Trudinger's inequality for Riesz potentials of functions in Musielak-Orlicz spaces

Takao Ohno and Tetsu Shimomura

Abstract

In this paper we are concerned with Trudinger's inequality for Riesz potentials of functions in Musielak-Orlicz spaces.

1 Introduction

A famous Trudinger inequality ([19]) insists that Sobolev functions in $W^{1, N}(G)$ satisfy finite exponential integrability, where G is an open bounded set in \mathbf{R}^{N} (see also [1], [3], [17], [20]). Great progress on Trudinger type inequalities has been made for Riesz potentials of order $\alpha(0<\alpha<N)$ in the limiting case $\alpha p=N$ (see e.g. [5], [6], [7], [8]). In [2], [14] and [16], Trudinger type exponential integrability was studied on Orlicz spaces, as extensions of [5], [6] and [8].

Variable exponent Lebesgue spaces and Sobolev spaces were introduced to discuss nonlinear partial differential equations with non-standard growth conditions (see [4]). Trudinger type exponential integrability on variable exponent Lebesgue spaces $L^{p(\cdot)}$ was investigated in [9], [10] and [11]. For the two variable exponents spaces $L^{p(\cdot)}(\log L)^{q(\cdot)}$, see [13]. These spaces are special cases of so-called MusielakOrlicz spaces ([18]).

Our aim in this paper is to give a general version of Trudinger type exponential integrability for Riesz potentials of functions in Musielak-Orlicz spaces as an extension of the above results. By treating such general setting, we can obtain new results (Corollary 4.2) which have not been found in the literature.

2 Preliminaries

Let G be a bounded open set in \mathbf{R}^{N}. Let $d_{G}=\operatorname{diam} G$.

[^0]We consider a function

$$
\Phi(x, t)=t \phi(x, t): G \times[0, \infty) \rightarrow[0, \infty)
$$

satisfying the following conditions $(\Phi 1)-(\Phi 4)$:
$(\Phi 1) \quad \phi(\cdot, t)$ is measurable on G for each $t \geq 0$ and $\phi(x, \cdot)$ is continuous on $[0, \infty)$ for each $x \in G$;
(\$2) there exists a constant $A_{1} \geq 1$ such that

$$
A_{1}^{-1} \leq \phi(x, 1) \leq A_{1} \quad \text { for all } x \in G
$$

$(\Phi 3) \quad \phi(x, \cdot)$ is uniformly almost increasing, namely there exists a constant $A_{2} \geq 1$ such that

$$
\phi(x, t) \leq A_{2} \phi(x, s) \quad \text { for all } x \in G \quad \text { whenever } 0 \leq t<s
$$

($\Phi 4$) there exists a constant $A_{3} \geq 1$ such that

$$
\phi(x, 2 t) \leq A_{3} \phi(x, t) \quad \text { for all } x \in G \text { and } t>0 .
$$

Note that ($\Phi 2$), ($\Phi 3$) and ($\Phi 4$) imply

$$
0<\inf _{x \in G} \phi(x, t) \leq \sup _{x \in G} \phi(x, t)<\infty
$$

for each $t>0$.
If $\Phi(x, \cdot)$ is convex for each $x \in G$, then ($\Phi 3$) holds with $A_{2}=1$; namely $\phi(x, \cdot)$ is non-decreasing for each $x \in G$.

Let $\bar{\phi}(x, t)=\sup _{0 \leq s \leq t} \phi(x, s)$ and

$$
\bar{\Phi}(x, t)=\int_{0}^{t} \bar{\phi}(x, r) d r
$$

for $x \in G$ and $t \geq 0$. Then $\bar{\Phi}(x, \cdot)$ is convex and

$$
\frac{1}{2 A_{3}} \Phi(x, t) \leq \bar{\Phi}(x, t) \leq A_{2} \Phi(x, t)
$$

for all $x \in G$ and $t \geq 0$. In fact, the first inequality is seen as follows:

$$
\bar{\Phi}(x, t) \geq \int_{t / 2}^{t} \bar{\phi}(x, r) d r \geq \frac{t}{2} \phi(x, t / 2) \geq \frac{1}{2 A_{3}} \Phi(x, t)
$$

We shall also consider the following condition:
($\Phi 5$) for every $\gamma>0$, there exists a constant $B_{\gamma} \geq 1$ such that

$$
\phi(x, t) \leq B_{\gamma} \phi(y, t)
$$

whenever $|x-y| \leq \gamma t^{-1 / N}$ and $t \geq 1$.

Example 2.1. Let $p(\cdot)$ and $q_{j}(\cdot), j=1, \ldots, k$, be measurable functions on G such that
(P1) $1 \leq p^{-}:=\inf _{x \in G} p(x) \leq \sup _{x \in G} p(x)=: p^{+}<\infty$
and
(Q1) $-\infty<q_{j}^{-}:=\inf _{x \in G} q_{j}(x) \leq \sup _{x \in G} q_{j}(x)=: q_{j}^{+}<\infty$
for all $j=1, \ldots, k$.
Set $L_{c}(t)=\log (c+t)$ for $c \geq e$ and $t \geq 0, L_{c}^{(1)}(t)=L_{c}(t), L_{c}^{(j+1)}(t)=L_{c}\left(L_{c}^{(j)}(t)\right)$ and

$$
\Phi(x, t)=t^{p(x)} \prod_{j=1}^{k}\left(L_{c}^{(j)}(t)\right)^{q_{j}(x)}
$$

Then, $\Phi(x, t)$ satisfies $(\Phi 1),(\Phi 2)$ and $(\Phi 4)$. It satisfies ($\Phi 3$) if there is a constant $K \geq 0$ such that $K(p(x)-1)+q_{j}(x) \geq 0$ for all $x \in G$ and $j=1, \ldots, k$; in particular if $p^{-}>1$ or $q_{j}^{-} \geq 0$ for all $j=1, \ldots, k$.
$\Phi(x, t)$ satisfies ($\Phi 5$) if
(P2) $p(\cdot)$ is log-Hölder continuous, namely

$$
|p(x)-p(y)| \leq \frac{C_{p}}{L_{e}(1 /|x-y|)}
$$

with a constant $C_{p} \geq 0$ and
(Q2) $q_{j}(\cdot)$ is j-log-Hölder continuous, namely

$$
\left|q_{j}(x)-q_{j}(y)\right| \leq \frac{C_{q_{j}}}{L_{e}^{(j)}(1 /|x-y|)}
$$

with constants $C_{q_{j}} \geq 0, j=1, \ldots k$.

Given $\Phi(x, t)$ as above, the associated Musielak-Orlicz space

$$
L^{\Phi}(G)=\left\{f \in L_{l o c}^{1}(G) ; \int_{G} \Phi(y,|f(y)|) d y<\infty\right\}
$$

is a Banach space with respect to the norm

$$
\|f\|_{L^{\Phi}(G)}=\inf \left\{\lambda>0 ; \int_{G} \bar{\Phi}(y,|f(y)| / \lambda) d y \leq 1\right\}
$$

(cf. [18]).

3 Lemmas

Throughout this paper, let C denote various constants independent of the variables in question and $C(a, b, \cdots)$ be a constant that depends on a, b, \cdots.

We denote by $B(x, r)$ the open ball centered at x of radius r. For a measurable set E, we denote by $|E|$ the Lebesgue measure of E.

For a locally integrable function f on G, the Hardy-Littlewood maximal function $M f$ is defined by

$$
M f(x)=\sup _{r>0} \frac{1}{|B(x, r)|} \int_{B(x, r) \cap G}|f(y)| d y
$$

We know the following boundedness of maximal operator on $L^{\Phi}(G)$.
Lemma 3.1 ([12, Corollary 4.4]). Suppose that $\Phi(x, t)$ satisfies ($\Phi 5$) and further assume:
$\left(\Phi 3^{*}\right) t \mapsto t^{-\varepsilon_{0}} \phi(x, t)$ is uniformly almost increasing on $(0, \infty)$ for some $\varepsilon_{0}>0$.
Then the maximal operator M is bounded from $L^{\Phi}(G)$ into itself, namely, there is a constant $C>0$ such that

$$
\|M f\|_{L^{\Phi}(G)} \leq C\|f\|_{L^{\Phi}(G)}
$$

for all $f \in L^{\Phi}(G)$.
We consider the function

$$
\gamma(x, t): G \times\left(0, d_{G}\right) \rightarrow[0, \infty)
$$

satisfying the following conditions $(\gamma 1)$ and $(\gamma 2)$:
$(\gamma 1) \quad \gamma(\cdot, t)$ is measurable on G for each $0<t<d_{G}$ and $\gamma(x, \cdot)$ is continuous on $\left(0, d_{G}\right)$ for each $x \in G$;
$(\gamma 2)$ there exists a constant $B_{0} \geq 1$ such that

$$
B_{0}^{-1} \leq \gamma(x, t) \leq B_{0} t^{-N} \quad \text { for all } x \in G \quad \text { whenever } 0<t<d_{G}
$$

Further we consider the function

$$
\Gamma_{\alpha}(x, t): G \times[0, \infty) \rightarrow[0, \infty)
$$

satisfying the following conditions ($\Gamma 1$) and ($\Gamma 2$):
(Г1) $\Gamma_{\alpha}(\cdot, t)$ is measurable on G for each $t \geq 0$ and $\Gamma_{\alpha}(x, \cdot)$ is continuous on $[0, \infty)$ for each $x \in G$;
(Г2) $\Gamma_{\alpha}(x, \cdot)$ is uniformly almost increasing, namely there exists a constant $B_{1} \geq 1$ such that

$$
\Gamma_{\alpha}(x, t) \leq B_{1} \Gamma_{\alpha}(x, s) \quad \text { for all } x \in G \quad \text { whenever } 0 \leq t<s
$$

(Г3) there exist constants $\alpha_{0}>0, B_{2} \geq 1$ and $B_{3} \geq 1$ such that

$$
t^{\alpha-N} \phi(x, \gamma(x, t))^{-1} \leq B_{2} \Gamma_{\alpha}(x, 1 / t)
$$

for all $x \in G$ and $\alpha \geq \alpha_{0}$ whenever $0<t<d_{G}$ and

$$
\int_{t}^{d_{G}} \rho^{\alpha} \gamma(x, \rho) \frac{d \rho}{\rho} \leq B_{3} \Gamma_{\alpha}(x, 1 / t)
$$

for all $x \in G, 0<t \leq d_{G} / 2$ and $\alpha \geq \alpha_{0}$.
Lemma 3.2. Suppose that $\Phi(x, t)$ satisfies ($\Phi 5$) and $\alpha_{0} \leq \alpha<N$. Then there exists a constant $C>0$ such that

$$
\int_{G \backslash B(x, \delta)}|x-y|^{\alpha-N} f(y) d y \leq C \Gamma_{\alpha}\left(x, \frac{1}{\delta}\right)
$$

for all $x \in G, 0<\delta \leq d_{G} / 2$ and nonnegative $f \in L^{\Phi}(G)$ with $\|f\|_{L^{\Phi}(G)} \leq 1$.
Proof. Let f be a nonnegative measurable function with $\|f\|_{L^{\Phi}(G)} \leq 1$. Since

$$
\phi(y, \gamma(x,|x-y|))^{-1} \leq B^{\prime} \phi(x, \gamma(x,|x-y|))^{-1}
$$

with some constant $B^{\prime}>0$ by $(\gamma 2),(\Phi 3),(\Phi 4)$ and ($\Phi 5$), we have by ($\Phi 3$), ($\Gamma 2$) and (Г3)

$$
\begin{aligned}
& \int_{G \backslash B(x, \delta)}|x-y|^{\alpha-N} f(y) d y \\
\leq & \int_{G \backslash B(x, \delta)}|x-y|^{\alpha-N} \gamma(x,|x-y|) d y \\
& +A_{2} \int_{G \backslash B(x, \delta)}|x-y|^{\alpha-N} f(y) \frac{\phi(y, f(y))}{\phi(y, \gamma(x,|x-y|))} d y \\
\leq & C \int_{\delta}^{d_{G}} \rho^{\alpha} \gamma(x, \rho) \frac{d \rho}{\rho}+A_{2} B^{\prime} \int_{G \backslash B(x, \delta)}|x-y|^{\alpha-N} \phi(x, \gamma(x,|x-y|))^{-1} \Phi(y, f(y)) d y \\
\leq & C B_{3} \Gamma_{\alpha}(x, 1 / \delta)+A_{2} B_{1} B_{2} B^{\prime} \Gamma_{\alpha}(x, 1 / \delta) \int_{G \backslash B(x, \delta)} \Phi(y, f(y)) d y \\
\leq & \left(C B_{3}+A_{2} B_{1} B_{2} B^{\prime}\right) \Gamma_{\alpha}(x, 1 / \delta) .
\end{aligned}
$$

Thus we obtain the required results.
Lemma 3.3. Let $\alpha \geq \alpha_{0}$. Then there exists a constant $C^{\prime}>0$ such that $\Gamma_{\alpha}\left(x, 2 / d_{G}\right) \geq$ C^{\prime} for all $x \in G$.

Proof. By (Г3) and ($\gamma 2$),

$$
\begin{aligned}
\Gamma_{\alpha}\left(x, 2 / d_{G}\right) & \geq B_{3}^{-1} \int_{d_{G} / 2}^{d_{G}} \rho^{\alpha} \gamma(x, \rho) \frac{d \rho}{\rho} \geq B_{0}^{-1} B_{3}^{-1} \int_{d_{G} / 2}^{d_{G}} \rho^{\alpha} \frac{d \rho}{\rho} \\
& =B_{0}^{-1} B_{3}^{-1} \alpha^{-1} d_{G}^{\alpha}\left(1-2^{-\alpha}\right)=C^{\prime}
\end{aligned}
$$

for all $x \in G$, as required.

Lemma 3.4 (cf. [15, Lemma 2.1]). Suppose $\Gamma_{\alpha}(x, t)$ satisfies the uniform log-type condition:
($\Gamma_{\text {log }}$) there exists a constant $c_{\Gamma}>0$ such that

$$
c_{\Gamma}^{-1} \Gamma_{\alpha}(x, s) \leq \Gamma_{\alpha}\left(x, s^{2}\right) \leq c_{\Gamma} \Gamma_{\alpha}(x, s)
$$

for all $x \in G$ and $s>0$.
Then, for every $c>1$, there exists $C>0$ such that $\Gamma_{\alpha}(x, c s) \leq C \Gamma_{\alpha}(x, s)$ for all $x \in G$ and $s>0$.

4 Trudinger's inequality

For $0<\alpha<N$, we define the Riesz potential of order α for a locally integrable function f on G by

$$
I_{\alpha} f(x)=\int_{G}|x-y|^{\alpha-N} f(y) d y
$$

Theorem 4.1. Assume that $\Phi(x, t)$ satisfies ($\Phi 5$) and ($\Phi 3^{*}$). Suppose that $\Gamma_{\alpha}(x, t)$ satisfies $\left(\Gamma_{\log }\right)$. For each $x \in G$, let $\gamma_{\alpha}(x)=\sup _{s>0} \Gamma_{\alpha}(x, s)$. Suppose $\Psi_{\alpha}(x, t)$: $G \times[0, \infty) \rightarrow[0, \infty]$ satisfies the following conditions:
$\left(\Psi_{\alpha} 1\right) \Psi_{\alpha}(\cdot, t)$ is measurable on G for each $t \in[0, \infty) ; \Psi_{\alpha}(x, \cdot)$ is continuous on $[0, \infty)$ for each $x \in G$;
$\left(\Psi_{\alpha} 2\right)$ there is a constant $B_{4} \geq 1$ such that $\Psi_{\alpha}(x, t) \leq \Psi_{\alpha}\left(x, B_{4} s\right)$ for all $x \in G$ whenever $0<t<s$;
$\left(\Psi_{\alpha} 3\right)$ there are constants $B_{5}, B_{6} \geq 1$ and $t_{0}>0$ such that $\Psi_{\alpha}\left(x, \Gamma_{\alpha}(x, t) / B_{5}\right) \leq B_{6} t$ for all $x \in G$ and $t \geq t_{0}$.

Then there exist constants $c_{1}, c_{2}>0$ such that $I_{\alpha} f(x) / c_{1}<\gamma_{\alpha}(x)$ for a.e. $x \in G$ and

$$
\int_{G} \Psi_{\alpha}\left(x, \frac{I_{\alpha} f(x)}{c_{1}}\right) d x \leq c_{2}
$$

for all $\alpha_{0} \leq \alpha<N$ and $f \geq 0$ satisfying $\|f\|_{L^{\Phi}(G)} \leq 1$.
Proof. Let $f \geq 0$ and $\|f\|_{L^{\Phi}(G)} \leq 1$. Note from Lemma 3.1 that

$$
\begin{equation*}
\int_{G} M f(x) d x \leq|G|+A_{1} A_{2} \int_{G} \Phi(x, M f(x)) d x \leq C_{M} . \tag{4.1}
\end{equation*}
$$

Fix $x \in G$. For $0<\delta \leq d_{G} / 2$, Lemma 3.2 implies

$$
\begin{aligned}
I_{\alpha} f(x) & =\int_{B(x, \delta)}|x-y|^{\alpha-N} f(y) d y+\int_{G \backslash B(x, \delta)}|x-y|^{\alpha-N} f(y) d y \\
& \leq C\left\{M f(x)+\Gamma_{\alpha}\left(x, \frac{1}{\delta}\right)\right\}
\end{aligned}
$$

with constants $C>0$ independent of x.
If $M f(x) \leq 2 / d_{G}$, then we take $\delta=d_{G} / 2$. Then, by Lemma 3.3

$$
I_{\alpha} f(x) \leq C \Gamma_{\alpha}\left(x, \frac{2}{d_{G}}\right)
$$

By Lemma 3.4, there exists $C_{1}^{*}>0$ independent of x such that

$$
\begin{equation*}
I_{\alpha} f(x) \leq C_{1}^{*} \Gamma_{\alpha}\left(x, t_{0}\right) \quad \text { if } M f(x) \leq 2 / d_{G} . \tag{4.2}
\end{equation*}
$$

Next, suppose $2 / d_{G}<M f(x)<\infty$. Let $m=\sup _{s \geq 2 / d_{G}, x \in G} \Gamma_{\alpha}(x, s) / s$. By $\left(\Gamma_{\log }\right), m<\infty$. Define δ by

$$
\delta^{\alpha}=\frac{\left(d_{G} / 2\right)^{\alpha}}{m} \Gamma_{\alpha}(x, M f(x))(M f(x))^{-1} .
$$

Since $\Gamma_{\alpha}(x, M f(x))(M f(x))^{-1} \leq m, 0<\delta \leq d_{G} / 2$. Then by Lemma 3.3

$$
\begin{aligned}
\frac{1}{\delta} & \leq C \Gamma_{\alpha}(x, M f(x))^{-1 / \alpha}(M f(x))^{1 / \alpha} \\
& \leq C \Gamma_{\alpha}\left(x, 2 / d_{G}\right)^{-1 / \alpha}(M f(x))^{1 / \alpha} \leq C(M f(x))^{1 / \alpha}
\end{aligned}
$$

Hence, using ($\Gamma_{\text {log }}$) and Lemma 3.4, we obtain

$$
\Gamma_{\alpha}\left(x, \frac{1}{\delta}\right) \leq C \Gamma_{\alpha}\left(x, C(M f(x))^{1 / \alpha}\right) \leq C \Gamma_{\alpha}(x, M f(x))
$$

By Lemma 3.4 again, we see that there exists a constant $C_{2}^{*}>0$ independent of x such that

$$
\begin{equation*}
I_{\alpha} f(x) \leq C_{2}^{*} \Gamma_{\alpha}\left(x, \frac{t_{0} d_{G}}{2} M f(x)\right) \quad \text { if } 2 / d_{G}<M f(x)<\infty . \tag{4.3}
\end{equation*}
$$

Now, let $c_{1}=B_{4} B_{5} \max \left(C_{1}^{*}, C_{2}^{*}\right)$. Then, by (4.2) and (4.3),

$$
\frac{I_{\alpha} f(x)}{c_{1}} \leq \frac{1}{B_{4} B_{5}} \max \left\{\Gamma_{\alpha}\left(x, t_{0}\right), \Gamma_{\alpha}\left(x, \frac{t_{0} d_{G}}{2} M f(x)\right)\right\}
$$

whenever $M f(x)<\infty$. Since $M f(x)<\infty$ for a.e. $x \in G$ by Lemma 3.1, $I_{\alpha} f(x) / c_{1}<\gamma_{\alpha}(x)$ a.e. $x \in G$, and by $\left(\Psi_{\alpha} 2\right)$ and ($\Psi_{\alpha} 3$), we have

$$
\begin{aligned}
\Psi_{\alpha} & \left(x, \frac{I_{\alpha} f(x)}{c_{1}}\right) \\
& \leq \max \left\{\Psi_{\alpha}\left(x, \Gamma_{\alpha}\left(x, t_{0}\right) / B_{5}\right), \Psi_{\alpha}\left(x, \Gamma_{\alpha}\left(x, \frac{t_{0} d_{G}}{2} M f(x)\right) / B_{5}\right)\right\} \\
& \leq B_{6} t_{0}+\frac{B_{6} t_{0} d_{G}}{2} M f(x)
\end{aligned}
$$

for a.e. $x \in G$. Thus, we have by (4.1)

$$
\begin{aligned}
\int_{G} \Psi_{\alpha}\left(x, \frac{I_{\alpha} f(x)}{c_{1}}\right) d x & \leq B_{6} t_{0}|G|+\frac{B_{6} t_{0} d_{G}}{2} \int_{G} M f(x) d x \\
& \leq B_{6} t_{0}|G|+\frac{B_{6} t_{0} d_{G} C_{M}}{2}=c_{2}
\end{aligned}
$$

Applying Theorem 4.1 to special Φ given in Example 2.1, we obtain the following corollary.

Corollary 4.2. Let Φ be as in Example 2.1.
(1) Suppose there exists an integer $1 \leq j_{0} \leq k$ such that

$$
\begin{equation*}
\inf _{x \in G}\left(p(x)-q_{j_{0}}(x)-1\right)>0 \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{x \in G}\left(p(x)-q_{j}(x)-1\right) \leq 0 \tag{4.5}
\end{equation*}
$$

for all $j \leq j_{0}-1$ in case $j_{0} \geq 2$. Then there exist constants $c_{1}, c_{2}>0$ such that

$$
\begin{aligned}
& \int_{G} E_{+}^{\left(j_{0}\right)}\left(\left(\frac{I_{\alpha} f(x)}{c_{1}}\right)^{p(x) /\left(p(x)-q_{j_{0}}(x)-1\right)}\right. \\
& \left.\quad \times \prod_{j=1}^{k-j_{0}}\left(L_{e}^{(j)}\left(\frac{I_{\alpha} f(x)}{c_{1}}\right)\right)^{q_{j_{0}+j}(x) /\left(p(x)-q_{j_{0}}(x)-1\right)}\right) d x \leq c_{2}
\end{aligned}
$$

for all $N / p^{-} \leq \alpha<N$ and $f \geq 0$ satisfying $\|f\|_{L^{\Phi}(G)} \leq 1$, where $E^{(1)}(t)=e^{t}-e$, $E^{(j+1)}(t)=\exp \left(E^{j}(t)\right)-e$ and $E_{+}^{(j)}(t)=\max \left(E^{(j)}(t), 0\right)$.
(2) If

$$
\sup _{x \in G}\left(p(x)-q_{j}(x)-1\right) \leq 0
$$

for all $j=1, \ldots, k$, then there exist constants $c_{1}, c_{2}>0$ such that

$$
\int_{G} E^{(k+1)}\left(\left(\frac{I_{\alpha} f(x)}{c_{1}}\right)^{p(x) /(p(x)-1)}\right) d x \leq c_{2}
$$

for all $N / p^{-} \leq \alpha<N$ and $f \geq 0$ satisfying $\|f\|_{L^{\Phi}(G)} \leq 1$.
Proof. First we show the case (1). In this case, set
$\gamma(x, t)=t^{-N / p(x)}\left(\prod_{j=1}^{j_{0}-1}\left[L_{e}^{(j)}(1 / t)\right]^{-1}\right)\left[L_{e}^{\left(j_{0}\right)}(1 / t)\right]^{-\left(q_{j_{0}}(x)+1\right) / p(x)}\left(\prod_{j=j_{0}+1}^{k}\left[L_{e}^{(j)}(1 / t)\right]^{-q_{j}(x) / p(x)}\right)$
and

$$
\Gamma_{\alpha}(x, t)=\left[L_{e}^{\left(j_{0}\right)}(t)\right]^{\left(p(x)-q_{j_{0}}(x)-1\right) / p(x)}\left(\prod_{j=j_{0}+1}^{k}\left[L_{e}^{(j)}(t)\right]^{-q_{j}(x) / p(x)}\right) .
$$

Here note that $\gamma(x, t)$ satisfies $(\gamma 2)$ and $\Gamma_{\alpha}(x, t)$ is uniformly almost increasing on
t and satisfies $\left(\Gamma_{\log }\right)$ by (4.4). We have by $N / p^{-} \leq \alpha$ and (4.5)

$$
\begin{aligned}
& t^{\alpha-N} \phi(x, \gamma(x, t))^{-1} \\
\leq & C t^{\alpha-N / p(x)}\left(\prod_{j=1}^{j_{0}-1}\left[L_{e}^{(j)}(1 / t)\right]^{p(x)-q_{j}(x)-1}\right) \\
& \times\left[L_{e}^{\left(j_{0}\right)}(1 / t)\right]^{\left(p(x)-q_{j_{0}}(x)-1\right) / p(x)}\left(\prod_{j=j_{0}+1}^{k}\left[L_{e}^{(j)}(1 / t)\right]^{-q_{j}(x) / p(x)}\right) \\
\leq & C\left[L_{e}^{\left(j_{0}\right)}(1 / t)\right]^{\left(p(x)-q_{j_{0}}(x)-1\right) / p(x)}\left(\prod_{j=j_{0}+1}^{k}\left[L_{e}^{(j)}(1 / t)\right]^{-q_{j}(x) / p(x)}\right) \\
= & C \Gamma_{\alpha}(x, 1 / t)
\end{aligned}
$$

for all $x \in G$ and $\alpha_{0}=N / p^{-} \leq \alpha<N$ whenever $0<t<d_{G}$. By (4.4), we find $\varepsilon_{0}>0$ such that $\inf _{x \in G}\left\{1-\left(q_{j_{0}}(x)+1\right) / p(x)\right\}>\varepsilon_{0}$. We see from $N / p^{-} \leq \alpha$, (4.4) and (4.5) that

$$
\begin{aligned}
& \int_{t}^{d_{G}} \rho^{\alpha} \gamma(x, \rho) \frac{d \rho}{\rho} \\
\leq & C \int_{t}^{d_{G}}\left(\prod_{j=1}^{j_{0}-1}\left[L_{e}^{(j)}(1 / \rho)\right]^{-1}\right)\left[L_{e}^{\left(j_{0}\right)}(1 / \rho)\right]^{-\left(q_{j_{0}}(x)+1\right) / p(x)}\left(\prod_{j=j_{0}+1}^{k}\left[L_{e}^{(j)}(1 / \rho)\right]^{-q_{j}(x) / p(x)}\right) \frac{d \rho}{\rho} \\
\leq & C\left[L_{e}^{\left(j_{0}\right)}(1 / t)\right]^{1-\left(q_{j_{0}}(x)+1\right) / p(x)-\varepsilon_{0}}\left(\prod_{j=j_{0}+1}^{k}\left[L_{e}^{(j)}(1 / t)\right]^{-q_{j}(x) / p(x)}\right) \\
& \times \int_{t}^{d_{G}}\left(\prod_{j=1}^{j_{0}-1}\left[L_{e}^{(j)}(1 / \rho)\right]^{-1}\right)\left[L_{e}^{\left(j_{0}\right)}(1 / \rho)\right]^{-1+\varepsilon_{0}} \frac{d \rho}{\rho} \\
\leq & C \Gamma_{\alpha}(x, 1 / t)
\end{aligned}
$$

for all $0<t \leq d_{G} / 2$ and $N / p^{-} \leq \alpha<N$. Hence, $\Gamma_{\alpha}(x, t)$ satisfies (Г3).
Now, set

$$
\psi(x, t)=t^{p(x) /\left(p(x)-q_{j_{0}}(x)-1\right)} \prod_{i=1}^{k-j_{0}}\left[L_{e}^{(i)}(t)\right]^{q_{j_{0}+i}(x) /\left(p(x)-q_{j_{0}}(x)-1\right)}
$$

for $x \in G$ and $t>0$. Then

$$
\psi\left(x, \Gamma_{\alpha}(x, s)\right) \leq C_{1} L_{e}^{\left(j_{0}\right)}(s)
$$

for $s>0$.
Since $\inf _{x \in G} p(x) /\left(p(x)-q_{j 0}(x)-1\right)>0$, there are constants $0<\theta \leq 1$ and $C_{2} \geq 1$ such that

$$
\begin{equation*}
\psi(x, c t) \leq C_{2} c^{\theta} \psi(x, t) \tag{4.6}
\end{equation*}
$$

for all $x \in G, t>0$ and $0<c \leq 1$. Hence, choosing $B \geq 1$ such that $C_{1} C_{2} B^{-\theta} \leq 1$, we have

$$
\psi\left(x, \Gamma_{\alpha}(x, s) / B\right) \leq C_{2} B^{-\theta} \psi\left(x, \Gamma_{\alpha}(x, s)\right) \leq C_{2} B^{-\theta} C_{1} L_{e}^{\left(j_{0}\right)}(s) \leq L_{e}^{\left(j_{0}\right)}(s)
$$

for $s>0$. Thus,

$$
\begin{equation*}
E^{\left(j_{0}\right)}\left(\psi\left(x, \Gamma_{\alpha}(x, s) / B\right)\right) \leq s \quad \text { for } s>0 \tag{4.7}
\end{equation*}
$$

Let $u_{0}>0$ be the unique solution of the equation $e^{u}-e=u$. Then $E^{(1)}(u) \geq u_{0}$ if and only if $u \geq u_{0}$. Choose $t_{0}>0$ such that $\psi(x, t) \geq u_{0}$ for $t \geq t_{0}$ and define

$$
\Psi(x, t)= \begin{cases}E^{\left(j_{0}\right)}(\psi(x, t)) & \text { for } t \geq t_{0} \\ \Psi\left(x, t_{0}\right) \frac{t}{t_{0}} & \text { for } 0<t<t_{0}\end{cases}
$$

Noting that

$$
\psi(x, t)=\psi\left(x, \frac{t}{C_{2}^{1 / \theta} s} C_{2}^{1 / \theta} s\right) \leq \psi\left(x, C_{2}^{1 / \theta} s\right)
$$

for $0<t \leq s$ by (4.6), $\Psi(x, t)$ satisfies $\left(\Psi_{\alpha} 1\right),\left(\Psi_{\alpha} 2\right)$ (with $B_{4}=C_{2}^{1 / \theta}$, say) and ($\Psi_{\alpha} 3$), in view of (4.6) and (4.7).

Thus Theorem 4.1 implies the existence of constants $c_{1}, C_{3}>0$ such that

$$
\int_{G} \Psi\left(x, \frac{I_{\alpha} f(x)}{c_{1}}\right) d x \leq C_{3}
$$

for all $N / p^{-} \leq \alpha<N$ and $f \geq 0$ satisfying $\|f\|_{L^{\Phi}(G)} \leq 1$. Let $S_{f}=\{x \in G$: $\left.I_{\alpha} f(x) \geq c_{1} t_{0}\right\}$. Then

$$
\begin{aligned}
\int_{G} E_{+}^{\left(j_{0}\right)}\left(\psi\left(x, \frac{I_{\alpha} f(x)}{c_{1}}\right)\right) d x & \leq C_{4} \int_{G \backslash S_{f}} d x+\int_{G \cap S_{f}} \Psi\left(x, \frac{I_{\alpha} f(x)}{c_{1}}\right) d x \\
& \leq C_{4}|G|+C_{3}=c_{2}
\end{aligned}
$$

for all $N / p^{-} \leq \alpha<N$ and $f \geq 0$ satisfying $\|f\|_{L^{\Phi}(G)} \leq 1$, which shows the assertion of (1).

In the case (2), setting

$$
\begin{aligned}
\gamma(x, t) & =t^{-N / p(x)}\left(\prod_{j=1}^{k}\left[L_{e}^{(j)}(1 / t)\right]^{-1}\right)\left[L_{e}^{(k+1)}(1 / t)\right]^{-1 / p(x)}, \\
\Gamma_{\alpha}(x, t) & =\left[L_{e}^{(k+1)}(1 / t)\right]^{1-1 / p(x)}
\end{aligned}
$$

and

$$
\psi(x, t)=t^{p(x) /(p(x)-1)},
$$

the above discussion yields the required result.

References

[1] D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory, Springer, 1996.
[2] A. Alberico and A. Cianchi, Differentiability properties of Orlicz-Sobolev functions, Ark. Mat. 43 (2005), 1-28.
[3] H. Brézis and S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Diff. Equations 5 (1980), 773-789.
[4] L. Diening, P. Harjulehto, P. Hästö and M. Ružička, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Math. 2017, Springer-Verlag, Berlin, 2011.
[5] D. E. Edmunds, P. Gurka and B. Opic, Double exponential integrability, Bessel potentials and embedding theorems, Studia Math. 115 (1995), 151-181.
[6] D. E. Edmunds, P. Gurka and B. Opic, Sharpness of embeddings in logarithmic Bessel-potential spaces, Proc. Royal Soc. Edinburgh. 126 (1996), 995-1009.
[7] D. E. Edmunds and R. Hurri-Syrjänen, Sobolev inequalities of exponential type, Israel. J. Math. 123 (2001), 61-92.
[8] D. E. Edmunds and M. Krbec, Two limiting cases of Sobolev imbeddings, Houston J. Math. 21 (1995), 119-128.
[9] T. Futamura and Y. Mizuta, Continuity properties of Riesz potentials for functions in $L^{p(\cdot)}$ of variable exponent, Math. Inequal. Appl. 8(4) (2005), 619631.
[10] T. Futamura, Y. Mizuta and T. Shimomura, Sobolev embedding for variable exponent Riesz potentials on metric spaces, Ann. Acad. Sci. Fenn. Math. 31 (2006), 495-522.
[11] T. Futamura, Y. Mizuta and T. Shimomura, Integrability of maximal functions and Riesz potentials in Orlicz spaces of variable exponent, J. Math. Anal. Appl. 366 (2010), 391-417.
[12] F.-Y. Maeda, Y. Mizuta, T. Ohno and T. Shimomura, Boundedness of maximal operators and Sobolev's inequality on Musielak-Orlicz-Morrey spaces, Bull. Sci. Math. 137 (2013), 76-96.
[13] Y. Mizuta, T. Ohno and T. Shimomura, Sobolev embeddings for Riesz potential spaces of variable exponents near 1 and Sobolev's exponent, Bull. Sci. Math. 134 (2010), 12-36.
[14] Y. Mizuta and T. Shimomura, Exponential integrability for Riesz potentials of functions in Orlicz classes, Hiroshima Math. J. 28 (1998), 355-371.
[15] Y. Mizuta and T. Shimomura, Differentiability and Hölder continuity of Riesz potentials of functions in Orlicz classes, Analysis. 20 (2000), 201-223.
[16] Y. Mizuta and T. Shimomura, Continuity properties of Riesz potentials of Orlicz functions, Tohoku Math. J. 61 (2009), 225-240.
[17] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1971), 1077-1092.
[18] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer-Verlag, 1983.
[19] N. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473-483.
[20] W. P. Ziemer, Weakly differentiable functions, Springer-Verlag, New York, 1989.

Faculty of Education and Welfare Science Oita University Dannoharu Oita-city 870-1192, Japan
E-mail: t-ohno@oita-u.ac.jp and
Department of Mathematics
Graduate School of Education
Hiroshima University Higashi-Hiroshima 739-8524, Japan
E-mail: tshimo@hiroshima-u.ac.jp

[^0]: 2000 Mathematics Subject Classification : Primary 46E30, 42B25
 Key words and phrases : Musielak-Orlicz space, Trudinger's inequality, Riesz potentials
 The first author was partially supported by Grant-in-Aid for Young Scientists (B), No. 23740108, Japan Society for the Promotion of Science. The second author was partially supported by Grant-in-Aid for Scientific Research (C), No. 21540183, Japan Society for the Promotion of Science.

