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Abstract

In this paper we are concerned with Trudinger’s inequality for Riesz
potentials of functions in Musielak-Orlicz spaces.

1 Introduction

A famous Trudinger inequality ([19]) insists that Sobolev functions in W 1,N(G)
satisfy finite exponential integrability, where G is an open bounded set in RN (see
also [1], [3], [17], [20]). Great progress on Trudinger type inequalities has been
made for Riesz potentials of order α (0 < α < N) in the limiting case αp = N (see
e.g. [5], [6], [7], [8]). In [2], [14] and [16], Trudinger type exponential integrability
was studied on Orlicz spaces, as extensions of [5], [6] and [8].

Variable exponent Lebesgue spaces and Sobolev spaces were introduced to dis-
cuss nonlinear partial differential equations with non-standard growth conditions
(see [4]). Trudinger type exponential integrability on variable exponent Lebesgue
spaces Lp(·) was investigated in [9], [10] and [11]. For the two variable exponents
spaces Lp(·)(logL)q(·), see [13]. These spaces are special cases of so-called Musielak-
Orlicz spaces ([18]).

Our aim in this paper is to give a general version of Trudinger type exponential
integrability for Riesz potentials of functions in Musielak-Orlicz spaces as an ex-
tension of the above results. By treating such general setting, we can obtain new
results (Corollary 4.2) which have not been found in the literature.

2 Preliminaries

Let G be a bounded open set in RN . Let dG=diam G.
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We consider a function

Φ(x, t) = tϕ(x, t) : G× [0,∞) → [0,∞)

satisfying the following conditions (Φ1) – (Φ4):

(Φ1) ϕ( · , t) is measurable on G for each t ≥ 0 and ϕ(x, · ) is continuous on [0,∞)
for each x ∈ G;

(Φ2) there exists a constant A1 ≥ 1 such that

A−1
1 ≤ ϕ(x, 1) ≤ A1 for all x ∈ G;

(Φ3) ϕ(x, ·) is uniformly almost increasing, namely there exists a constant A2 ≥ 1
such that

ϕ(x, t) ≤ A2ϕ(x, s) for all x ∈ G whenever 0 ≤ t < s;

(Φ4) there exists a constant A3 ≥ 1 such that

ϕ(x, 2t) ≤ A3ϕ(x, t) for all x ∈ G and t > 0.

Note that (Φ2), (Φ3) and (Φ4) imply

0 < inf
x∈G

ϕ(x, t) ≤ sup
x∈G

ϕ(x, t) <∞

for each t > 0.
If Φ(x, ·) is convex for each x ∈ G, then (Φ3) holds with A2 = 1; namely ϕ(x, ·)

is non-decreasing for each x ∈ G.

Let ϕ̄(x, t) = sup0≤s≤t ϕ(x, s) and

Φ(x, t) =

∫ t

0

ϕ̄(x, r) dr

for x ∈ G and t ≥ 0. Then Φ(x, ·) is convex and

1

2A3

Φ(x, t) ≤ Φ(x, t) ≤ A2Φ(x, t)

for all x ∈ G and t ≥ 0. In fact, the first inequality is seen as follows:

Φ(x, t) ≥
∫ t

t/2

ϕ̄(x, r) dr ≥ t

2
ϕ(x, t/2) ≥ 1

2A3

Φ(x, t).

We shall also consider the following condition:

(Φ5) for every γ > 0, there exists a constant Bγ ≥ 1 such that

ϕ(x, t) ≤ Bγϕ(y, t)

whenever |x− y| ≤ γt−1/N and t ≥ 1.
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Example 2.1. Let p(·) and qj(·), j = 1, . . . , k, be measurable functions on G such
that

(P1) 1 ≤ p− := infx∈G p(x) ≤ supx∈G p(x) =: p+ <∞

and

(Q1) −∞ < q−j := infx∈G qj(x) ≤ supx∈G qj(x) =: q+j <∞

for all j = 1, . . . , k.
Set Lc(t) = log(c+t) for c ≥ e and t ≥ 0, L

(1)
c (t) = Lc(t), L

(j+1)
c (t) = Lc(L

(j)
c (t))

and

Φ(x, t) = tp(x)
k∏

j=1

(L(j)
c (t))qj(x).

Then, Φ(x, t) satisfies (Φ1), (Φ2) and (Φ4). It satisfies (Φ3) if there is a constant
K ≥ 0 such that K(p(x) − 1) + qj(x) ≥ 0 for all x ∈ G and j = 1, . . . , k; in
particular if p− > 1 or q−j ≥ 0 for all j = 1, . . . , k.

Φ(x, t) satisfies (Φ5) if

(P2) p(·) is log-Hölder continuous, namely

|p(x)− p(y)| ≤ Cp

Le(1/|x− y|)

with a constant Cp ≥ 0 and

(Q2) qj(·) is j-log-Hölder continuous, namely

|qj(x)− qj(y)| ≤
Cqj

L
(j)
e (1/|x− y|)

with constants Cqj ≥ 0, j = 1, . . . k.

Given Φ(x, t) as above, the associated Musielak-Orlicz space

LΦ(G) =

{
f ∈ L1

loc(G) ;

∫
G

Φ
(
y, |f(y)|

)
dy <∞

}
is a Banach space with respect to the norm

∥f∥LΦ(G) = inf

{
λ > 0 ;

∫
G

Φ
(
y, |f(y)|/λ

)
dy ≤ 1

}
(cf. [18]).
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3 Lemmas

Throughout this paper, let C denote various constants independent of the variables
in question and C(a, b, · · · ) be a constant that depends on a, b, · · · .

We denote by B(x, r) the open ball centered at x of radius r. For a measurable
set E, we denote by |E| the Lebesgue measure of E.

For a locally integrable function f on G, the Hardy-Littlewood maximal func-
tion Mf is defined by

Mf(x) = sup
r>0

1

|B(x, r)|

∫
B(x,r)∩G

|f(y)| dy.

We know the following boundedness of maximal operator on LΦ(G).

Lemma 3.1 ([12, Corollary 4.4]). Suppose that Φ(x, t) satisfies (Φ5) and further
assume:

(Φ3∗) t 7→ t−ε0ϕ(x, t) is uniformly almost increasing on (0,∞) for some ε0 > 0.

Then the maximal operator M is bounded from LΦ(G) into itself, namely, there is
a constant C > 0 such that

∥Mf∥LΦ(G) ≤ C∥f∥LΦ(G)

for all f ∈ LΦ(G).

We consider the function

γ(x, t) : G× (0, dG) → [0,∞)

satisfying the following conditions (γ1) and (γ2):

(γ1) γ( · , t) is measurable on G for each 0 < t < dG and γ(x, · ) is continuous on
(0, dG) for each x ∈ G;

(γ2) there exists a constant B0 ≥ 1 such that

B−1
0 ≤ γ(x, t) ≤ B0t

−N for all x ∈ G whenever 0 < t < dG.

Further we consider the function

Γα(x, t) : G× [0,∞) → [0,∞)

satisfying the following conditions (Γ1) and (Γ2):

(Γ1) Γα( · , t) is measurable on G for each t ≥ 0 and Γα(x, · ) is continuous on
[0,∞) for each x ∈ G;

(Γ2) Γα(x, ·) is uniformly almost increasing, namely there exists a constant B1 ≥ 1
such that

Γα(x, t) ≤ B1Γα(x, s) for all x ∈ G whenever 0 ≤ t < s;
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(Γ3) there exist constants α0 > 0, B2 ≥ 1 and B3 ≥ 1 such that

tα−Nϕ(x, γ(x, t))−1 ≤ B2Γα(x, 1/t)

for all x ∈ G and α ≥ α0 whenever 0 < t < dG and∫ dG

t

ραγ(x, ρ)
dρ

ρ
≤ B3Γα(x, 1/t)

for all x ∈ G, 0 < t ≤ dG/2 and α ≥ α0.

Lemma 3.2. Suppose that Φ(x, t) satisfies (Φ5) and α0 ≤ α < N . Then there
exists a constant C > 0 such that∫

G\B(x,δ)

|x− y|α−Nf(y) dy ≤ CΓα

(
x,

1

δ

)
for all x ∈ G, 0 < δ ≤ dG/2 and nonnegative f ∈ LΦ(G) with ∥f∥LΦ(G) ≤ 1.

Proof. Let f be a nonnegative measurable function with ∥f∥LΦ(G) ≤ 1. Since

ϕ(y, γ(x, |x− y|))−1 ≤ B′ϕ(x, γ(x, |x− y|))−1

with some constant B′ > 0 by (γ2), (Φ3), (Φ4) and (Φ5), we have by (Φ3), (Γ2)
and (Γ3)∫

G\B(x,δ)

|x− y|α−Nf(y) dy

≤
∫
G\B(x,δ)

|x− y|α−Nγ(x, |x− y|) dy

+A2

∫
G\B(x,δ)

|x− y|α−Nf(y)
ϕ(y, f(y))

ϕ(y, γ(x, |x− y|))
dy

≤ C

∫ dG

δ

ραγ(x, ρ)
dρ

ρ
+ A2B

′
∫
G\B(x,δ)

|x− y|α−Nϕ(x, γ(x, |x− y|))−1Φ(y, f(y)) dy

≤ CB3Γα(x, 1/δ) + A2B1B2B
′Γα(x, 1/δ)

∫
G\B(x,δ)

Φ(y, f(y)) dy

≤ (CB3 + A2B1B2B
′)Γα(x, 1/δ).

Thus we obtain the required results.

Lemma 3.3. Let α ≥ α0. Then there exists a constant C ′ > 0 such that Γα(x, 2/dG) ≥
C ′ for all x ∈ G.

Proof. By (Γ3) and (γ2),

Γα(x, 2/dG) ≥ B−1
3

∫ dG

dG/2

ραγ(x, ρ)
dρ

ρ
≥ B−1

0 B−1
3

∫ dG

dG/2

ρα
dρ

ρ

= B−1
0 B−1

3 α−1dαG(1− 2−α) = C ′

for all x ∈ G, as required.

5



Lemma 3.4 (cf. [15, Lemma 2.1]). Suppose Γα(x, t) satisfies the uniform log-type
condition:

(Γlog) there exists a constant cΓ > 0 such that

c−1
Γ Γα(x, s) ≤ Γα(x, s

2) ≤ cΓΓα(x, s)

for all x ∈ G and s > 0.

Then, for every c > 1, there exists C > 0 such that Γα(x, cs) ≤ CΓα(x, s) for all
x ∈ G and s > 0.

4 Trudinger’s inequality

For 0 < α < N , we define the Riesz potential of order α for a locally integrable
function f on G by

Iαf(x) =

∫
G

|x− y|α−Nf(y) dy.

Theorem 4.1. Assume that Φ(x, t) satisfies (Φ5) and (Φ3∗). Suppose that Γα(x, t)
satisfies (Γlog). For each x ∈ G, let γα(x) = sups>0 Γα(x, s). Suppose Ψα(x, t) :
G× [0,∞) → [0,∞] satisfies the following conditions:

(Ψα1) Ψα(·, t) is measurable on G for each t ∈ [0,∞); Ψα(x, ·) is continuous on
[0,∞) for each x ∈ G;

(Ψα2) there is a constant B4 ≥ 1 such that Ψα(x, t) ≤ Ψα(x,B4s) for all x ∈ G
whenever 0 < t < s;

(Ψα3) there are constants B5, B6 ≥ 1 and t0 > 0 such thatΨα(x,Γα(x, t)/B5) ≤ B6t
for all x ∈ G and t ≥ t0.

Then there exist constants c1, c2 > 0 such that Iαf(x)/c1 < γα(x) for a.e. x ∈ G
and ∫

G

Ψα

(
x,
Iαf(x)

c1

)
dx ≤ c2

for all α0 ≤ α < N and f ≥ 0 satisfying ∥f∥LΦ(G) ≤ 1.

Proof. Let f ≥ 0 and ∥f∥LΦ(G) ≤ 1. Note from Lemma 3.1 that∫
G

Mf(x) dx ≤ |G|+ A1A2

∫
G

Φ(x,Mf(x)) dx ≤ CM . (4.1)

Fix x ∈ G. For 0 < δ ≤ dG/2, Lemma 3.2 implies

Iαf(x) =

∫
B(x,δ)

|x− y|α−Nf(y) dy +

∫
G\B(x,δ)

|x− y|α−Nf(y) dy

≤ C

{
Mf(x) + Γα

(
x,

1

δ

)}
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with constants C > 0 independent of x.
If Mf(x) ≤ 2/dG, then we take δ = dG/2. Then, by Lemma 3.3

Iαf(x) ≤ CΓα

(
x,

2

dG

)
.

By Lemma 3.4, there exists C∗
1 > 0 independent of x such that

Iαf(x) ≤ C∗
1Γα (x, t0) if Mf(x) ≤ 2/dG. (4.2)

Next, suppose 2/dG < Mf(x) < ∞. Let m = sups≥2/dG,x∈G Γα(x, s)/s. By
(Γlog), m <∞. Define δ by

δα =
(dG/2)

α

m
Γα(x,Mf(x))(Mf(x))−1.

Since Γα(x,Mf(x))(Mf(x))−1 ≤ m, 0 < δ ≤ dG/2. Then by Lemma 3.3

1

δ
≤ CΓα(x,Mf(x))−1/α(Mf(x))1/α

≤ CΓα(x, 2/dG)
−1/α(Mf(x))1/α ≤ C(Mf(x))1/α.

Hence, using (Γlog) and Lemma 3.4, we obtain

Γα

(
x,

1

δ

)
≤ CΓα

(
x,C(Mf(x))1/α

)
≤ CΓα(x,Mf(x)).

By Lemma 3.4 again, we see that there exists a constant C∗
2 > 0 independent of x

such that

Iαf(x) ≤ C∗
2Γα

(
x,
t0dG
2
Mf(x)

)
if 2/dG < Mf(x) <∞. (4.3)

Now, let c1 = B4B5 max(C∗
1 , C

∗
2). Then, by (4.2) and (4.3),

Iαf(x)

c1
≤ 1

B4B5

max

{
Γα (x, t0) , Γα

(
x,
t0dG
2
Mf(x)

)}
whenever Mf(x) < ∞. Since Mf(x) < ∞ for a.e. x ∈ G by Lemma 3.1,
Iαf(x)/c1 < γα(x) a.e. x ∈ G, and by (Ψα2) and (Ψα3), we have

Ψα

(
x,
Iαf(x)

c1

)
≤ max

{
Ψα (x,Γα (x, t0) /B5) , Ψα

(
x,Γα

(
x,
t0dG
2
Mf(x)

)
/B5

)}
≤ B6t0 +

B6t0dG
2

Mf(x)

for a.e. x ∈ G. Thus, we have by (4.1)∫
G

Ψα

(
x,
Iαf(x)

c1

)
dx ≤ B6t0|G|+

B6t0dG
2

∫
G

Mf(x) dx

≤ B6t0|G|+
B6t0dGCM

2
= c2.
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Applying Theorem 4.1 to special Φ given in Example 2.1, we obtain the follow-
ing corollary.

Corollary 4.2. Let Φ be as in Example 2.1.

(1) Suppose there exists an integer 1 ≤ j0 ≤ k such that

inf
x∈G

(p(x)− qj0(x)− 1) > 0 (4.4)

and
sup
x∈G

(p(x)− qj(x)− 1) ≤ 0 (4.5)

for all j ≤ j0 − 1 in case j0 ≥ 2. Then there exist constants c1, c2 > 0 such that∫
G

E
(j0)
+

((
Iαf(x)

c1

)p(x)/(p(x)−qj0 (x)−1)

×
k−j0∏
j=1

(
L(j)

e

(
Iαf(x)

c1

))qj0+j(x)/(p(x)−qj0 (x)−1)
)
dx ≤ c2

for all N/p− ≤ α < N and f ≥ 0 satisfying ∥f∥LΦ(G) ≤ 1, where E(1)(t) = et − e,

E(j+1)(t) = exp(Ej(t))− e and E
(j)
+ (t) = max(E(j)(t), 0).

(2) If
sup
x∈G

(p(x)− qj(x)− 1) ≤ 0

for all j = 1, . . . , k, then there exist constants c1, c2 > 0 such that∫
G

E(k+1)

((
Iαf(x)

c1

)p(x)/(p(x)−1)
)

dx ≤ c2

for all N/p− ≤ α < N and f ≥ 0 satisfying ∥f∥LΦ(G) ≤ 1.

Proof. First we show the case (1). In this case, set

γ(x, t) = t−N/p(x)

(
j0−1∏
j=1

[L(j)
e (1/t)]−1

)
[L(j0)

e (1/t)]−(qj0 (x)+1)/p(x)

(
k∏

j=j0+1

[L(j)
e (1/t)]−qj(x)/p(x)

)

and

Γα(x, t) = [L(j0)
e (t)](p(x)−qj0 (x)−1)/p(x)

(
k∏

j=j0+1

[L(j)
e (t)]−qj(x)/p(x)

)
.

Here note that γ(x, t) satisfies (γ2) and Γα(x, t) is uniformly almost increasing on
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t and satisfies (Γlog) by (4.4). We have by N/p− ≤ α and (4.5)

tα−Nϕ(x, γ(x, t))−1

≤ Ctα−N/p(x)

(
j0−1∏
j=1

[L(j)
e (1/t)]p(x)−qj(x)−1

)

×[L(j0)
e (1/t)](p(x)−qj0 (x)−1)/p(x)

(
k∏

j=j0+1

[L(j)
e (1/t)]−qj(x)/p(x)

)

≤ C[L(j0)
e (1/t)](p(x)−qj0 (x)−1)/p(x)

(
k∏

j=j0+1

[L(j)
e (1/t)]−qj(x)/p(x)

)
= CΓα(x, 1/t)

for all x ∈ G and α0 = N/p− ≤ α < N whenever 0 < t < dG. By (4.4), we find
ε0 > 0 such that infx∈G{1− (qj0(x) + 1)/p(x)} > ε0. We see from N/p− ≤ α, (4.4)
and (4.5) that∫ dG

t

ραγ(x, ρ)
dρ

ρ

≤ C

∫ dG

t

(
j0−1∏
j=1

[L(j)
e (1/ρ)]−1

)
[L(j0)

e (1/ρ)]−(qj0 (x)+1)/p(x)

(
k∏

j=j0+1

[L(j)
e (1/ρ)]−qj(x)/p(x)

)
dρ

ρ

≤ C[L(j0)
e (1/t)]1−(qj0 (x)+1)/p(x)−ε0

(
k∏

j=j0+1

[L(j)
e (1/t)]−qj(x)/p(x)

)

×
∫ dG

t

(
j0−1∏
j=1

[L(j)
e (1/ρ)]−1

)
[L(j0)

e (1/ρ)]−1+ε0
dρ

ρ

≤ CΓα(x, 1/t)

for all 0 < t ≤ dG/2 and N/p− ≤ α < N . Hence, Γα(x, t) satisfies (Γ3).
Now, set

ψ(x, t) = tp(x)/(p(x)−qj0 (x)−1)

k−j0∏
i=1

[L(i)
e (t)]qj0+i(x)/(p(x)−qj0 (x)−1)

for x ∈ G and t > 0. Then

ψ(x,Γα(x, s)) ≤ C1L
(j0)
e (s)

for s > 0.
Since infx∈G p(x)/(p(x) − qj0(x) − 1) > 0, there are constants 0 < θ ≤ 1 and

C2 ≥ 1 such that
ψ(x, ct) ≤ C2c

θψ(x, t) (4.6)

for all x ∈ G, t > 0 and 0 < c ≤ 1. Hence, choosing B ≥ 1 such that C1C2B
−θ ≤ 1,

we have

ψ(x,Γα(x, s)/B) ≤ C2B
−θψ(x,Γα(x, s)) ≤ C2B

−θC1L
(j0)
e (s) ≤ L(j0)

e (s)
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for s > 0. Thus,
E(j0)(ψ(x,Γα(x, s)/B)) ≤ s for s > 0. (4.7)

Let u0 > 0 be the unique solution of the equation eu−e = u. Then E(1)(u) ≥ u0
if and only if u ≥ u0. Choose t0 > 0 such that ψ(x, t) ≥ u0 for t ≥ t0 and define

Ψ(x, t) =


E(j0)(ψ(x, t)) for t ≥ t0,

Ψ(x, t0)
t

t0
for 0 < t < t0.

Noting that

ψ(x, t) = ψ

(
x,

t

C
1/θ
2 s

C
1/θ
2 s

)
≤ ψ(x,C

1/θ
2 s)

for 0 < t ≤ s by (4.6), Ψ(x, t) satisfies (Ψα1), (Ψα2) (with B4 = C
1/θ
2 , say) and

(Ψα3), in view of (4.6) and (4.7).
Thus Theorem 4.1 implies the existence of constants c1, C3 > 0 such that∫

G

Ψ

(
x,
Iαf(x)

c1

)
dx ≤ C3

for all N/p− ≤ α < N and f ≥ 0 satisfying ∥f∥LΦ(G) ≤ 1. Let Sf = {x ∈ G :
Iαf(x) ≥ c1t0}. Then∫

G

E
(j0)
+

(
ψ

(
x,
Iαf(x)

c1

))
dx ≤ C4

∫
G\Sf

dx+

∫
G∩Sf

Ψ

(
x,
Iαf(x)

c1

)
dx

≤ C4|G|+ C3 = c2

for all N/p− ≤ α < N and f ≥ 0 satisfying ∥f∥LΦ(G) ≤ 1, which shows the
assertion of (1).

In the case (2), setting

γ(x, t) = t−N/p(x)

(
k∏

j=1

[L(j)
e (1/t)]−1

)
[L(k+1)

e (1/t)]−1/p(x),

Γα(x, t) = [L(k+1)
e (1/t)]1−1/p(x)

and
ψ(x, t) = tp(x)/(p(x)−1),

the above discussion yields the required result.
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