Riesz decomposition for super-polyharmonic functions in the punctured unit ball

Toshihide Futamura, Yoshihiro Mizuta and Takao Ohno

January 6, 2011

Abstract

We consider a Riesz decomposition theorem for super-polyharmonic functions satisfying certain growth condition on surface integrals in the punctured unit ball. We give a condition that super-polyharmonic functions uhave the bound

$$u(x) = O(\mathcal{R}_2(x)),$$

where \mathcal{R}_2 denotes the fundamental solution for $-\Delta u$ in \mathbf{R}^n .

1 Introduction

Let B(x, r) denote the open ball centered at x with radius r, whose boundary is written as $S(x, r) = \partial B(x, r)$. If x = 0, then we simply write B(r) = B(0, r) and S(r) = S(0, r). Fix r_0 , $0 < r_0 < 1$. For $0 < r < r_0$, we set

$$A(r) = \{ x \in \mathbf{R}^n : r < |x| < r_0 \}.$$

For a Borel measurable function u on S(r), let us define the spherical mean over S(r) by

$$M(u,r) = \int_{S(r)} u(x) \ dS(x) = \frac{1}{\omega_n r^{n-1}} \int_{S(r)} u(x) \ dS(x),$$

where ω_n denotes the surface area of the unit sphere S(1).

A real-valued function u on an open set $\Omega \subset \mathbf{R}^n$ is called polyharmonic of order m on Ω if $u \in C^{2m}(\Omega)$ and $\Delta^m u = 0$ on Ω , where m is a positive integer and Δ^m denotes the Laplacian iterated m times. We denote by $\mathcal{H}^m(\Omega)$ the space of polyharmonic functions of order m on Ω ; for fundamental properties of polyharmonic

²⁰⁰⁰ Mathematics Subject Classification : Primary 31B30, 31B05, 31B15

Key words and phrases : polyharmonic functions, super-polyharmonic functions, spherical means, Riesz decomposition

functions, we refer the reader to the book by N. Aronszajn, T. M. Creese and L. J. Lipkin [2].

We say that a locally integrable Borel function u on Ω is super-polyharmonic of order m in Ω if

(1) $(-\Delta)^m u$ is a nonnegative measure on Ω , that is,

$$\int_{\Omega} u(x)(-\Delta)^m \varphi(x) \, dx \ge 0 \qquad \text{for all nonnegative } \varphi \in C_0^{\infty}(\Omega);$$

- (2) u is lower semicontinuous in Ω ;
- (3) every point of Ω is a Lebesgue point of u

(see [5]); $(-\Delta)^m u$ is referred to as the Riesz measure of u and denoted by μ_u . Consider the Riesz kernel of order 2m defined by

$$\mathcal{R}_{2m}(x) = \begin{cases} \alpha_{n,m}(-1)^{\frac{2m-n}{2}} |x|^{2m-n} \log(1/|x|) & \text{if } 2m-n \text{ is an even nonnegative integer,} \\ \alpha_{n,m}(-1)^{\max\{0,\frac{(2m-n+1)}{2}\}} |x|^{2m-n} & \text{otherwise,} \end{cases}$$

where $\alpha_{n,m}$ is a positive constant chosen such that $(-\Delta)^m \mathcal{R}_{2m}$ is the Dirac measure at the origin. Note here that if $2m \leq n$, then

$$\lim_{x \to 0} \mathcal{R}_{2m}(x) = \begin{cases} \infty & \text{if } 2m \le n, \\ 0 & \text{if } 2m > n \end{cases}$$
(1.1)

Following the book by K. Hayman and P. B. Kennedy [8], we consider the remainder term in the Taylor expansion of $\mathcal{R}_{2m}(\cdot - y)$ given by

$$\mathcal{R}_{2m,L}(x,y) = \mathcal{R}_{2m}(x-y) - \sum_{|\lambda| \le L} \frac{(-y)^{\lambda}}{\lambda!} D^{\lambda} \mathcal{R}_{2m}(x),$$

where L is a real number; in case L < 0, set $\mathcal{R}_{2m,L}(x, y) = \mathcal{R}_{2m}(x - y)$. For a nonnegative measure μ on A(0), we define

$$\mathcal{R}_{2m,L}\mu(x) = \int_{A(0)} \mathcal{R}_{2m,L}(x,y) d\mu(y).$$

Our first aim in this paper is to establish the following result.

THEOREM 1.1. The following are equivalent:

- (1) there is a super-polyharmonic function u on $B(1)\setminus\{0\}$ with $\mu_u = (-\Delta)^m u \ge 0$ such that
 - (1-1) $M((-1)^m u, r) \leq \mathcal{R}_2(r)$ for all $0 < r < r_0$;
 - (1-2) $\liminf_{r \to 0} \mathcal{R}_2(r)^{-1} M(((-1)^m u)^+, r) < \infty;$

- (1-3) $\liminf_{x \to 0} \mathcal{R}_2(x)^{-1}(-1)^m u(x) = -\infty,$ where $v^+ = \max\{v, 0\}.$
- (2) m is odd and $2m \leq n$.

This extends a recent result by M. Ghergu, A. Moradifam and S. D. Taliaferro [7, Theorem 1.1]; our result is stated as follows:

COROLLARY 1.2. The following are equivalent:

- (1) there is a super-polyharmonic function u on $B(1)\setminus\{0\}$ with $\mu_u = (-\Delta)^m u \ge 0$ such that
 - (1-4) $(-1)^m u \leq 0,$ (1-5) $\liminf_{x \to 0} \mathcal{R}_2(x)^{-1} (-1)^m u(x) = -\infty;$
- (2) m is odd and $2m \leq n$.

It is easy to see from (1.1) that (2) is equivalent to

(3) $\lim_{x \to 0} (-1)^m \mathcal{R}_{2m}(x) = -\infty.$

To show Theorem 1.1, we apply the following Riesz decomposition theorem for super-polyharmonic functions in the punctured unit ball (see also M. Ghergu, A. Moradifam and S. D. Taliaferro [7, Theorem 3.1], where they treated the case when $(-1)^m u \leq 0$).

THEOREM 1.3. Let u be a super-polyharmonic function on $B(1) \setminus \{0\}$ with $\mu_u = (-\Delta)^m u \ge 0$. Suppose that there exist constants $\alpha \ge n-2$ and C > 0 with

$$M((-1)^m u, r) \le C \begin{cases} r^{-\alpha} & \text{when } \alpha > 0, \\ \log(1/r) & \text{when } \alpha = 0, \end{cases}$$

whenever $0 < r < r_0$. Suppose further that

$$\liminf_{r \to 0} r^{\alpha - (n-2)} \mathcal{R}_2(r)^{-1} M(((-1)^m u)^+, r) < \infty.$$

Then there exist a function $h \in \mathcal{H}^m(B(r_0))$ and constants c_{λ} such that if $\alpha > n-2$, then

$$u(x) = \mathcal{R}_{2m,L}\mu_u(x) + h(x) + \sum_{|\lambda| \le L} c_{\lambda} D^{\lambda} \mathcal{R}_{2m}(x)$$

for all $x \in A(0)$, where L is the integer such that $L \leq 2m - n + \alpha < L + 1$; and if $\alpha = n - 2$, then

$$u(x) = \mathcal{R}_{2m,2m-3}\mu_u(x) + h(x) + \sum_{|\lambda| \le 2m-2} c_{\lambda} D^{\lambda} \mathcal{R}_{2m}(x)$$

for all $x \in A(0)$.

The case $\alpha > n-2$ was treated in [6, Theorems 1.3 and 1.4]. For further related results, we refer the reader to [1, 3, 4, 5, 9, 10].

Throughout this paper, let C denote various positive constants independent of the variables in question and let $C(a, b, \dots)$ be a positive constant which may depend on a, b, \dots

2 Preliminaries and fundamental lemmas

Since $\Delta^k \mathcal{R}_{2m}(x)$ is of rotation free, we write

$$\Delta^k \mathcal{R}_{2m}(r) = \Delta^k \mathcal{R}_{2m}(x)$$

when r = |x|.

LEMMA 2.1. For r > 0 and $y \in \mathbf{R}^n$,

$$M(\mathcal{R}_{2m}(\cdot - y), r) = \begin{cases} \sum_{j=0}^{m-1} a_j r^{2j} \Delta^j \mathcal{R}_{2m}(y) & \text{if } |y| > r, \\ \sum_{m=1}^{m-1} a_j |y|^{2j} \Delta^j \mathcal{R}_{2m}(r) & \text{if } |y| \le r, \end{cases}$$

where $a_0 = 1$ and

$$a_j = \frac{1}{2^j j! n(n+2) \cdots (n+2j-2)}$$

for positive integers j.

Proof. Since $\Delta^m \mathcal{R}_{2m}(\cdot - y) = 0$ in B(0, |y|), this equality holds for r < |y| by Pizetti's formula [12].

If |y| < r, then we have

$$M(\mathcal{R}_{2m}(\cdot - y), r) = \frac{1}{\omega_n r^{n-1}} \int_{S(r)} \mathcal{R}_{2m} \left(\frac{|y|}{r} x - \frac{r}{|y|} y \right) dS(x)$$
$$= \frac{1}{\omega_n |y|^{n-1}} \int_{S(|y|)} \mathcal{R}_{2m} \left(x' - \frac{r}{|y|} y \right) dS(x')$$
$$= \sum_{j=0}^{m-1} a_j |y|^{2j} \Delta^j \mathcal{R}_{2m} \left(\frac{r}{|y|} y \right).$$

Since $M(\mathcal{R}_{2m}(\cdot - y), r)$ is a continuous function of r, the present lemma follows. LEMMA 2.2. Let u be a super-polyharmonic function on $B(1) \setminus \{0\}$ with $\mu_u = (-\Delta)^m u \ge 0$. Then

$$M(u,r) = \int_{A(r)} \left(\sum_{j=0}^{m-1} a_j r^{2j} \Delta^j \mathcal{R}_{2m}(y) - \sum_{j=0}^{m-1} a_j |y|^{2j} \Delta^j \mathcal{R}_{2m}(r) \right) d\mu_u(y) + \sum_{j=0}^{m-1} \left(b_j r^{2j} + c_j r^{2m-n-2j} + d_j r^{2m-n-2j} \log(1/r) \right)$$

for $0 < r < r_0$, where b_j , c_j and d_j are constants satisfying $d_j = 0$ when j > (2m - n)/2 or 2m - n is odd.

Proof. For $0 < R < r < r_0$, u is represented as

$$u(x) = \int_{A(R)} \mathcal{R}_{2m}(x-y) \, d\mu_u(y) + h_{1,R}(x)$$

=
$$\int_{A(R)} \left(\mathcal{R}_{2m}(x-y) - \sum_{j=0}^{m-1} a_j |y|^{2j} \Delta^j \mathcal{R}_{2m}(x) \right) \, d\mu_u(y) + h_{2,R}(x)$$

when $x \in A(R)$, where $h_{1,R}$, $h_{2,R} \in \mathcal{H}^m(A(R))$. Hence we have by Lemma 2.1

$$M(u,r) = \int_{A(R)} \left(M(\mathcal{R}_{2m}(\cdot - y), r) - \sum_{j=0}^{m-1} a_j |y|^{2j} \Delta^j \mathcal{R}_{2m}(r) \right) d\mu_u(y) + M(h_{2,R}, r)$$

$$= \int_{A(r)} \left(\sum_{j=0}^{m-1} a_j r^{2j} \Delta^j \mathcal{R}_{2m}(y) - \sum_{j=0}^{m-1} a_j |y|^{2j} \Delta^j \mathcal{R}_{2m}(r) \right) d\mu_u(y) + M(h_{2,R}, r).$$

This equality implies that $M(h_{2,R}, r)$ does not depend on R, so that, by [3, Lemma 1], we can find a constants $b_j, c_j, d_j (j = 0, 1, \dots m - 1)$ independent of R such that $d_j = 0$ when j > (2m - n)/2 or 2m - n is odd, and

$$M(h_{2,R},r) = \sum_{j=0}^{m-1} \left(b_j r^{2j} + c_j r^{2m-n-2j} + d_j r^{2m-n-2j} \log(1/r) \right),$$

as required.

Set

$$g_m(t,r) = \sum_{j=0}^{m-1} a_j r^{2j} \Delta^j \mathcal{R}_{2m}(t) - \sum_{j=0}^{m-1} a_j t^{2j} \Delta^j \mathcal{R}_{2m}(r).$$

LEMMA 2.3. The following hold:

- (1) $(-1)^m g_m(t,r) \ge 0$ for r < t;
- (2) $(-1)^m g_m(t,r) \ge C(a)t^{2m-2}\varphi(t,r)$ for t > ar and a > 1, where C(a) is a positive constant and

$$\varphi(t,r) = \begin{cases} \log(t/r) & \text{if } n = 2, \\ r^{2-n} & \text{if } n \ge 3. \end{cases}$$

Proof. For fixed r, set $g_m(t) = g_m(t, r)$. We prove this lemma by induction on m. In case m = 1, we have

$$g_1(t) = \begin{cases} \alpha_{2,1} \log(r/t) & \text{if } n = 2, \\ \alpha_{n,1}(t^{2-n} - r^{2-n}) & \text{if } n \ge 3. \end{cases}$$

Hence (1) and (2) hold for m = 1.

Suppose that (1) and (2) hold for m-1 where $m \ge 2$. Note that

$$\Delta g_m(t) = g''_m(t) + \frac{n-1}{t}g'_m(t) = -g_{m-1}(t)$$

Since $M(\mathcal{R}_{2m}(\cdot - y), r) \in C^{2m-2}(\mathbf{R}^n)$, we see that $g_m(r) = g'_m(r) = 0$, so that

$$(-1)^{m}g_{m}(t) = (-1)^{m} \int_{r}^{t} s^{1-n} \left(\int_{r}^{s} \left(\xi^{n-1}g'_{m}(\xi) \right)' d\xi \right) ds$$
$$= \int_{r}^{t} s^{1-n} \left(\int_{r}^{s} \xi^{n-1} (-1)^{m-1}g_{m-1}(\xi) d\xi \right) ds, \qquad (2.1)$$

which gives $(-1)^m g_m(t) \ge 0$ for t > r.

First we consider the case $n \ge 3$. For a > 1, take a_1 and a_2 such that $1 < a_2 < a_1 < a$. Then we have for $t \ge ar$

$$(-1)^{m}g_{m}(t) \geq \int_{a_{1}r}^{t} s^{1-n} \left(\int_{a_{2}r}^{s} \xi^{n-1} (-1)^{m-1}g_{m-1}(\xi) d\xi \right) ds$$

$$\geq C(a)r^{2-n} \int_{a_{1}r}^{t} s^{1-n} \left(\int_{a_{2}r}^{s} \xi^{2m+n-5} d\xi \right) ds$$

$$\geq C(a)t^{2m-2}r^{2-n}.$$

Thus (2) holds for m.

Next we deal with the case n = 2. Since

$$r^{2m-2}(-1)^m g_m(a,1) \le (-1)^m g_m(t,r) \le r^{2m-2}(-1)^m g_m(b,1)$$

for ar < t < br, it is sufficient to find constants c(m) > 1 such that c(m) is increasing for m and

$$(-1)^m g_m(t,r) \ge Ct^{2m-2}\log(t/r)$$

for $t \ge c(m)r$. By (2.1), we have

$$(-1)^{m}g_{m}(t) = \int_{r}^{t} \xi(-1)^{m-1}g_{m-1}(\xi)\log\frac{t}{\xi} d\xi$$

$$\geq C \int_{c(m-1)r}^{t} \xi^{2m-3} \left(\log\frac{\xi}{r}\right)\log\frac{t}{\xi} d\xi$$

$$= Ct^{2m-2} \int_{c(m-1)r/t}^{1} s^{2m-3} \left(\log\frac{ts}{r}\right)\log\frac{1}{s} ds$$

$$\geq Ct^{2m-2} \left\{\log\frac{t}{r} \int_{c(m-1)/c(m)}^{1} s^{2m-3}\log\frac{1}{s} ds - C(m)\right\}$$

$$\geq Ct^{2m-2}\log(t/r).$$

The induction is completed.

LEMMA 2.4. Let u be a super-polyharmonic function on $B(1) \setminus \{0\}$ with $\mu_u = (-\Delta)^m u \ge 0$. Suppose that there exist constants $\alpha \ge n-2$ and C > 0 such that

$$M((-1)^m u, r) \le C \begin{cases} r^{-\alpha} & \text{when } \alpha > 0, \\ \log(1/r) & \text{when } \alpha = 0 \end{cases}$$

for $0 < r < r_0$.

(1) If $\alpha > n-2$, then

$$\limsup_{r \to +0} r^{\alpha+2-n} \int_{A(r)} |y|^{2m-2} d\mu_u(y) < \infty.$$

(2) If $\alpha = n - 2$, then

$$\int_{A(0)} |y|^{2m-2} d\mu_u(y) < \infty.$$

Proof. First we show the case $n \ge 3$. For $0 < r < r_0$, we have by Lemmas 2.2 and 2.3,

$$M((-1)^{m}u,r) \geq \int_{A(2r)} (-1)^{m} g_{m}(|y|,r) \ d\mu_{u}(y) - Cr^{2-n}$$

$$\geq C(2)r^{2-n} \int_{A(2r)} |y|^{2m-2} \ d\mu_{u}(y) - Cr^{2-n}.$$

Then we see that

$$r^{2-n} \int_{A(2r)} |y|^{2m-2} d\mu_u(y) \le C \left(r^{-\alpha} + r^{2-n}\right),$$

so that we have the required result.

Next we prove the case n = 2. For $0 < r < r_0$, we have by Lemmas 2.2 and 2.3,

$$M((-1)^{m}u,r) \geq \int_{A(2r)} (-1)^{m} g_{m}(|y|,r) \ d\mu_{u}(y) - C\log(1/r)$$

$$\geq C(2) \int_{A(2r)} |y|^{2m-2} \log(|y|/r) \ d\mu_{u}(y) - C\log(1/r),$$

as required.

LEMMA 2.5. Let u be a super-polyharmonic function on $B(1) \setminus \{0\}$ with $\mu_u = (-\Delta)^m u \ge 0$. Suppose that there exist constants $\alpha \ge n-2$ and C > 0 such that

$$M((-1)^m u, r) \le C \begin{cases} r^{-\alpha} & \text{when } \alpha > 0, \\ \log(1/r) & \text{when } \alpha = 0, \end{cases}$$

whenever $0 < r < r_0$. If $\alpha > n - 2$, then

$$\int_{A(0)} |y|^{2m-n+\alpha+\varepsilon} d\mu_u(y) < \infty$$

for $\varepsilon > 0$; if $\alpha = n - 2$, then one can take $\varepsilon = 0$.

Proof. By Lemma 2.4 (1), we have

$$\int_{B(r)\setminus B(r/2)} |y|^{2m-2} d\mu_u(y) \le Cr^{-\alpha} \mathcal{R}_2(r)^{-1}$$

for $0 < r < r_0$, so that

$$\int_{A(0)} |y|^{2m-n+\alpha+\varepsilon} d\mu_u(y)$$

$$= \sum_{j=0}^{\infty} \int_{B(2^{-j}r_0)\setminus B(2^{-j-1}r_0)} |y|^{2m-n+\alpha+\varepsilon} d\mu_u(y)$$

$$\leq \sum_{j=0}^{\infty} (2^{-j}r_0)^{2-n+\alpha+\varepsilon} \int_{B(2^{-j}r_0)\setminus B(2^{-j-1}r_0)} |y|^{2m-2} d\mu_u(y)$$

$$\leq C \sum_{j=0}^{\infty} 2^{-j\varepsilon} < \infty,$$

as required.

Finally we discuss a fine limit property for Riesz potentials (see also [7, Proposition 4.2]). For this purpose, set

$$\mathcal{R}_{2m}\mu(x) = \int_{A(0)} |\mathcal{R}_{2m}(x-y)| \ d\mu(y),$$

where μ is a nonnegative measure on A(0).

LEMMA 2.6. Let $2m \leq n$. Then for every $\alpha, \beta > 0$ there exists a nonnegative measure μ such that

(1)
$$\int_{A(0)} |y|^{-\alpha} d\mu(y) < \infty$$
;

(2)
$$\limsup_{x \to 0} |x|^{\beta} \mathcal{R}_{2m} \mu(x) = \infty.$$

Proof. Take a sequence $\{x_j\}$ such that $|x_j| = 1/j$. For sequences $\{a_j\}$ and $\{r_j\}$ of positive numbers, set

$$\mu = \sum_{j} a_j r_j^{-n} \chi_{B(x_j, r_j)},$$

where χ_E denotes the characteristic function of a measurable set E. Now it suffices to choose $\{a_j\}$ and $\{r_j\}$ such that

- (1) $\int_{A(0)} |y|^{-\alpha} d\mu(y) \le C \sum_{j} j^{\alpha} a_{j} < \infty ;$
- (2) $\mathcal{R}_{2m}\mu(x_j) \ge C\mathcal{R}_{2m}(r_j)a_j \ge Cj^{2\beta}$ for each j;

this is possible since $\lim_{x\to 0} \mathcal{R}_{2m}(x) = \infty$ when $2m \leq n$. In fact, we choose $\{a_j\}$ such that $0 < a_j < j^{-\alpha} 2^{-j}$ and $\{r_j\}$ such that $\{B(x_j, r_j)\}$ is a disjoint family and $\mathcal{R}_{2m}(r_j) > a_j^{-1} j^{2\beta}$.

Note here that (1) gives

(3) $M(\mathcal{R}_{2m}\mu, r)$ is bounded when $2m \leq n$.

3 Representation formula

In the same manner as [11, Lemmas 6, 8 and 9] (see also [7, (3.12), (4.5)]), we have the following results.

LEMMA 3.1. Let $2m - 3 \le L \le 2m - 2$. Then there exists a constant C > 0 such that

$$|\mathcal{R}_{2m,L}(x,y)| \le C \begin{cases} |y|^{L+1} \min\{\log(1/|y|), \log(1/|x|)\} & \text{if } L = 2m-3 \text{ and } n = 2, \\ |y|^{L}|x|^{2m-L-3}\mathcal{R}_{2}(x) \min\{|y|, |x|\} & \text{if } L = 2m-2 \text{ or } n \ge 3 \end{cases}$$

for all $x, y \in B(1)$ and |x - y| > |x|/2; if 2m > n, then

$$|\mathcal{R}_{2m,L}(x,y)| \le C \begin{cases} |y|^{L+1} \min\{\log(1/|y|), \log(1/|x|)\} & \text{if } L = 2m-3 \text{ and } n = 2, \\ |y|^{L}|x|^{2m-L-3}\mathcal{R}_{2}(x) \min\{|y|, |x|\} & \text{if } L = 2m-2 \text{ or } n \ge 3 \end{cases}$$

for all $x, y \in B(1)$.

LEMMA 3.2. If L > 2m - 2, then there exists a constant C > 0 such that

$$|\mathcal{R}_{2m,L}(x,y)| \le C|y|^L |x|^{2m-n-L-1} \min\{|y|, |x|\}$$

for all $x, y \in B(1)$ and |x - y| > |x|/2; if 2m > n, then

$$|\mathcal{R}_{2m,L}(x,y)| \le C|y|^L |x|^{2m-n-L-1} \min\{|y|, |x|\}$$

for all $x, y \in B(1)$.

LEMMA 3.3. Let u be a super-polyharmonic function on $B(1) \setminus \{0\}$ with $\mu_u = (-\Delta)^m u \ge 0$. Suppose that there exist constants $\alpha \ge n-2$ and C > 0 such that

$$M((-1)^m u, r) \le C \begin{cases} r^{-\alpha} & \text{when } \alpha > 0, \\ \log(1/r) & \text{when } \alpha = 0, \end{cases}$$

whenever $0 < r < r_0$. Then

$$\lim_{r \to 0} r^q M(|\mathcal{R}_{2m,L}\mu_u|, r) = 0$$

for all $q > \alpha$, where L is the integer such that $2m - n + \alpha - 1 < L \le 2m - n + \alpha$ when $\alpha > n - 2$ and L = 2m - 3 when $\alpha = n - 2$. *Proof.* First we consider the case $\alpha > n-2$, and take $\varepsilon > 0$ such that $2m - n + \alpha + \varepsilon - 1 \le L < 2m - n + \alpha + \varepsilon$ and $\varepsilon < q - \alpha$. If 2m > n, then, since $L \ge 2m - 2$ in case $\alpha > n - 2$, we have by Lemmas 2.5, 3.1 and 3.2

$$\begin{aligned} |\mathcal{R}_{2m,L}\mu_u(x)| &\leq C|x|^{2m-L-3}\mathcal{R}_2(x)\int_{A(0)}|y|^L\min\{|y|,|x|\}d\mu_u(y)\\ &\leq C|x|^{-\alpha-\varepsilon+n-2}\mathcal{R}_2(x)\int_{A(0)}|y|^{2m-n+\alpha+\varepsilon}d\mu_u(y)\\ &\leq C|x|^{-\alpha-\varepsilon+n-2}\mathcal{R}_2(x),\end{aligned}$$

which gives

$$\lim_{r \to 0} r^q \oint_{S(r)} |\mathcal{R}_{2m,L}\mu_u(x)| dS(x) = 0$$
(3.1)

for $q > \alpha$. If $2m - n \leq 0$, then

$$\begin{aligned} |\mathcal{R}_{2m,L}(x,y)| &\leq C\mathcal{R}_{2m}(x-y)\chi_{\{y:|x-y|<|x|/2\}}(y) \\ &+ C|y|^L|x|^{2m-L-3}\mathcal{R}_2(x)\min\{|y|,|x|\}. \end{aligned}$$

Noting from Lemma 2.1 that

$$\int_{S(r)} \mathcal{R}_{2m}(x-y) \ dS(x) \le C \mathcal{R}_{2m}(r)$$

when r/2 < |y| < 3r/2, we obtain (3.1) for $q > \alpha$, as above.

Similarly, if $\alpha = n - 2$ and L = 2m - 3, then

$$\int_{S(r)} |\mathcal{R}_{2m,L}\mu_u(x)| dS(x) \le Cr^{2-n} \log(1/r) \int_{A(0)} |y|^{2m-2} d\mu_u(y) \le Cr^{-\alpha} \log(1/r),$$

which implies (3.1) for $q > \alpha$, as required.

THEOREM 3.4. Let u be a super-polyharmonic function on $B(1) \setminus \{0\}$ with $\mu_u = (-\Delta)^m u \ge 0$. Suppose that there exist constants $\alpha \ge n-2$ and C > 0 such that

$$M((-1)^m u, r) \le C \begin{cases} r^{-\alpha} & \text{when } \alpha > 0, \\ \log(1/r) & \text{when } \alpha = 0, \end{cases}$$

whenever $0 < r < r_0$. Then there exists a function $h_0 \in \mathcal{H}^m(A(0))$ such that

$$u(x) = \mathcal{R}_{2m,L}\mu_u(x) + h_0(x)$$

for $x \in A(0)$, where L is the integer such that $2m - n + \alpha - 1 < L \leq 2m - n + \alpha$ when $\alpha > n - 2$ and L = 2m - 3 when $\alpha = n - 2$.

Proof. Since $\mathcal{R}_{2m,L}\mu_u(x)$ is super-polyharmonic in A(0) by Lemma 3.3, we see that

$$u(x) - \mathcal{R}_{2m,L}\mu_u(x)$$

is polyharmonic of order m in A(0) (in the sense of distributions). By Weyl's lemma, there exists a function $h_0 \in \mathcal{H}^m(A(0))$ such that

$$h_0(x) = u(x) - \mathcal{R}_{2m,L}\mu_u(x)$$

for $x \in A(0)$.

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. By Theorem 3.4, there exists a function $h_0 \in \mathcal{H}^m(A(0))$ such that

$$u(x) = \mathcal{R}_{2m,L}\mu_u(x) + h_0(x)$$

for $x \in A(0)$. Since

$$((-1)^{m}h_{0}(x))^{+} \leq ((-1)^{m}u(x))^{+} + ((-1)^{m+1}\mathcal{R}_{2m,L}\mu_{u}(x))^{+} \\ \leq ((-1)^{m}u(x))^{+} + |\mathcal{R}_{2m,L}\mu_{u}(x)|,$$

we have

$$\liminf_{r \to 0} r^q M(((-1)^m h_0)^+, r) = 0$$

for $q > \alpha$, by Lemma 3.3. Hence, in case $\alpha > n - 2$, we find a function $h \in \mathcal{H}^m(B(r_0))$ and constants $\{c_{\lambda}\}$ such that

$$h_0(x) = \sum_{\substack{|\lambda| < q+2m-n \\ |\lambda| \le L}} c_{\lambda} D^{\lambda} \mathcal{R}_{2m}(x) + h(x)$$
$$= \sum_{\substack{|\lambda| \le L}} c_{\lambda} D^{\lambda} \mathcal{R}_{2m}(x) + h(x)$$

for $x \in A(0)$ with the aid of [6, Theorem 1.2]; in case $\alpha = n - 2$,

$$h_0(x) = \sum_{|\lambda| \le 2m-2} c_{\lambda} D^{\lambda} \mathcal{R}_{2m}(x) + h(x).$$

Thus the theorem is obtained.

4 Proof of Theorem 1.1

For a proof of Theorem 1.1 we prepare the following lemma (see also [7, Proposition 4.1]).

LEMMA 4.1. Let *m* be even. Suppose that *u* is a super-polyharmonic function on $B(1) \setminus \{0\}$ with $\mu_u = (-\Delta)^m u \ge 0$ and

$$M((-1)^m u, r) \le C\mathcal{R}_2(r)$$
 whenever $0 < r < r_0$

for some constant C > 0. Then

$$\liminf_{x \to 0} \mathcal{R}_2(x)^{-1} (-1)^m \mathcal{R}_{2m,2m-3} \mu_u(x) \ge 0.$$

Proof. By Lemma 2.4(2) we have

$$\int_{A(0)} |y|^{2m-2} d\mu_u(y) < \infty.$$

First we show the case $n \geq 3$. Then Lemma 3.1 gives

$$(-1)^m \mathcal{R}_{2m,2m-3}(x,y) \ge -C|y|^{2m-3}|x|^{2-n} \min\{|y|,|x|\},\$$

since $(-1)^m \mathcal{R}_{2m}(x-y) \ge 0$ when m is even and $2m \le n$. Hence, if m is even, then

$$(-1)^m \mathcal{R}_{2m,2m-3} \mu_u(x) \ge -C|x|^{2-n} \int_{A(0)} |y|^{2m-3} \min\{|y|, |x|\} d\mu_u(y),$$

which together with Lebesgue's dominated convergence theorem gives

$$\liminf_{x \to 0} |x|^{n-2} (-1)^m \mathcal{R}_{2m,2m-3} \mu_u(x) \ge 0.$$

Next we consider the case n = 2. The above discussions yield

$$(-1)^m \mathcal{R}_{2m,2m-3} \mu_u(x) \ge -C \int_{A(0)} |y|^{2m-2} \min\{\log(1/|y|), \log(1/|x|)\} d\mu_u(y),$$

so that

$$\liminf_{x \to 0} (\log(1/|x|))^{-1} (-1)^m \mathcal{R}_{2m,2m-3} \mu_u(x) \ge 0,$$

as required.

Proof of Theorem 1.1. First we show that (1) implies (2). For this purpose, we suppose that m is even or 2m > n, and take a super-polyharmonic function u on $B(1) \setminus \{0\}$ with $\mu_u = -\Delta^m u \ge 0$ satisfying (1-1) – (1-3). By Theorem 1.3, there exist a function $h \in \mathcal{H}^m(B(r_0))$ and constants c_{λ} such that

$$u(x) = \mathcal{R}_{2m,2m-3}\mu_u(x) + h(x) + \sum_{|\lambda| \le 2m-2} c_{\lambda} D^{\lambda} \mathcal{R}_{2m}(x)$$

for $x \in A(0)$. Then, by Lemma 4.1, we have

$$\liminf_{x \to 0} \mathcal{R}_2(x)^{-1} (-1)^m u(x) \ge -C > -\infty,$$

which contradicts with (1-3).

The implication $(2) \Rightarrow (1)$ is obtained by Lemma 2.6.

References

- [1] A. Abkar and H. Hedenmalm, A Riesz representation formula for superbiharmonic functions, Ann. Acad. Sci. Fenn. Math. **26** (2001), 305-324.
- [2] N. Aronszajn, T. M. Creese and L. J. Lipkin, Polyharmonic functions, Clarendon Press, 1983.
- [3] T. Futamura, K. Kishi and Y. Mizuta, A generalization of Bôcher's theorem for polyharmonic functions, Hiroshima Math. J. 31 (2001), 59–70.
- [4] T. Futamura, K. Kishi and Y. Mizuta, Removability of sets for subpolyharmonic functions, Hiroshima. Math. J. **33** (2003), 31–42.
- [5] T. Futamura, K. Kitaura and Y. Mizuta, Isolated singularities, growth of spherical means and Riesz decomposition for superbiharmonic functions, Hiroshima Math. J. 38 (2008), 231–241.
- [6] T. Futamura and Y. Mizuta, Isolated singularities of super-polyharmonic functions, Hokkaido. Math. J. 33 (2004), 675–695.
- [7] M. Ghergu, A. Moradifam and S. D. Taliaferro, Isolated singularities for polyharmonic inequalities, preprint.
- [8] W. K. Hayman and P. B. Kennedy, Subharmonic functions, Vol. 1, Academic Press, London, 1976.
- [9] W. K. Hayman and B. Korenblum, Representation and uniqueness theorems for polyharmonic functions, J. Anal. Math. 60 (1993), 113–133.
- [10] E. Ligocka, Elementary proofs of the Liouville and Bôcher theorems for polyharmonic functions, Ann. Polon. Math. 68 (1998), 257–265.
- [11] Y. Mizuta, An integral representation and fine limits at infinity for functions whose Laplacians iterated *m* times are measures, Hiroshima Math. J. 27 (1997), 415–427.
- [12] P. Pizetti, Sulla media deivalori che una funzione dei punti dello spazio assume alla superficie di una sfera, Rend. Lincei 5 (1909), 309-316.

Department of Mathematics Daido University Nagoya 457-8530, Japan E-mail : futamura@daido-it.ac.jp and Department of Mathematics Graduate School of Science Hiroshima University Higashi-Hiroshima 739-8521, Japan e-mail : yomizuta@hiroshima-u.ac.jp and Faculty of Education and Welfare Science Oita University Dannoharu Oita-city 870-1192, Japan E-mail : t-ohno@oita-u.ac.jp