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Abstract

Our aim in this paper is to deal with Sobolev’s inequalities for Riesz
potentials of functions belonging to Lp(·)(log L)q(·). To do so, we study the
boundedness of Hardy-Littlewood maximal functions and apply the Hed-
berg’s trick. As an application, we treat vanishing integrability for Riesz
potentials.

1 Introduction

In recent years, the generalized Lebesgue spaces have attracted more and more
attention, in connection with the study of elasticity, fluid mechanics and differential
equations with p(·)-growth; see for example Orlicz [29], Kováčik-Rákosńık [22],

Edmunds-Rákosńık [7] and R
◦
užička [30].

In this paper, following Cruz-Uribe and Fiorenza [4], we consider continuous
functions p(·) : Rn → [1,∞) and q(·) : Rn → R, which are called variable expo-
nents. In the present paper, we always assume that p(·) and q(·) are bounded on
Rn and

p− ≡ inf
x∈Rn

p(x) > 1. (1.1)

Our typical examples of p(·) and q(·) are the exponents satisfying the following
log-Hölder conditions:

|p(x) − p(y)| ≤ a log(e + log(e + |x − y|−1))

log(e + |x − y|−1)
+

b

log(e + |x − y|−1)

and

|q(x) − q(y)| ≤ c log(e + log(e + log(e + |x − y|−1)))

log(e + log(e + |x − y|−1))
+

d

log(e + log(e + |x − y|−1))
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whenever x ∈ Rn and y ∈ Rn, where a, b, c, d ≥ 0 are constants. In [14], Harjulehto
and Hästö discussed the continuity of Sobolev functions, and in the paper by Hästö
[19], he studied the integrability of maximal functions. For further related results,
we refer the reader to [10], [11], [12] and [26].

By condition (1.1), one can find a constant c0 ≥ e such that

tp(x)(log(c0 + t))q(x) is a convex function of t for each fixed x ∈ Rn. (1.2)

We define the space Lp(·)(log L)q(·)(G) of all measurable functions f on an open set
G such that ∫

G

(
|f(y)|

λ

)p(y) (
log

(
c0 +

|f(y)|
λ

))q(y)

dy < ∞

for some λ > 0. We define the norm

‖f‖Lp(·)(log L)q(·)(G) = inf

{
λ > 0 :

∫
G

(
|f(y)|

λ

)p(y) (
log

(
c0 +

|f(y)|
λ

))q(y)

dy ≤ 1

}

for f ∈ Lp(·)(log L)q(·)(G). In case q = 0 on G, Lp(·)(log L)q(·)(G) is denoted by
Lp(·)(G) for simplicity.

For 0 < α < n, we define the Riesz potential of order α for a locally integrable
function f on Rn by

Uαf(x) =

∫
Rn

|x − y|α−nf(y)dy.

Here it is natural to assume that∫
Rn

(1 + |y|)α−n|f(y)|dy < ∞, (1.3)

which is equivalent to the condition that Uα|f | 6≡ ∞ (see [25, Theorem 1.1, Chapter
2]).

Let B(x, r) denote the open ball centered at x with radius r. For a locally
integrable function f on an open set G, we consider the maximal function Mf
defined by

Mf(x) = sup
B

1

|B|

∫
B∩G

|f(y)|dy,

where the supremum is taken over all balls B = B(x, r) and |B| denotes the volume
of B. Diening [5] was the first to prove the local boundedness of maximal functions
in the Lebesgue spaces of variable exponents satisfying the log-Hölder condition.

Our first aim in this paper is to obtain Sobolev’s inequality for Riesz potentials
of functions in Lp(·)(log L)q(·)(G). To do so, we apply Hedberg’s trick [20] by use
of the boundedness of maximal functions. Our result (see Theorem 2.8 below)
is given in Section 2, which is an extension of Almeida-Samko [3], Diening [6],
Futamura-Mizuta [10], Futamura-Mizuta-Shimomura [11, 12], Harjulehto-Hästö-
Pere [18], Kokilashvili-Samko [21], Mizuta-Shimomura [27] and Samko-Vakulov
[31].
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For a measurable function u on Rn, we define the integral mean over a mea-
surable set E ⊂ Rn of positive measure by

−
∫

E

u(x) dx =
1

|E|

∫
E

u(x) dx,

where |E| denotes the Lebesgue measure of E. For a locally integrable function f
on Rn, x0 ∈ Rn is called a Lebesgue point for f if

lim
r→0+

−
∫

B(x0,r)

|f(x) − f(x0)|dx = 0.

Our second aim in this paper is to show that every point except in a small set
is a Lebesgue point for Uαf with f ∈ Lp(·)(log L)q(·)(Rn). In the classical case,
we refer the reader to [1], [24], [25], [32] and [34]. We aim to extend the re-
sults by Fiorenza [8], Futamura-Mizuta [10], Futamura-Mizuta-Shimomura [11]
and Harjulehto-Hästö [13] in the variable exponent case.

A famous Trudinger inequality [33] insists that Sobolev functions in W 1,n satisfy
finite exponential integrability. Adams and Hurri-Syrjänen [2, Theorem 1.6] and
Mizuta and Shimomura [28, Theorems 3.2, 4.5 and 5.2] have recently established
the vanishing exponential integrability for Riesz potentials Uαf with f ∈ Ln/α(Rn).
In connection with these results, we study the vanishing exponential integrability
for Uαf ; we in fact show (in Theorem 5.5 below) that

lim
r→0+

−
∫

B(x0,r)

{
exp

(
A|Uαf(x) − Uαf(x0)|a

]

× (log(1 + |Uαf(x) − Uαf(x0)|))b]
)
− 1

}
dx = 0

for all A > 0 and all x0 except in a small set, where a] > 0 and b] are suitable
constants determined by p(·) and q(·).

2 Sobolev’s inequality

Throughout this paper, let C denote various constants independent of the variables
in question and C(a, b, · · ·) be a constant that depends on a, b, · · ·.

We say that a positive nondecreasing function ϕ on the interval [0,∞) satisfies
(ϕ) if there exist ε1 > 0 and 0 < r1 < 1 such that

(ϕ) (log(1/r))−ε1ϕ(1/r) is nondecreasing on (0, r1).

Similarly, we say that a positive nondecreasing function ψ on the interval [0,∞)
satisfies (ψ) if there exist ε2 > 0 and 0 < r2 < 1/e such that

(ψ) (log(log(1/r)))−ε2ψ(1/r) is nondecreasing on (0, r2).
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Consider positive nondecreasing functions ϕ satisfying (ϕ) and ψ satisfying (ψ).
Set

ε0 = max{ε1, ε2}.

For the sake of convenience, we assume that

(ϕ′) ϕ(t) ≥ eε0 for all t > 0,

(ψ′) ψ(t) ≥ eε0 for all t > 0.

Set ω(r) =
log ϕ(1/r)

log(1/r)
and η(r) =

log ψ(1/r)

log(log(1/r))
.

First we give the following results, which can be derived by conditions (ϕ) and
(ϕ′).

Lemma 2.1 ([25, Lemma 3.1, Section 5.3], [26, Lemmas 2.1 and 2.2]).

(i) ϕ(r) is of log-type, that is, there exists C > 0 such that

C−1ϕ(r) ≤ ϕ(r2) ≤ Cϕ(r) whenever r > 0. (2.1)

(ii) For γ > 0, there exists C > 0 such that

t−γϕ(t) ≤ Cs−γϕ(s) whenever t ≥ s > 0.

(iii) There exists 0 < r̃1 < r1 such that ω(r) is nondecreasing on [0, r̃1].

Further, we see from conditions (ψ) and (ψ′) that ψ satisfies (i), (ii) and

(iv) there exists 0 < r̃2 < r2 such that η(r) is nondecreasing on [0, r̃2].

Condition (2.1) implies the doubling condition on ϕ, that is, there exists a
constant C > 1 such that

ϕ(r) ≤ ϕ(2r) ≤ Cϕ(r) whenever r > 0. (2.2)

In what follows, set

r0 = min{r̃1, r̃2}.

If r > r0, then we set

ω(r) = ω(r0) and η(r) = η(r0).

Our typical example of ϕ is of the form

ϕ(r) = a(log(β0 + r))b(log(β0 + log(β0 + r)))c,
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where a > 0, b ≥ 0, c ∈ R and β0 ≥ e are chosen so that ϕ(r) is nondecreasing on
[0,∞); similarly, that of ψ is of the form

ψ(r) = a(log(β0 + log(β0 + r)))b(log(β0 + log(β0 + log(β0 + r))))c.

Note that if b = 0, then c ≥ 0.

For a variable exponent p(·) on Rn, set

p− = inf
x∈Rn

p(x) and p+ = sup
x∈Rn

p(x).

Now we consider continuous exponents p(·) and q(·) on Rn such that

(p1) 1 < p− ≤ p+ < ∞ ;

(p2) |p(x) − p(y)| ≤ ω(|x − y|) whenever x ∈ Rn and y ∈ Rn.

(q1) −∞ < q− ≤ q+ < ∞ ;

(q2) |q(x) − q(y)| ≤ η(|x − y|) whenever x ∈ Rn and y ∈ Rn.

Recall that the generalized Lebesgue space Lp(·)(log L)q(·)(G) given in the in-
troduction is a Banach space with the norm ‖ · ‖Lp(·)(log L)q(·)(G). For 0 < α < n, we

consider the Riesz potential Uαf of f ∈ Lp(·)(log L)q(·)(G) defined by

Uαf(x) =

∫
G

|x − y|α−nf(y)dy.

Our first aim is to determine the space

{Uαf : f ∈ Lp(·)(log L)q(·)(G)}.

In our discussions below, it is convenient to note the following result.

Lemma 2.2 If r > 0 and t > 0, then

ϕ(rt) ≤ Cϕ(r)ϕ(t),

where C is the constant appearing in (2.1).

For this, it suffices to note that

ϕ(rt) ≤ max
{
ϕ(r2), ϕ(t2)

}
≤ max {Cϕ(r), Cϕ(t)} ≤ Cϕ(r)ϕ(t)

since ϕ is nondecreasing and ϕ(t) ≥ 1.
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Corollary 2.3 Set κ(y, t) = t(log(e + t))y1ϕ(t)y2ψ(t)y3 for y = (y1, y2, y3) and
t ≥ 0. Then

κ(y, at) ≤ τ(y, a)κ(y, t)

whenever a, t > 0, where

τ(y, a) = a max
{
(C log(e + a))y1 , (C log(e + a−1))−y1

}
× max

{
(Cϕ(a))y2 , (Cϕ(a−1))−y2

}
max

{
(Cψ(a))y3 , (Cψ(a−1))−y3

}
.

For A > n we set

ΦA(x, t) = κ(q(x)/p(x),−A/p(x)2,−1/p(x), t)p(x).

By Corollary 2.3 and conditions (ϕ′), (ψ′), (p1) and (q1), we see that

ΦA(x, at) ≤ Cτ(x, a)p(x)ΦA(x, t) (2.3)

whenever a, t > 0 and x ∈ Rn, where

τ(x, a) = a max
{
(log(e + a))q(x)/p(x), (log(e + a−1))−q(x)/p(x)

}
× ϕ(a−1)A/p(x)2ψ(a−1)1/p(x).

We see that
lim

a→0+
sup
x∈Rn

τ(x, a) = 0 (2.4)

and ΦA(x, ·) satisfies the doubling condition for each fixed x ∈ Rn; more precisely,

C−1ΦA(x, t) ≤ ΦA(x, 2t) ≤ CΦA(x, t) (2.5)

for all t > 0 and x ∈ Rn.
From now on let G be a bounded open set in Rn. Denote by ΦA(G) the family

of all measurable functions u on G such that∫
G

ΦA(x, |u(x)|/λ)dx < ∞

for some λ > 0 and define

‖u‖ΦA(G) = inf

{
λ > 0 :

∫
G

ΦA(x, |u(x)|/λ)dx ≤ 1

}
for u ∈ ΦA(G).

Lemma 2.4 There exists C > 0 such that∫
G

ΦA(x, |u(x)|)dx ≤ C‖u‖ΦA(G)

for all measurable functions u ∈ ΦA(G) with ‖u‖ΦA(G) ≤ 1 .
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Proof. If ‖u‖ΦA(G) ≤ 1, then we can find λ > 0 such that ‖u‖ΦA(G) ≤ λ < 2 and∫
G

ΦA(x, |u(x)|/λ)dx ≤ 1.

By inequality (2.3) we find∫
G

ΦA(x, |u(x)|)dx ≤ sup
x∈G

τ(x, λ)p(x)

∫
G

ΦA(x, |u(x)|/λ)dx

≤ sup
x∈G

τ(x, λ)p(x)

≤ Cλ.

Letting λ → ‖u‖ΦA(G) yields the required inequality. ¤

Lemma 2.5 ‖ · ‖ΦA(G) is a quasi-norm, that is, for u, v ∈ ΦA(G) and a real number
k,

(i) ‖u‖ΦA(G) = 0 if and only if u = 0;

(ii) ‖ku‖ΦA(G) = |k|‖u‖ΦA(G);

(iii) ‖u + v‖ΦA(G) ≤ C
(
‖u‖ΦA(G) + ‖v‖ΦA(G)

)
.

Proof. First we note that (i) follows from Lemma 2.4. Since (ii) is trivial, it
suffices to show (iii). For this purpose, we take λj (j = 1, 2) such that ‖uj‖ΦA(G) ≤
λj < 2‖uj‖ΦA(G) and ∫

G

ΦA(x, |uj(x)|/λj)dx ≤ 1.

We note from (2.3) that
ΦA(x, s) ≤ CΦA(x, t) (2.6)

for all x ∈ G and 0 < s < t. Hence, with the aid of (2.5), we obtain∫
G

ΦA(x, a(|u1(x) + u2(x)|)/(λ1 + λ2))dx

≤ C

∫
G

{ΦA(x, a|u1(x)|/λ1) + ΦA(x, a|u2(x)|/λ2)} dx

≤ C sup
x∈G

τ(x, a)p(x)

{∫
G

ΦA(x, |u1(x)|/λ1)dx +

∫
G

ΦA(x, |u2(x)|/λ2)dx

}
≤ C sup

x∈G
τ(x, a)p(x).

Now, in view of (2.4), we take a > 0 so small that∫
G

ΦA(x, a(|u1(x) + u2(x)|)/(λ1 + λ2))dx ≤ 1.

7



Then we obtain
‖u1 + u2‖ΦA(G) ≤ a−1(λ1 + λ2),

which proves (iii), as required. ¤

Next we show the boundedness of the maximal operator from Lp(·)(log L)q(·)(G)
into ΦA(G). For this purpose, we need the following result.

Lemma 2.6 (cf. [27, Lemma 2.4]). Let f be a nonnegative measurable function
on G with ‖f‖Lp(·)(log L)q(·)(G) ≤ 1 such that f(x) ≥ 1 or f(x) = 0 for each x ∈ G.
Set

I = I(x, r, f) =
1

|B(x, r)|

∫
B(x,r)∩G

f(y)dy

and

J = J(x, r, f) =
1

|B(x, r)|

∫
B(x,r)∩G

g(y)dy,

where g(y) = f(y)p(y)(log(c0 + f(y)))q(y). Then

I ≤ CJ1/p(x)(log(e + J))−q(x)/p(x)ϕ(J)n/p(x)2ψ(J)1/p(x).

Proof. Let f be a nonnegative measurable function on G with ‖f‖Lp(·)(log L)q(·)(G) ≤
1 such that f(x) ≥ 1 or f(x) = 0 for each x ∈ G. First consider the case when
J ≥ 1. Note that

Jω(CJ−1/n) ≤ Cϕ(J)n

and
ϕ(J)ω(CJ−1/n) ≤ C.

Further note that
(log J)η(CJ−1/n) ≤ Cψ(J).

Set
k = CJ1/p(x)(log(e + J))−q(x)/p(x)ϕ(J)n/p(x)2ψ(J)1/p(x).

Then we have

I ≤ k +
C

|B(x, r)|

∫
B(x,r)

f(y)

(
f(y)

k

)p(y)−1 (
log(c0 + f(y))

log(c0 + k)

)q(y)

dy.

Since ‖f‖Lp(·)(log L)q(·)(G) ≤ 1, we find

J ≤ 1

|B(x, r)|

∫
G

g(y)dy ≤ 1

|B(x, r)|
.

Hence we obtain for y ∈ B(x, r),

k−p(y) ≤
{

CJ1/p(x)(log(e + J))−q(x)/p(x)ϕ(J)n/p(x)2ψ(J)1/p(x)
}−p(x)+ω(r)

≤
{

CJ1/p(x)(log(e + J))−q(x)/p(x)ϕ(J)n/p(x)2ψ(J)1/p(x)
}−p(x)+ω(CJ−1/n)

≤ CJ−1(log(e + J))q(x)ψ(J)−1
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and

(log(c0 + k))−q(y) ≤ {C log(e + J)}−q(x)+η(r)

≤ {C log(e + J)}−q(x)+η(CJ−1/n)

≤ C(log(e + J))−q(x)ψ(J).

Consequently it follows that

I ≤ CJ1/p(x)(log(e + J))−q(x)/p(x)ϕ(J)n/p(x)2ψ(J)1/p(x).

In the case J ≤ 1, using Lemma 2.1 (ii), we find

I ≤ CJ ≤ CJ1/p(x)(log(e + J))−q(x)/p(x)ϕ(J)n/p(x)2ψ(J)1/p(x).

Now the result follows. ¤

Now we are ready to show the boundedness of the maximal operator M, as an
extension of Diening [5] and Cruz-Uribe and Fiorenza [4].

Theorem 2.7 The maximal operator M is bounded from Lp(·)(log L)q(·)(G) to
ΦA(G) for all A > n.

Proof. Let f be a nonnegative measurable function on G with ‖f‖Lp(·)(log L)q(·)(G) ≤
1. Write

f = fχ{y:f(y)≥1} + fχ{y:f(y)<1} = f1 + f2,

where χE denotes the characteristic function of E. Then, since Mf2 ≤ 1 on G, we
see from Lemmas 2.6 and 2.1 that

Mf(x)p(x)(log(e + Mf(x)))q(x)ϕ(Mf(x))−n/p(x)ψ(Mf(x))−1 ≤ C + CMg(x),

where g(y) = f(y)p(y)(log(c0 + f(y)))q(y). Now take p1 such that 1 < p1 < p−.
Then, applying the above inequality with p(x), ϕ(r), q(x) and ψ(r) replaced by
p(x)/p1, ϕ(r)1/p1 , q(x)/p1 and ψ(r)1/p1 respectively, we obtain{

Mf(x)p(x)(log(e + Mf(x)))q(x)ϕ(Mf(x))−np1/p(x)ψ(Mf(x))−1
}1/p1

≤ C + CMg1(x),

where g1(y) = f(y)p(y)/p1(log(c0 + f(y)))q(y)/p1 = g(y)1/p1 , so that

ΦA(x, Mf(x)) ≤ C + CMg1(x)p1

with A = np1. Hence, by the well-known boundedness of the maximal operator,
we see that ∫

G

ΦA(x,Mf(x))dx ≤ C,

as required. ¤
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By applying the boundedness of the maximal operator and Hedberg’s trick
[20], we establish the Sobolev type inequality for Riesz potentials, as an exten-
sion of the authors [27, Theorem 3.5] (see also Almeida-Samko [3], Diening [6],
Futamura-Mizuta [10], Futamura-Mizuta-Shimomura [11, 12], Harjulehto-Hästö-
Pere [18], Kokilashvili-Samko [21] and Samko-Vakulov [31]).

If p+ < n/α, then we let

1/p](x) = 1/p(x) − α/n.

For A > n, setting

Φ̃A(x, t) = κ(q(x)/p(x),−A/p(x)2,−1/p(x), t)p](x),

we define the family Φ̃A(G) and the corresponding quasi-norm ‖ · ‖
eΦA(G) (see the

proof of Lemma 2.5).

Theorem 2.8 Suppose p+(G) = supx∈G p(x) < n/α. If A > n, then

‖Uαf‖
eΦA(G) ≤ C‖f‖Lp(·)(log L)q(·)(G)

for f ∈ Lp(·)(log L)q(·)(G).

To show this, we need the following estimate for Riesz potentials.

Lemma 2.9 Let f be a nonnegative measurable function on G with ‖f‖Lp(·)(log L)q(·)(G) ≤
1. Then∫

G\B(x,δ)

|x − y|α−nf(y)dy ≤ Cδα−n/p(x)(log(1/δ))−q(x)/p(x)ϕ(δ−1)n/p(x)2ψ(δ−1)1/p(x)

for all x ∈ G and 0 < δ < r0, where C is a positive constant independent of x, δ
and f .

Proof. Let f be a nonnegative measurable function on G with ‖f‖Lp(·)(log L)q(·)(G) ≤
1 and 0 < δ < r0. First note that∫

G\B(x,r0)

|x − y|α−nf(y)dy ≤ C

∫
G

f(y)dy ≤ C + C

∫
G

g(y)dy ≤ C,

where g(y) = f(y)p(y)(log(c0 + f(y)))q(y) as in Lemma 2.6. Next set

k = |x − y|−n/p(x)(log(1/|x − y|))−q(x)/p(x)ϕ(|x − y|−1)n/p(x)2ψ(|x − y|−1)1/p(x).

Then we have∫
B(x,r0)\B(x,δ)

|x − y|α−nf(y)dy ≤
∫

B(x,r0)\B(x,δ)

k|x − y|α−ndy

+ C

∫
B(x,r0)\B(x,δ)

|x − y|α−nf(y)

(
f(y)

k

)p(y)−1 (
log(c0 + f(y))

log(c0 + k)

)q(y)

dy.
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Here note that

k−p(y) ≤ C|x − y|n(log(1/|x − y|))q(x)ψ(|x − y|−1)−1

and
(log(c0 + k))−q(y) ≤ C(log(1/|x − y|))−q(x)ψ(|x − y|−1)

for y ∈ B(x, r0) \ B(x, δ), so that∫
B(x,r0)\B(x,δ)

|x − y|α−nf(y)dy

≤ Cδα−n/p(x)(log(1/δ))−q(x)/p(x)ϕ(δ−1)n/p(x)2ψ(δ−1)1/p(x)

+ C

∫
B(x,r0)\B(x,δ)

|x − y|α−n/p(x)(log(1/|x − y|))−q(x)/p(x)

×ϕ(|x − y|−1)n/p(x)2ψ(|x − y|−1)1/p(x)g(y)dy

≤ Cδα−n/p(x)(log(1/δ))−q(x)/p(x)ϕ(δ−1)n/p(x)2ψ(δ−1)1/p(x)

+ Cδα−n/p(x)(log(1/δ))−q(x)/p(x)ϕ(δ−1)n/p(x)2ψ(δ−1)1/p(x)

∫
B(x,r0)\B(x,δ)

g(y)dy

≤ Cδα−n/p(x)(log(1/δ))−q(x)/p(x)ϕ(δ−1)n/p(x)2ψ(δ−1)1/p(x),

as required. ¤

Proof of Theorem 2.8. Let f be a nonnegative measurable function on G
with ‖f‖Lp(·)(log L)q(·)(G) ≤ 1. By Lemma 2.9, we find

Uαf(x) =

∫
B(x,δ)

|x − y|α−nf(y)dy +

∫
G\B(x,δ)

|x − y|α−nf(y)dy

≤ CδαMf(x) + Cδα−n/p(x)(log(1/δ))−q(x)/p(x)ϕ(δ−1)n/p(x)2ψ(δ−1)1/p(x).

Considering

δ = Mf(x)−p(x)/n(log(e + Mf(x)))−q(x)/nϕ(Mf(x))1/p(x)ψ(Mf(x))1/n

when Mf(x) is large enough, we establish

Uαf(x) ≤ CMf(x)1−αp(x)/n(log(e + Mf(x)))−αq(x)/nϕ(Mf(x))α/p(x)ψ(Mf(x))α/n

+ C.

If A = n + ε > n, then we find

Φ̃A(x, Uαf(x)) ≤ CΦB(x,Mf(x)) + C

for x ∈ G, where B = n + εn/(n − αp−) < n + εp](x)/p(x). Thus it follows from
Theorem 2.7 that ∫

G

Φ̃A(x, Uαf(x))dx ≤ C,

as required. ¤
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Remark 2.10 Theorems 2.7 and 2.8 are shown to be valid if conditions (ϕ′) and
(ψ′) can be replaced by

(ϕ′′) limt→0 ϕ(t) ≥ 1 ;

(ψ′′) limt→0 ψ(t) ≥ 1 ,

since we may consider eε0ϕ and eε0ψ instead of ϕ and ψ respectively.

In the later use, we need the following result, which can be proved in the same
manner as Lemma 2.4.

Corollary 2.11 Suppose p+(G) < n/α. If A > n, then∫
G

Φ̃A(x, Uαf(x))dx ≤ C‖f‖Lp(·)(log L)q(·)(G)

for all measurable functions f on G such that ‖f‖Lp(·)(log L)q(·)(G) ≤ 1.

3 Mean continuity I

First we introduce a notion of capacity as an extension of Meyers [23] and the first
author [25]. For a set E ⊂ Rn and an open set G ⊂ Rn, we define

Cα,p(·),q(·)(E; G) = inf
f

∫
G

f(y)p(y)(log(c0 + f(y)))q(y)dy,

where the infimum is taken over all nonnegative measurable functions f on Rn

such that f vanishes outside G and Uαf(x) ≥ 1 for every x ∈ E (cf. Futamura-
Mizuta-Shimomura [11], Harjulehto-Hästö [13], Harjulehto-Hästö-Koskenoja [15]
and Harjulehto-Hästö-Koskenoja-Varonen [16]). Then, since tp(x)(log(c0 + t))q(x) is
convex for each fixed x ∈ Rn (see (1.2)), we see that Cα,p(·),q(·)(·; G) is a countably
subadditive and nondecreasing capacity. We say that E is of Cα,p(·),q(·)-capacity
zero, written as Cα,p(·),q(·)(E) = 0, if

Cα,p(·),q(·)(E ∩ G; G) = 0 for every bounded open set G.

We here mention the following fundamental properties of our capacity.

Lemma 3.1 (cf. [11, Lemma 4.1]). For E ⊂ Rn, Cα,p(·),q(·)(E) = 0 if and only
if there exists a nonnegative function f ∈ Lp(·)(log L)q(·)(Rn) such that Uαf 6≡ ∞
but Uαf(x) = ∞ for every x ∈ E.

Lemma 3.2 (cf. [25, Corollary 1.2, Chapter 5]). If Cα,p(·),q(·)(E; G) = 0 for some
bounded open set G, then Cα,p(·),q(·)(E) = 0.
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For x0 ∈ Rn and r > 0, set fx0,r(w) = rαf(x0 + rw). Then note that

Uαf(x) = Uαfx0,r(z) for x = x0 + rz.

Further set

px0,r(z) = p(x0 + rz) and qx0,r(z) = q(x0 + rz);

see also Fiorenza-Rakotoson [9] for shifting the exponent. Then note that px0,r

satisfies (p1) and (p2) for r ≤ 1 since log ϕ(1/t)/ log(1/t) is nondecreasing on
(0, r0] . Similarly, note that qx0,r satisfies (q1) and (q2) for r ≤ 1.

Before showing our third theorem, we give the following result.

Lemma 3.3 Let f be a nonnegative locally integrable function on Rn such that

lim
r→0+

∫
B(x0,r)

rαp(y)−n max
{
1, (log(e + r−1))−q(y)

}
f(y)p(y)(log(e + f(y)))q(y)dy = 0.

Then limr→0+ ‖(fχB(x0,r))x0,r‖Lpx0,r(·)(log L)qx0,r(·)(Rn)
= 0.

Proof. As in [22, Theorem 2.4], it suffices to show that

lim
r→0+

∫
Rn

((fχB(x0,r))x0,r(w))px0,r(w)(log(e + (fχB(x0,r))x0,r(w)))qx0,r(w)dw = 0.

For this we have only to find∫
Rn

((fχB(x0,r))x0,r(w))px0,r(w)(log(e + (fχB(x0,r))x0,r(w)))qx0,r(w)dw

=

∫
Rn

(rα(fχB(x0,r))(x0 + rw))p(x0+rw)(log(e + rα(fχB(x0,r))(x0 + rw)))q(x0+rw)dw

≤ C

∫
B(x0,r)

rαp(y)−n max
{
1, (log(e + r−1))−q(y)

}
f(y)p(y)(log(e + f(y)))q(y)dy.

The required assertion is now proved. ¤

We are now ready to show our third theorem concerning the vanishing Sobolev
type integrability, which gives an extension of Meyers [24], Harjulehto-Hästö [13]
and the authors [11, Theorem 4.5].

Theorem 3.4 Suppose p+ < n/α. Let f be a nonnegative measurable function
on Rn with ‖f‖Lp(·)(log L)q(·)(Rn) ≤ 1 and (1.3). Then

lim
r→0+

−
∫

B(x0,r)

Φ̃A(x, |Uαf(x) − Uαf(x0)|)dx = 0 (3.1)
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holds for all x0 ∈ Rn \ (E1 ∪ E2), where

E1 = {x ∈ Rn : Uαf(x) = ∞},

E2 =
{

x ∈ Rn : lim sup
r→0+

∫
B(x,r)

rαp(y)−n max
{
1, (log(e + r−1))−q(y)

}
×f(y)p(y)(log(e + f(y)))q(y)dy > 0

}
.

By Lemma 3.1, we see that E1 has Cα,p(·),q(·)-capacity zero. In the next section
we show examples of p(·) and q(·) for which E2 has Cα,p(·),q(·)-capacity zero, where
ϕ and ψ are not necessarily constants.

Proof of Theorem 3.4. It suffices to show that (3.1) holds for x0 ∈ Rn \
(E1 ∪ E2). Write

Uαf(x) − Uαf(x0) =

∫
B(x0,2|x−x0|)

|x − y|α−nf(y)dy

+

∫
Rn\B(x0,2|x−x0|)

|x − y|α−nf(y)dy − Uαf(x0)

= U1(x) + U2(x).

If y ∈ Rn \ B(x0, 2|x − x0|), then |x0 − y| ≤ 2|x − y|, since Uαf(x0) < ∞, so that
we can apply Lebesgue’s dominated convergence theorem to obtain

lim
x→x0

U2(x) = 0.

Note here that

U1(x) ≤
∫

B(x0,r)

|x − y|α−nf(y) dy ≡ Uαfr(x)

for x ∈ B(x0, r/2), where fr = fχB(x0,r). Hence, we have only to show that

lim
r→0+

−
∫

B(x0,r)

Φ̃A(x, Uαfr(x))dx = 0.

We may assume from Lemma 3.3 that ‖(fr)x0,r‖Lpx0,r(·)(log L)qx0,r(·)(Rn)
is small when

r is small. By Corollary 2.11, we have

−
∫

B(x0,r)

Φ̃A(x, Uαfr(x))dx = −
∫

B(0,1)

κ(q(x0 + rz)/p(x0 + rz),−A/p(x0 + rz)2,

−1/p(x0 + rz), Uα(fr)x0,r(z))p](x0+rz)dz

≤ C‖(fr)x0,r‖Lpx0,r(·)(log L)qx0,r(·)(Rn)
,

which together with Lemma 3.3 implies that the left hand side tends to zero as
r → 0+. Thus the proof is completed. ¤
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Lemma 3.5 Suppose both ϕ and ψ are constants. Then

Cα,p(·),q(·)(B(x0, r); B(x0, r)) ≤ Crn−αp(x0)(log(e + r−1))q(x0)

for each x0 ∈ Rn and r > 0.

Proof. For x0 ∈ Rn and r > 0, define the potential

u(x) =

∫
|x − y|α−nf(y)dy,

where f(y) = r−αχB(x0,r). Then, since u(x) ≥ C for x ∈ B(x0, r), we have

Cα,p(·),q(·)(B(x0, r); B(x0, r)) ≤ C

∫
B(x0,r)

r−αp(y)(log(e + r−α))q(y)dy

≤ Crn−αp(x0)(log(e + r−1))q(x0),

which proves the lemma. ¤

We can show the next lemma (see the proof of Lemma 4.3 below).

Lemma 3.6 (cf. [11, Lemma 4.4]). Suppose both ϕ and ψ are constants. Fur-
ther suppose p+ < n/α. If f is a nonnegative measurable function on Rn with
‖f‖Lp(·)(log L)q(·)(Rn) ≤ 1, then

lim
r→0+

rαp(x)−n(log(e + r−1))−q(x)

∫
B(x,r)

f(y)p(y)(log(e + f(y)))q(y)dy = 0

holds for all x ∈ Rn except in a set E ⊂ Rn with Cα,p(·),q(·)(E) = 0.

By Theorem 3.4, we can show the following result, which is an extension of [11,
Corollary 4.6] (see also Harjulehto-Hästö [13, Theorem 4.12] for α = 1).

Proposition 3.7 Suppose both ϕ and ψ are constants. Further suppose p+ <
n/α and q+ ≤ 0. Let f be a nonnegative measurable function on Rn with
‖f‖Lp(·)(log L)q(·)(Rn) ≤ 1 such that Uαf 6≡ ∞. Then

lim
r→0+

−
∫

B(x0,r)

{
|Uαf(x) − Uαf(x0)|(log(e + |Uαf(x) − Uαf(x0)|))q(x)/p(x)

}p](x)
dx = 0

holds for all x0 except in a set E ⊂ Rn with Cα,p(·),q(·)(E) = 0.

For, if q+ ≤ 0, then we have Cα,p(·),q(·)(E2) = 0 by Lemma 3.6, so that Theorem
3.4 gives the present proposition.
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4 Mean continuity II

In this section, let

p(x) = p0 − ω(|xn|) and q(x) = q0 − η(|xn|)

for x = (x1, ..., xn−1, xn) ∈ Rn, where p0 > 1, q0 ∈ R and, further, p− > 1. To
show that p(·) satisfies (p2), note that

log ϕ(1/(s + t))

log(1/(s + t))
≤ log ϕ(1/(s + t))

log(1/s)
+

log ϕ(1/(s + t))

log(1/t)

≤ log ϕ(1/s)

log(1/s)
+

log ϕ(1/t)

log(1/t)

for all 0 < s, t < r0, so that

|ω(s) − ω(t)| ≤ ω(|s − t|),

which implies (p2).
Similarly, noting that

|η(s) − η(t)| ≤ η(|s − t|),

we insist that q(·) satisfies (q2).
Let

H = {x = (x′, xn) ∈ Rn−1 × R1 : xn = 0}.

Lemma 4.1 Suppose 0 < r < r0. If x0 ∈ H, then

Cα,p(·),q(·)(B(x0, r); B(x0, r)) ≤ Crn−αp0(log(e + r−1))q0ϕ(r−1)−αψ(r−1)−1.

Proof. For a proof, we consider the set

Sr = {x ∈ Rn : r/2 < |xn| < r}

and define

u(x) =

∫
(B(x0,r)\B(x0,r/2))∩Sr

r−α|x − y|α−ndy.

Then, since u(x) ≥ C for x ∈ B(x0, r), we have

Cα,p(·),q(·)(B(x0, r); B(x0, r)) ≤ C

∫
(B(x0,r)\B(x0,r/2))∩Sr

r−αp(y)(log(e + r−α))q(y)dy

≤ Crn−αp0(log(e + r−1))q0ϕ(r−1)−αψ(r−1)−1,

which proves the lemma. ¤
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Lemma 4.2 If x0 ∈ Rn \ H and 0 < r < min{r0, |(x0)n|/2}, then

Cα,p(·),q(·)(B(x0, r); B(x0, r)) ≤ C(|(x0)n|)rn−αp(x0)(log(e + r−1))q(x0).

Proof. First we show that

|p(x) − p(y)| ≤ C(|(x0)n|)
log(1/|x − y|)

(4.1)

for x, y ∈ B(x0, r) with 0 < r < min{r0, |(x0)n|/2}. This is trivial when |(x0)n|/2 ≥
r0. If |(x0)n|/2 < |yn| < |xn| < r0, then we have

|p(x) − p(y)| =

(
log ϕ(1/|xn|)
log(1/|xn|)

− log ϕ(1/|xn|)
log(1/|yn|)

)
+

(
log ϕ(1/|xn|)
log(1/|yn|)

− log ϕ(1/|yn|)
log(1/|yn|)

)
≤ log ϕ(1/|xn|)

(
1

log(1/|xn|)
− 1

log(1/|yn|)

)
≤ log ϕ(1/|xn|)

log(1/|xn − yn|)

≤ C(|(x0)n|)
log(1/|x − y|)

,

which proves (4.1).
Similarly note that

|q(x) − q(y)| ≤ C(|(x0)n|)
log(log(1/|x − y|))

for x, y ∈ B(x0, r) with 0 < r < min{r0, |(x0)n|/2}.
Now Lemma 3.5 gives the required result. ¤

For r > 0, set

h(r; x) =

{
rn−αp0(log(e + r−1))q0ϕ(r−1)−αψ(r−1)−1 if x ∈ H,
rn−αp(x)(log(e + r−1))q(x) if x ∈ Rn \ H.

We show the following result.

Lemma 4.3 (cf. [11, Lemma 4.4]) Suppose p0 < n/α. If f is a nonnegative
measurable function on Rn with ‖f‖Lp(·)(log L)q(·)(Rn) ≤ 1, then

lim
r→0+

h(r; x)−1

∫
B(x,r)

f(y)p(y)(log(e + f(y)))q(y)dy = 0

holds for all x ∈ Rn except in a set E ⊂ Rn with Cα,p(·),q(·)(E) = 0.
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Proof. First we prove that Cα,p(·),q(·)(E \ H) = 0. For each integer j, set Lj =
{x ∈ Rn : 2−j < |xn| ≤ 2−j+1}. For δ > 0, consider the set

Eδ,j =

{
x ∈ Lj : lim sup

r→0+
h(r; x)−1

∫
B(x,r)

f(y)p(y)(log(e + f(y)))q(y)dy > δ

}
.

By subadditivity and Lemma 3.2, it suffices that Cα,p(·),q(·)(Eδ,j∩B(0, R); B(0, 2R)) =
0 for all R > 1/2. Let 0 < ε < 1/(5 · 2|j|+1). For each x ∈ Eδ,j ∩ B(0, R), we find
0 < r(x) < ε such that

h(r(x); x)−1

∫
B(x,r(x))

f(y)p(y)(log(e + f(y)))q(y)dy > δ.

By the covering lemma (see [32, Lemma, p. 9]), there exists a disjoint family {Bi}
such that Bi = B(xi, r(xi)) and

⋃
i B(xi, 5r(xi)) ⊃ Eδ,j ∩ B(0, R). Then we have

by Lemma 4.2

Cα,p(·),q(·)(Eδ,j ∩ B(0, R); B(0, 2R)) ≤
∑

i

Cα,p(·),q(·)(B(xi, 5r(xi)); B(xi, 5r(xi)))

≤ C(j)
∑

i

h(r(xi); xi)

≤ C(j)δ−1

∫
S

i Bi

f(y)p(y)(log(e + f(y)))q(y)dy.

Since∣∣∣∣∣⋃
i

Bi

∣∣∣∣∣ ≤ C
∑

i

δ−1r(xi)
αp(xi)(log(e + r(xi)

−1))−q(xi)

∫
Bi

f(y)p(y)(log(e + f(y)))q(y)dy

≤ Cδ−1εαp− ,

it follows from the absolute continuity of integral that

Cα,p(·),q(·)(Eδ,j ∩ B(0, R); B(0, 2R)) = 0.

Similarly, we can prove that Cα,p(·),q(·)(E ∩ H) = 0 with the aid of Lemma 4.1,
as required. ¤

Corollary 4.4 Suppose p0 < n/α and q0 ≤ 0. If f is a nonnegative measurable
function on Rn with ‖f‖Lp(·)(log L)q(·)(Rn) ≤ 1, then

Cα,p(·),q(·)(E2) = 0.

For this, in case q0 ≤ 0, note∫
B(x0,r)

rαp(y)−n(log(e + r−1))−q(y)f(y)p(y)(log(e + f(y)))q(y)dy

≤ Crαp0−n(log(e + r−1))−q0ϕ(r−1)αψ(r−1)

∫
B(x0,r)

f(y)p(y)(log(e + f(y)))q(y)dy
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for x0 ∈ H and 0 < r ≤ r0; and∫
B(x0,r)

rαp(y)−n(log(e + r−1))−q(y)f(y)p(y)(log(e + f(y)))q(y)dy

≤ C(|(x0)n|)rαp(x0)−n(log(e + r−1))−q(x0)

∫
B(x0,r)

f(y)p(y)(log(e + f(y)))q(y)dy

for x0 ∈ Rn \ H and 0 < r ≤ min{r0, |(x0)n|/2}. Hence Cα,p(·),q(·)(E2) = 0 by
Lemma 3.6.

Now Theorem 3.4 gives the following result.

Theorem 4.5 Suppose p0 < n/α and q0 ≤ 0. Let f be a nonnegative measurable
function on Rn with ‖f‖Lp(·)(log L)q(·)(Rn) ≤ 1 such that Uαf 6≡ ∞. Then

lim
r→0+

−
∫

B(x0,r)

Φ̃A(x, |Uαf(x) − Uαf(x0)|)dx = 0

holds for all x0 ∈ Rn except in a set of Cα,p(·),q(·)-capacity zero.

Remark 4.6 For p0 < n/α and q0 ≤ 0, set

p(x) =

{
p0 + ω(xn) if xn ≥ 0,
p0 if xn < 0

and q(x) =

{
q0 + η(xn) if xn ≥ 0,
q0 if xn < 0.

If p+ < n/α and q+ ≤ 0, then we can show that Theorem 4.5 is true for these
exponents.

5 Vanishing exponential integrability

For a compact set K in G, we define

K(r) = {x ∈ G : δK(x) < r},

where δK(x) denotes the distance of x from K. For ν ≥ 0, we say that the
Minkowski (n − ν)-content of K is finite if

|K(r)| ≤ Crν for small r > 0.

Note here that if K is a singleton, then its Minkowski 0-content is finite, and if
K is a spherical surface, then its Minkowski (n − 1)-content is finite. As another
examples of K, we may consider fractal type sets like Cantor sets or Koch curves.
In this section, we consider variable exponents

p(x) = p(δK(x)) = p0 + ω(δK(x))
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and
q(x) = q(δK(x)) = q0 + η(δK(x))

for p0 > 1 and q0 ∈ R. Note that p(·) and q(·) satisfies (p2) and (q2), respectively.
We know the following result.

Lemma 5.1 (cf. [26, Lemma 2.3]). Let K be a compact set in G whose Minkowski
(n − ν)-content is finite. Then∫

G

δK(x)−ν(log(1 + δK(x)−1))−a dx < ∞

for every a > 1.

Lemma 5.2 (cf. [26, Lemma 2.4]). Suppose the Minkowski (n − ν)-content of K
is finite. If f is a measurable function on G with ‖f‖Lp(·)(log L)q(·)(G) ≤ 1, then∫

G

|f(x)|p0(log(e + |f(x)|))q0ϕ(|f(x)|)ν/p0ψ(|f(x)|)dx ≤ C.

Proof. Consider the set

G′ = {x ∈ K(r0) : |f(x)| < δ(x)−ν/p0(log(1/δ(x)))−a/p0},

where we will determine a later; here we set δ(x) = δK(x) for simplicity. If x ∈ G′,
then we have by (ϕ) and (ψ)

|f(x)|p0(log(e + |f(x)|))q0ϕ(|f(x)|)ν/p0ψ(|f(x)|)
≤ Cδ(x)−ν(log(1/δ(x)))−a(log(1/δ(x)))q0ϕ(1/δ(x))ν/p0ψ(1/δ(x))

≤ Cδ(x)−ν(log(1/δ(x)))−a+q0+ε3 ,

where ε3 > ε1ν/p0. If we take a so large that a > 1 + q0 + ε3, it follows from
Lemma 5.1 that∫

G′
|f(x)|p0(log(e + |f(x)|))q0ϕ(|f(x)|)ν/p0ψ(|f(x)|)dx ≤ C.

If x 6∈ G′ and δ(x) < r0, then |f(x)| ≥ δ(x)−ν/p0(log(1/δ(x)))−a/p0 , so that

δ(x) ≥ C|f(x)|−p0/ν(log |f(x)|)−a/ν .

Hence, in view of Lemma 2.1, we see that

log ϕ(1/δ(x))

log(1/δ(x))
log |f(x)| ≥ log ϕ(C|f(x)|p0/ν(log |f(x)|)a/ν)

log(C|f(x)|p0/ν(log |f(x)|)a/ν)
log |f(x)|

≥ ν

p0

{
log(Cϕ(|f(x)|))

log |f(x)| + C log(C log |f(x)|)
log |f(x)|

}
=

ν

p0

{
log(Cϕ(|f(x)|))

(
1 − C log(C log |f(x)|)

log |f(x)| + C log(C log |f(x)|)

)}
≥ ν

p0

log ϕ(|f(x)|) − C,
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which yields

|f(x)|p(x)−p0 = exp

(
log ϕ(1/δ(x))

log(1/δ(x))
log |f(x)|

)
≥ exp

(
ν

p0

log ϕ(|f(x)|) − C

)
= Cϕ(|f(x)|)ν/p0 .

Similarly, we have

log ψ(1/δ(x))

log(log(1/δ(x)))
log(log |f(x)|) ≥ log ψ(|f(x)|) − C,

which yields

(log |f(x)|)q(x)−q0 ≥ Cψ(|f(x)|).

Thus it follows that∫
K(r0)\G′

|f(x)|p0(log(e + |f(x)|))q0ϕ(|f(x)|)ν/p0ψ(|f(x)|)dx

≤ C

∫
G

|f(x)|p(x)(log(e + |f(x)|))q(x) dx ≤ C.

Finally, since p(x) ≥ p1 > p0 when δ(x) ≥ r0, we find∫
G\K(r0)

|f(x)|p0(log(e + |f(x)|))q0ϕ(|f(x)|)ν/p0ψ(|f(x)|)dx

≤ C

∫
G

|f(x)|p(x)(log(e + |f(x)|))q(x) dx + C ≤ C.

The required assertion is now proved. ¤

From now on set p0 = n/α, q0 ≥ 0, ϕ(r) = c(log(e + r))a, ψ(r) = c(log(log(e +
r)))b and K = H for a, b ≥ 0 and c > 0. For x0 ∈ H and r0 > 0, let B =
B(x0, r0) be a ball in Rn. By Lemma 5.2, we have the following integrability for
all measurable functions f on Rn with ‖f‖Lp(·)(log L)q(·)(Rn) ≤ 1 (see also [26]).

Corollary 5.3 If f is a measurable function on Rn with ‖f‖Lp(·)(log L)q(·)(Rn) ≤ 1,
then ∫

B

|f(x)|n/α(log(e + |f(x)|))q0+aα/n(log(log(e + |f(x)|)))bdx ≤ C. (5.1)

We know the following vanishing exponential integrability for Riesz potentials
of functions in Orlicz classes ([28]):
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Lemma 5.4 Let a] = n2/(n2 − αn − aα2 − αnq0) > 0 and b] = αnb/(n2 − αn −
aα2 − αnq0). If f is a nonnegative measurable function on Rn satisfying (1.3) and
(5.1), then

lim
r→0+

−
∫

B(x0,r)

{
exp

(
A|Uαf(x) − Uαf(x0)|a

]

× (log(1 + |Uαf(x) − Uαf(x0)|))b]
)
− 1

}
dx = 0

holds for all A > 0 and all x0 ∈ H \ Ef , where

Ef = {x ∈ H : Uαf(x) = ∞}.

By Lemma 3.1 we see that Ef has Cα,p(·),q(·)-capacity zero.
Finally, in view of Lemmas 3.1 and 5.4 and Corollary 5.3, we give the vanishing

exponential integrability for Riesz potentials with variable exponent, which is based
on a constant exponent, Orlicz space result.

Theorem 5.5 Let a] = n2/(n2 −αn− aα2 −αnq0) > 0 and b] = αnb/(n2 −αn−
aα2−αnq0). If f is a nonnegative measurable function on Rn with ‖f‖Lp(·)(log L)q(·)(Rn) ≤
1 satisfying (1.3), then

lim
r→0+

−
∫

B(x0,r)

{
exp

(
A|Uαf(x) − Uαf(x0)|a

]

× (log(1 + |Uαf(x) − Uαf(x0)|))b]
)
− 1

}
dx = 0

holds for all A > 0 and all x0 ∈ H except in a set of Cα,p(·),q(·)-capacity zero.
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