)

< c{|x|—A/p<w> - [ (e — )IF W)
{yeR":|y|>|z|/2}

fly) "W logleo + fy) Y
- { || ~A/p(@) } {1og<co + \x|—A/p<x>>} dy}

< Claf A7),

which completes the proof. O

THEOREM 3.4. Suppose that ¢ € L)' (R™) has compact support in B(0, R). Then

[0 * fllo, o e < ClONpwor mall flle,) o mn
for all 0 <t <1 and f € LP")(log L)?")(R™), where C > 0 depends on R.

Proof. Let f be anonnegative measurable function on R" such that || f{|s,, ., r» <
1 and let ¢ have compact support in B(0, R) with ||@||; oy g < 1. Write

J = I Xtyerrf)21) T [ X{yern:p)<1y = f1+ fo.

We have by Lemma 3.2,
¢ * f1(2)] < C(|e| % g())P/P @ (log(co + |de] * g(x)))9=/P),
where g(y) = ®p0).q0) (W F()) = Poy.ae) (W, f ()70, so that

Dp().q0) (@, @ * fr(2)]) < C(|ee]  g())™. (3.1)

Hence, since g € LP°(R"), the usual Young inequality for convolution gives

/ Potyat) (@ |6 * fil@))de < C / ([0l  g(a))P>d
n Rn
< Ol mallgllirrn)™ < C.

Next we are concerned with fo. Write

fo= foxBo.r) + foxmmBoR) = f2+ f5.

Since [¢¢ * fo(z)| < C on R", we have
/ Dp().q0) (@, |1 * fo)])dw < C.
B(0,2R)
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Further, noting that ¢, x fi = 0 outside B(0,2R), we find

/R Dp)q) (T, [P * fo()])da < C.

Therefore it suffices to prove

/ Dy, (T, |00 fo (2)])da < C.
R"\B(0,2R)

Thus, in the rest of the proof, we may assume that 0 < f <1 on R" and f =0
on B(0, R). Note that

t/ ol — ) f(y)dy = 0
B(0,]x]/2)

for |x| > 2R. Hence, applying Lemma 3.3, we have
|6 f(@)[" < C(|1n] * h(x) + |2[~)

for |x| > 2R, where h(y) = ®p)q¢) (¥, f(y)). Thus the integration yields

/ﬁ 6% f(2) PPz < C,
R\ B(0,2R)

which completes the proof. ]
We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Given € > 0, choose a bounded function g with compact
support such that ||f — g||q>p(‘),q(‘ Rr» < €. As in the proof of Theorem 1.1, using
Theorem 3.4 this time, we have

)

||¢t * f — fHCPp(.),q(.),R" < Ce+ Hébt *g = g||¢p(-)’q(-)7Rn'

Obviously, g € LP(R™). Hence by Lemma 3.1, ¢; * g — ¢ almost everywhere in
R". Since there is a compact set S containing all the supports of ¢; * g,

qut *g— g”@p(A),q(A),R" < C/H(bt * g — gHLp++17Rn

with C” depending on |S|, and the Lebesgue convergence theorem implies ||¢; * g —
gllpp++1 gn — 0 as t — oo. Hence

lim sup 160 % f = fllo,,,re < Cé,
which completes the proof. O
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REMARK 3.5. In Theorem 1.2 (and in Theorem A), the condition ¢ € L®-)'(R™)
cannot be weakened to ¢ € LI{(R"™) for 1 < ¢ < (p_)'. In fact, for given p; > 1
and 1 < ¢ < (p1)’, we can find a smooth exponent p(-) on R" such that p_ = py,
f € LPO(R™) and ¢ € LI(R™) having compact support for which

16 fll o) mn = 00
For this, let a € R™ be a fixed point with |a| > 1 and let p, satisfy
1 1 1

— << .
(Pl)/ D2 q

Then choose a smooth exponent p(-) on R™ such that

p(z) = p; for x € B(0,1/2), p(z) = ps for z € B(a,1/2),
p— = p1 and p(z) = const. outside B(0, |a| + 1). Take

;= 3" "By and  f; =" xpe, G=23,.. .
Then

[¢jllLapn = C < oo and | fjllro e = [ fillzerB0/2) = € < 00.
Note that if 2 € B(a,j~') then
6 % f(x) = 3" Bla, i) 0 Blw, ] 2 O

so that

(6% fy(@)P@dr > / (6% f3(2) )@ da
R” B(a,j~1)

> ij2(n/q+n/p1 —n)j—n
_ ijzn(l/qfl/(pl)’*l/pz)

Now consider

6= j 0 and f=) jfo.
j=2

Jj=2

Then ¢ € L4(R™) and f € LPO)(R™). On the other hand,

{ox f(@)}PDdz > 77 [ {¢o * fos(2)}Pda
R~ R
> Cj*42p2nj(1/q71/(p1)/fl/pg) oo

as j — oo. Hence, ||¢ * fl|1o) gn = 00.
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REMARK 3.6. Cruz-Uribe and Fiorenza [1] gave an example showing that it can
occur

limsup ||¢ * fl| o) g = 00

t—0

for f € LP)(R) when ¢ does not have compact support.
By modifying their example, we can also find p(-) and ¢ € L®-)'(R), whose
support is not compact, such that

16 flloorm < Cllf o)
does not hold, namely there exists fx (/N = 1,2,...) such that || fx||p»() g <1 and
]\P_{noo ¢ * fN”LP<‘>,R = 0.
For this purpose, choose p; > 1, po > p; and a > 1 such that
—p1/p2 —ap1 +2>0
and let p(-) be a smooth variable exponent on R such that
p(z) =p1 forz <0, p(z)=py forz>1

and p; < p(z) <pyfor0 <z < 1. Set ¢ = Z;; Xj, where x; = X[—j —j+j-). Then

F—a

[o.¢] _‘+
A¢(m)qu=;/j] ] qu—ZJ < C(a

for any ¢ > 0. Further set fy = N~ /p2X[1 ~n+1)- Note that for 1 —j+j57¢ <z <0
and j < N

z+7
Xj* fa(z) > / Xj(x —y) fn(y)dy = N~VP e,

+i=i "

so that

/R{¢ s fy(2)P@dz > /_(; {ixj . fN(I)}pl N
é/:j_ja{xg‘ * fy(z)} P de

N
> NIy =g =)
j=2

v

> O N —Pr/p2—api+2 _ o (N — o0).
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4 Young type inequalities

Cruz-Uribe and Fiorenza [1] conjectured that Theorem A remains true if ¢ satisfies
the additional condition

Y|

|0z —y) — o(x)] < e hen |z > 2yl (4.1)
Noting that this condition implies
sup |6(z) — d(2)] < €277,

z,2€B(0,291t1)\ B(0,27)
we see that limj, o ¢(z) = 0 since ¢ € L'(R™) and
()| < Cla| ™. (4.2)
if ¢ satisfies (4.1). In this connection we show

THEOREM 4.1. Let p_ > 1. Suppose that ¢ € L'(R™) N L®)'(B(0,R)) and ¢
satisfies (4.2) for |x| > R. Then

165 fllo, )00 mr < CUION LR + [0l Lo 50,R)) |90 000 R
for all f € LP")(log L)1) (R™).
REMARK 4.2. Theorem 4.1 does not imply an inequality

I * f”‘l’p(o,q(wR" S C“fH‘I’p(-),q(-)’R"

with a constant C' independent of ¢ € (0, 1] even if ¢ satisfies (4.2) for all z, because
{l1@¢ll o B0, Ry bo<t<1 is not bounded.

Proof of Theorem j.1. Let f be a nonnegative measurable function on R™ such
that || fls,., ., < 1. Suppose that ¢ satisfies (4.2) for |z[ > R and ||¢]| 12 r» +
]|¢\|L(p0y7B(O,R) < 1. Decompose ¢ = ¢’ + ¢", where ¢’ = ¢pxp,r). We first note by
Theorem 1.2 that

||¢/ * f”q)p(,),q(.),R” S C.

Hence it suffices to show that

||¢” * f||¢p<4>’q<4>,R" S C.

For this purpose, write

[ = Xernfw)=1y + fXyernpw<1y = f1 + fo,
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as before. Then we have by (4.2) and (P)
B h@l £ [ ey Ay
R"\B(z,R)
< CR™ fi(y)dy
R”l
< CR™ / Dp(q0) (s f(y))dy < C.
Noting that |¢” * fo| < 1, we obtain
/ @p(.),q(.)(x, qf)” ES f(x))dx S C
B(0,R)
Next, let h(y) = ®p()q¢) (¥, f(y)). Then
|¢"| % h(x) < C’R_”/ h(y)dy < CR™™.

If z € R"\ B(0, R), then we have by (4.2) and Lemma 3.3

¢ % f(2) s/ 16" (2 — 9)1f (9)dy + / 16" (@ — o)1/ (9)dy
B(0,]z|/2) R™\B(0,|z|/2)

< cfler Wy + (1)« ) 7 4 a0
Ba:3\a:|/2

< C{MF@)+ (18] h@) " + o]0}

with A > n. Now it follows from Proposition 2.5 that

/ Dy g (@, |97 * f(2)])dx
R"\B(0,R)

< C{/ (bp(.)ﬂ(.)(ib, Mf(x))dx
R\ B(0,R)

—l—/ || *h(:c)d:c—i—/ \x!‘Adw}
R" R™"\B(0,R)

as required. O

<,

THEOREM 4.3. Let 1 —p_/p, <0 <1,1<p<p_,

1:1—2 and Lzl_e.
s p r(z)  pr)

Takev =p_/p ift*p—/mbp(.)/ﬁ,q(.)(x, t) is uniformly almost increasing in t; otherwise
choose 1 < v < p_/p. Suppose that ¢ € L'(R") N L*(R") N L*' (B(0,R)) and ¢
satisfies

[¢(2)] < Cla|
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for |x| > R. Then

16 % flla, (o0 mr < CUISlILr e + [€]lL0 m + [0

LSV’,B(O,R))Hf||<1>p<.>,q<,>,R"
for all f € LPV)(log L)?0)(R™).

Proof. Suppose that ||¢]|z: gn + ||¢

Lsrn + || L BoR) =1 and ¢ satisfies

[6(2)] < Cla|™"/*

for || > R. Let f be a nonnegative measurable function on R™ such that
[ fll@, 4 re < 1, and decompose

f=f+/f
where f1 = fX{zerr:f(2)>1}- Let
1 1—-106 1 1 1
- =—— and —=14-——.
r P- 51 TPy

By our assumption, s; > 1. It follows from Young’s inequality for convolution that

|9 * faol|lor e < |9

Here note that 1 < s; < s, so that [|¢],., ... < [[¢ll1re + [|9llrsre < 1. Since
0< fo <1, |Ifellrs me < Cllflle,,, e < C. Thus, noting that [¢ * fo| <1 and

o1, me || fal Lo R

1
r(z)

we see that

||¢ * f2||¢’r(.)7q(.),R" S CH¢ * f2 L™, R"™ S C (43)

On the other hand, we have by Holder’s inequality

vesil < ([ o -ornoran) ([ o orar)

([ nwra)”

< (o= @) (1.4

Noting that |¢]* € LY(R") N LY(B(0,R)), |¢|* satisfies (4.2) for |z| > R and
Hff”@,#,)/ﬁ,qo,f{n < C, we find by Theorem 4.1

H¢5 * flpH(I)p(A)/ﬁ’q(A),R” S C

15



Since (4.4) implies

Dr(yq0) (@, 0% f1(2) < CPpiypa0 (2,107 * 7 (2)),

it follows that
||¢ * f1||‘1>r(.)’q(.),R” < C.

Thus, together with (4.3), we obtain

||¢ * fH‘I)r-(‘),q(‘),R" <C,

as required.
]

REMARK 4.4. Cruz-Uribe and Fiorenza [1] conjectured that Theorem A remains
true if ¢ satisfies the additional condition (4.1).

If p_ > 1, this conjecture was shown to be true by D. Cruz-Uribe, A. Fiorenza,
J.M. Martell and C. Pérez in [3], using an extrapolation theorem ([3, Theorem 1.3

or Corollary 1.11]). Using our Proposition 2.5, we can prove the following extension
of [3, Theorem 1.3]:

PROPOSITION 4.5. Let F be a family of ordered pairs (f,g) of nonnegative mea-
surable functions on R™. Suppose that for some 0 < pg < p~,

- f(@)Pw(x)dx < C’O/ g(x)Pw(z) dx

n

for all (f,g) € F and for all Aj-weights w, where Cy depends only on py and the
Aq-constant of w. Then

||f||q)p<,),q<.),R” S CHgH(I)p(.)’q(.),R"
for all (f,g) € F such that g € L") (log L)10)(R™).
Then, as in [3, p. 249], we can prove:

THEOREM 4.6. Assume thatp_ > 1. If ¢ is an integrable function on R"™ satisfying
(4.1), then

196 % Fllaye g R < CllF Nl 007

for allt >0 and f € LPY(log L)1(R™). If in addition [ ¢(x)dx =1, then

%E)% ||¢t * f — f||¢p(-)’q(-)7Rn = 0.
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5 Appendix

For p > 1, ¢ € R and ¢ > e, we consider the function
O(t) = P(p,q,ct) = tp(log(c—l— t))q, t €[0,00).
In this appendix, we give a proof of the following elementary result:

THEOREM b5.1. Let X be a non-empty set and let p(-) and q(-) be real valued
functions on X such that 1 < p(x) < py < 0o for all x € X. Then, the following
(1) and (2) are equivalent to each other:

(1) There exists co > e such that ®(p(zx),q(z),co; +) is conver on [0,00) for
every x € X;

(2) There exists K > 0 such that K(p(z) — 1) + q(x) > 0 for all z € X.

This theorem may be well known; however the authors fail to find any literature
containing this result.

This theorem is a corollary to the following
ProposITION 5.2. (1) If
(I+loge)(p—1)+q =0,

then ® is convex on [0, 00).
(2) Given py > 1 and ¢ > e, there exists K = K(po,c) > 0 such that ® is not
convez on [0,00) whenever 1 < p <py and ¢ < —K(p—1).

Proof. By elementary calculation we have
o"(t) = t"2(c+ )2 (log(c + 1)) G(t)
with
G(t)=pp—1)(c+t)? (10g(c+t))2 +2pqt(c+t) log(c+1t) — qt* log(c+1t) +q(q— 1)t

for t > 0. ®(t) is convex on [0, 00) if and only if G(t) > 0 for all ¢ € (0, 00).
(1) If ¢ > 0, then

G(t) > qt(2p(c +1t) — t) log(c+t) — qt* > qt(2pc +2(p — 1)t) >0
for all ¢ € (0,00), so that ® is convex on [0, 00).

If —(1+41loge)(p—1) <q <0, then

G(t):p{\/p 1(c+1t)log(c+1t)+ \/pq_ }

|_|

2
— &115 — qt?log(c+t) + q(q — 1)t

> (—q)t? (%Hogc— q—1)

= (—q)t? (ﬁ +loge+ 1) >0
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for all ¢ € (0,00), so that ® is convex on [0, 00).
(2) If p=1 and ¢ < 0, then
G(t) = qt((t + 2¢)log(c + t) + (¢ — 1)t) — —o0

as t — 0o. Hence @ is not convex on [0, 00).
Next, let 1 < p <py and ¢ = —k(p — 1) with £ > 0. Then

% = p((c+ t)log(c +t) — kt)* + k(log(c + t) — k + 1)#2
< po((c+ t) log(c+ t) — kt)2 + k‘(log(c—|— t) —k+ 1)t2.

Let A\=1—-1/(2pp). Then 0 < XA < 1. If & > (logc)/A, there is (unique) tx > 0
such that log(c + tx) = M\k. Note that ¢, /k — oo as k — co. We have

G(tx)
p—1

< po((c+ )Mk — kty)* + k(M — k + 1)82
2 k 2 Zk
= ktp3 (po(1 = A) = 1)(1 = Nk + 1 — 2poeA(1 — )\)t— + pocA ae
k k

Since po(1 — \) — 1 = —1/2, it follows that there is K = K(c,po) > (loge)/A
such that G(t;) < 0 whenever k > K. Hence ® is not convex if 1 < p < py and
g<—-K(p-1).

O
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