Riesz decomposition for super-polyharmonic functions in the punctured unit ball

Toshihide Futamura, Yoshihiro Mizuta and Takao Ohno

January 6, 2011

Abstract

We consider a Riesz decomposition theorem for super-polyharmonic functions satisfying certain growth condition on surface integrals in the punctured unit ball. We give a condition that super-polyharmonic functions u have the bound $$
u(x)=O\left(\mathcal{R}_{2}(x)\right)
$$

where \mathcal{R}_{2} denotes the fundamental solution for $-\Delta u$ in \mathbf{R}^{n}.

1 Introduction

Let $B(x, r)$ denote the open ball centered at x with radius r, whose boundary is written as $S(x, r)=\partial B(x, r)$. If $x=0$, then we simply write $B(r)=B(0, r)$ and $S(r)=S(0, r)$. Fix $r_{0}, 0<r_{0}<1$. For $0<r<r_{0}$, we set

$$
A(r)=\left\{x \in \mathbf{R}^{n}: r<|x|<r_{0}\right\} .
$$

For a Borel measurable function u on $S(r)$, let us define the spherical mean over $S(r)$ by

$$
M(u, r)=f_{S(r)} u(x) d S(x)=\frac{1}{\omega_{n} r^{n-1}} \int_{S(r)} u(x) d S(x)
$$

where ω_{n} denotes the surface area of the unit sphere $S(1)$.
A real-valued function u on an open set $\Omega \subset \mathbf{R}^{n}$ is called polyharmonic of order m on Ω if $u \in C^{2 m}(\Omega)$ and $\Delta^{m} u=0$ on Ω, where m is a positive integer and Δ^{m} denotes the Laplacian iterated m times. We denote by $\mathcal{H}^{m}(\Omega)$ the space of polyharmonic functions of order m on Ω; for fundamental properties of polyharmonic

[^0]functions, we refer the reader to the book by N. Aronszajn, T. M. Creese and L. J. Lipkin [2].

We say that a locally integrable Borel function u on Ω is super-polyharmonic of order m in Ω if
(1) $(-\Delta)^{m} u$ is a nonnegative measure on Ω, that is,

$$
\int_{\Omega} u(x)(-\Delta)^{m} \varphi(x) d x \geq 0 \quad \text { for all nonnegative } \varphi \in C_{0}^{\infty}(\Omega)
$$

(2) u is lower semicontinuous in Ω;
(3) every point of Ω is a Lebesgue point of u
(see [5]); $(-\Delta)^{m} u$ is referred to as the Riesz measure of u and denoted by μ_{u}.
Consider the Riesz kernel of order $2 m$ defined by
$\mathcal{R}_{2 m}(x)= \begin{cases}\alpha_{n, m}(-1)^{\frac{2 m-n}{2}}|x|^{2 m-n} \log (1 /|x|) & \text { if } 2 m-n \text { is an even nonnegative integer, } \\ \alpha_{n, m}(-1)^{\max \left\{0, \frac{(2 m-n+1)}{2}\right\}}|x|^{2 m-n} & \text { otherwise, }\end{cases}$
where $\alpha_{n, m}$ is a positive constant chosen such that $(-\Delta)^{m} \mathcal{R}_{2 m}$ is the Dirac measure at the origin. Note here that if $2 m \leq n$, then

$$
\lim _{x \rightarrow 0} \mathcal{R}_{2 m}(x)=\left\{\begin{array}{cl}
\infty & \text { if } 2 m \leq n \tag{1.1}\\
0 & \text { if } 2 m>n
\end{array}\right.
$$

Following the book by K. Hayman and P. B. Kennedy [8], we consider the remainder term in the Taylor expansion of $\mathcal{R}_{2 m}(\cdot-y)$ given by

$$
\mathcal{R}_{2 m, L}(x, y)=\mathcal{R}_{2 m}(x-y)-\sum_{|\lambda| \leq L} \frac{(-y)^{\lambda}}{\lambda!} D^{\lambda} \mathcal{R}_{2 m}(x)
$$

where L is a real number; in case $L<0$, set $\mathcal{R}_{2 m, L}(x, y)=\mathcal{R}_{2 m}(x-y)$.
For a nonnegative measure μ on $A(0)$, we define

$$
\mathcal{R}_{2 m, L} \mu(x)=\int_{A(0)} \mathcal{R}_{2 m, L}(x, y) d \mu(y)
$$

Our first aim in this paper is to establish the following result.
Theorem 1.1. The following are equivalent:
(1) there is a super-polyharmonic function u on $B(1) \backslash\{0\}$ with $\mu_{u}=(-\Delta)^{m} u \geq 0$ such that
(1-1) $M\left((-1)^{m} u, r\right) \leq \mathcal{R}_{2}(r)$ for all $0<r<r_{0}$;
(1-2) $\liminf _{r \rightarrow 0} \mathcal{R}_{2}(r)^{-1} M\left(\left((-1)^{m} u\right)^{+}, r\right)<\infty$;
(1-3) $\liminf _{x \rightarrow 0} \mathcal{R}_{2}(x)^{-1}(-1)^{m} u(x)=-\infty$,
where $v^{+}=\max \{v, 0\}$.
(2) m is odd and $2 m \leq n$.

This extends a recent result by M. Ghergu, A. Moradifam and S. D. Taliaferro [7, Theorem 1.1]; our result is stated as follows:

Corollary 1.2. The following are equivalent:
(1) there is a super-polyharmonic function u on $B(1) \backslash\{0\}$ with $\mu_{u}=(-\Delta)^{m} u \geq 0$ such that
(1-4) $(-1)^{m} u \leq 0$,
(1-5) $\liminf _{x \rightarrow 0} \mathcal{R}_{2}(x)^{-1}(-1)^{m} u(x)=-\infty$;
(2) m is odd and $2 m \leq n$.

It is easy to see from (1.1) that (2) is equivalent to
(3) $\lim _{x \rightarrow 0}(-1)^{m} \mathcal{R}_{2 m}(x)=-\infty$.

To show Theorem 1.1, we apply the following Riesz decomposition theorem for super-polyharmonic functions in the punctured unit ball (see also M. Ghergu, A. Moradifam and S. D. Taliaferro [7, Theorem 3.1], where they treated the case when $\left.(-1)^{m} u \leq 0\right)$.

Theorem 1.3. Let u be a super-polyharmonic function on $B(1) \backslash\{0\}$ with $\mu_{u}=$ $(-\Delta)^{m} u \geq 0$. Suppose that there exist constants $\alpha \geq n-2$ and $C>0$ with

$$
M\left((-1)^{m} u, r\right) \leq C \begin{cases}r^{-\alpha} & \text { when } \alpha>0 \\ \log (1 / r) & \text { when } \alpha=0\end{cases}
$$

whenever $0<r<r_{0}$. Suppose further that

$$
\liminf _{r \rightarrow 0} r^{\alpha-(n-2)} \mathcal{R}_{2}(r)^{-1} M\left(\left((-1)^{m} u\right)^{+}, r\right)<\infty
$$

Then there exist a function $h \in \mathcal{H}^{m}\left(B\left(r_{0}\right)\right)$ and constants c_{λ} such that if $\alpha>n-2$, then

$$
u(x)=\mathcal{R}_{2 m, L} \mu_{u}(x)+h(x)+\sum_{|\lambda| \leq L} c_{\lambda} D^{\lambda} \mathcal{R}_{2 m}(x)
$$

for all $x \in A(0)$, where L is the integer such that $L \leq 2 m-n+\alpha<L+1$; and if $\alpha=n-2$, then

$$
u(x)=\mathcal{R}_{2 m, 2 m-3} \mu_{u}(x)+h(x)+\sum_{|\lambda| \leq 2 m-2} c_{\lambda} D^{\lambda} \mathcal{R}_{2 m}(x)
$$

for all $x \in A(0)$.

The case $\alpha>n-2$ was treated in [6, Theorems 1.3 and 1.4]. For further related results, we refer the reader to $[1,3,4,5,9,10]$.

Throughout this paper, let C denote various positive constants independent of the variables in question and let $C(a, b, \cdots)$ be a positive constant which may depend on a, b, \ldots

2 Preliminaries and fundamental lemmas

Since $\Delta^{k} \mathcal{R}_{2 m}(x)$ is of rotation free, we write

$$
\Delta^{k} \mathcal{R}_{2 m}(r)=\Delta^{k} \mathcal{R}_{2 m}(x)
$$

when $r=|x|$.
Lemma 2.1. For $r>0$ and $y \in \mathbf{R}^{n}$,

$$
M\left(\mathcal{R}_{2 m}(\cdot-y), r\right)= \begin{cases}\sum_{j=0}^{m-1} a_{j} r^{2 j} \Delta^{j} \mathcal{R}_{2 m}(y) & \text { if }|y|>r, \\ \sum_{j=0}^{m-1} a_{j}|y|^{2 j} \Delta^{j} \mathcal{R}_{2 m}(r) & \text { if }|y| \leq r,\end{cases}
$$

where $a_{0}=1$ and

$$
a_{j}=\frac{1}{2^{j} j!n(n+2) \cdots(n+2 j-2)}
$$

for positive integers j.
Proof. Since $\Delta^{m} \mathcal{R}_{2 m}(\cdot-y)=0$ in $B(0,|y|)$, this equality holds for $r<|y|$ by Pizetti's formula [12].

If $|y|<r$, then we have

$$
\begin{aligned}
M\left(\mathcal{R}_{2 m}(\cdot-y), r\right) & =\frac{1}{\omega_{n} r^{n-1}} \int_{S(r)} \mathcal{R}_{2 m}\left(\frac{|y|}{r} x-\frac{r}{|y|} y\right) d S(x) \\
& =\frac{1}{\omega_{n}|y|^{n-1}} \int_{S(|y|)} \mathcal{R}_{2 m}\left(x^{\prime}-\frac{r}{|y|} y\right) d S\left(x^{\prime}\right) \\
& =\sum_{j=0}^{m-1} a_{j}|y|^{2 j} \Delta^{j} \mathcal{R}_{2 m}\left(\frac{r}{|y|} y\right)
\end{aligned}
$$

Since $M\left(\mathcal{R}_{2 m}(\cdot-y), r\right)$ is a continuous function of r, the present lemma follows.
Lemma 2.2. Let u be a super-polyharmonic function on $B(1) \backslash\{0\}$ with $\mu_{u}=$ $(-\Delta)^{m} u \geq 0$. Then

$$
\begin{aligned}
M(u, r)= & \int_{A(r)}\left(\sum_{j=0}^{m-1} a_{j} r^{2 j} \Delta^{j} \mathcal{R}_{2 m}(y)-\sum_{j=0}^{m-1} a_{j}|y|^{2 j} \Delta^{j} \mathcal{R}_{2 m}(r)\right) d \mu_{u}(y) \\
& +\sum_{j=0}^{m-1}\left(b_{j} r^{2 j}+c_{j} r^{2 m-n-2 j}+d_{j} r^{2 m-n-2 j} \log (1 / r)\right)
\end{aligned}
$$

for $0<r<r_{0}$, where b_{j}, c_{j} and d_{j} are constants satisfying $d_{j}=0$ when $j>$ $(2 m-n) / 2$ or $2 m-n$ is odd.

Proof. For $0<R<r<r_{0}, u$ is represented as

$$
\begin{aligned}
u(x) & =\int_{A(R)} \mathcal{R}_{2 m}(x-y) d \mu_{u}(y)+h_{1, R}(x) \\
& =\int_{A(R)}\left(\mathcal{R}_{2 m}(x-y)-\sum_{j=0}^{m-1} a_{j}|y|^{2 j} \Delta^{j} \mathcal{R}_{2 m}(x)\right) d \mu_{u}(y)+h_{2, R}(x)
\end{aligned}
$$

when $x \in A(R)$, where $h_{1, R}, h_{2, R} \in \mathcal{H}^{m}(A(R))$. Hence we have by Lemma 2.1

$$
\begin{aligned}
M(u, r) & =\int_{A(R)}\left(M\left(\mathcal{R}_{2 m}(\cdot-y), r\right)-\sum_{j=0}^{m-1} a_{j}|y|^{2 j} \Delta^{j} \mathcal{R}_{2 m}(r)\right) d \mu_{u}(y)+M\left(h_{2, R}, r\right) \\
& =\int_{A(r)}\left(\sum_{j=0}^{m-1} a_{j} r^{2 j} \Delta^{j} \mathcal{R}_{2 m}(y)-\sum_{j=0}^{m-1} a_{j}|y|^{2 j} \Delta^{j} \mathcal{R}_{2 m}(r)\right) d \mu_{u}(y)+M\left(h_{2, R}, r\right)
\end{aligned}
$$

This equality implies that $M\left(h_{2, R}, r\right)$ does not depend on R, so that, by [3, Lemma 1], we can find a constants $b_{j}, c_{j}, d_{j}(j=0,1, \cdots m-1)$ independent of R such that $d_{j}=0$ when $j>(2 m-n) / 2$ or $2 m-n$ is odd, and

$$
M\left(h_{2, R}, r\right)=\sum_{j=0}^{m-1}\left(b_{j} r^{2 j}+c_{j} r^{2 m-n-2 j}+d_{j} r^{2 m-n-2 j} \log (1 / r)\right),
$$

as required.
Set

$$
g_{m}(t, r)=\sum_{j=0}^{m-1} a_{j} r^{2 j} \Delta^{j} \mathcal{R}_{2 m}(t)-\sum_{j=0}^{m-1} a_{j} t^{2 j} \Delta^{j} \mathcal{R}_{2 m}(r)
$$

Lemma 2.3. The following hold:
(1) $(-1)^{m} g_{m}(t, r) \geq 0$ for $r<t$;
(2) $(-1)^{m} g_{m}(t, r) \geq C(a) t^{2 m-2} \varphi(t, r)$ for $t>a r$ and $a>1$, where $C(a)$ is a positive constant and

$$
\varphi(t, r)= \begin{cases}\log (t / r) & \text { if } n=2 \\ r^{2-n} & \text { if } n \geq 3\end{cases}
$$

Proof. For fixed r, set $g_{m}(t)=g_{m}(t, r)$. We prove this lemma by induction on m. In case $m=1$, we have

$$
g_{1}(t)= \begin{cases}\alpha_{2,1} \log (r / t) & \text { if } n=2, \\ \alpha_{n, 1}\left(t^{2-n}-r^{2-n}\right) & \text { if } n \geq 3\end{cases}
$$

Hence (1) and (2) hold for $m=1$.
Suppose that (1) and (2) hold for $m-1$ where $m \geq 2$. Note that

$$
\Delta g_{m}(t)=g_{m}^{\prime \prime}(t)+\frac{n-1}{t} g_{m}^{\prime}(t)=-g_{m-1}(t)
$$

Since $M\left(\mathcal{R}_{2 m}(\cdot-y), r\right) \in C^{2 m-2}\left(\mathbf{R}^{n}\right)$, we see that $g_{m}(r)=g_{m}^{\prime}(r)=0$, so that

$$
\begin{align*}
(-1)^{m} g_{m}(t) & =(-1)^{m} \int_{r}^{t} s^{1-n}\left(\int_{r}^{s}\left(\xi^{n-1} g_{m}^{\prime}(\xi)\right)^{\prime} d \xi\right) d s \\
& =\int_{r}^{t} s^{1-n}\left(\int_{r}^{s} \xi^{n-1}(-1)^{m-1} g_{m-1}(\xi) d \xi\right) d s \tag{2.1}
\end{align*}
$$

which gives $(-1)^{m} g_{m}(t) \geq 0$ for $t>r$.
First we consider the case $n \geq 3$. For $a>1$, take a_{1} and a_{2} such that $1<a_{2}<$ $a_{1}<a$. Then we have for $t \geq a r$

$$
\begin{aligned}
(-1)^{m} g_{m}(t) & \geq \int_{a_{1} r}^{t} s^{1-n}\left(\int_{a_{2} r}^{s} \xi^{n-1}(-1)^{m-1} g_{m-1}(\xi) d \xi\right) d s \\
& \geq C(a) r^{2-n} \int_{a_{1} r}^{t} s^{1-n}\left(\int_{a_{2} r}^{s} \xi^{2 m+n-5} d \xi\right) d s \\
& \geq C(a) t^{2 m-2} r^{2-n} .
\end{aligned}
$$

Thus (2) holds for m.
Next we deal with the case $n=2$. Since

$$
r^{2 m-2}(-1)^{m} g_{m}(a, 1) \leq(-1)^{m} g_{m}(t, r) \leq r^{2 m-2}(-1)^{m} g_{m}(b, 1)
$$

for $a r<t<b r$, it is sufficient to find constants $c(m)>1$ such that $c(m)$ is increasing for m and

$$
(-1)^{m} g_{m}(t, r) \geq C t^{2 m-2} \log (t / r)
$$

for $t \geq c(m) r$. By (2.1), we have

$$
\begin{aligned}
(-1)^{m} g_{m}(t) & =\int_{r}^{t} \xi(-1)^{m-1} g_{m-1}(\xi) \log \frac{t}{\xi} d \xi \\
& \geq C \int_{c(m-1) r}^{t} \xi^{2 m-3}\left(\log \frac{\xi}{r}\right) \log \frac{t}{\xi} d \xi \\
& =C t^{2 m-2} \int_{c(m-1) r / t}^{1} s^{2 m-3}\left(\log \frac{t s}{r}\right) \log \frac{1}{s} d s \\
& \geq C t^{2 m-2}\left\{\log \frac{t}{r} \int_{c(m-1) / c(m)}^{1} s^{2 m-3} \log \frac{1}{s} d s-C(m)\right\} \\
& \geq C t^{2 m-2} \log (t / r)
\end{aligned}
$$

The induction is completed.

Lemma 2.4. Let u be a super-polyharmonic function on $B(1) \backslash\{0\}$ with $\mu_{u}=$ $(-\Delta)^{m} u \geq 0$. Suppose that there exist constants $\alpha \geq n-2$ and $C>0$ such that

$$
M\left((-1)^{m} u, r\right) \leq C \begin{cases}r^{-\alpha} & \text { when } \alpha>0 \\ \log (1 / r) & \text { when } \alpha=0\end{cases}
$$

for $0<r<r_{0}$.
(1) If $\alpha>n-2$, then

$$
\limsup _{r \rightarrow+0} r^{\alpha+2-n} \int_{A(r)}|y|^{2 m-2} d \mu_{u}(y)<\infty
$$

(2) If $\alpha=n-2$, then

$$
\int_{A(0)}|y|^{2 m-2} d \mu_{u}(y)<\infty .
$$

Proof. First we show the case $n \geq 3$. For $0<r<r_{0}$, we have by Lemmas 2.2 and 2.3,

$$
\begin{aligned}
M\left((-1)^{m} u, r\right) & \geq \int_{A(2 r)}(-1)^{m} g_{m}(|y|, r) d \mu_{u}(y)-C r^{2-n} \\
& \geq C(2) r^{2-n} \int_{A(2 r)}|y|^{2 m-2} d \mu_{u}(y)-C r^{2-n}
\end{aligned}
$$

Then we see that

$$
r^{2-n} \int_{A(2 r)}|y|^{2 m-2} d \mu_{u}(y) \leq C\left(r^{-\alpha}+r^{2-n}\right)
$$

so that we have the required result.
Next we prove the case $n=2$. For $0<r<r_{0}$, we have by Lemmas 2.2 and 2.3,

$$
\begin{aligned}
M\left((-1)^{m} u, r\right) & \geq \int_{A(2 r)}(-1)^{m} g_{m}(|y|, r) d \mu_{u}(y)-C \log (1 / r) \\
& \geq C(2) \int_{A(2 r)}|y|^{2 m-2} \log (|y| / r) d \mu_{u}(y)-C \log (1 / r)
\end{aligned}
$$

as required.
Lemma 2.5. Let u be a super-polyharmonic function on $B(1) \backslash\{0\}$ with $\mu_{u}=$ $(-\Delta)^{m} u \geq 0$. Suppose that there exist constants $\alpha \geq n-2$ and $C>0$ such that

$$
M\left((-1)^{m} u, r\right) \leq C \begin{cases}r^{-\alpha} & \text { when } \alpha>0 \\ \log (1 / r) & \text { when } \alpha=0\end{cases}
$$

whenever $0<r<r_{0}$. If $\alpha>n-2$, then

$$
\int_{A(0)}|y|^{2 m-n+\alpha+\varepsilon} d \mu_{u}(y)<\infty
$$

for $\varepsilon>0$; if $\alpha=n-2$, then one can take $\varepsilon=0$.

Proof. By Lemma 2.4 (1), we have

$$
\int_{B(r) \backslash B(r / 2)}|y|^{2 m-2} d \mu_{u}(y) \leq C r^{-\alpha} \mathcal{R}_{2}(r)^{-1}
$$

for $0<r<r_{0}$, so that

$$
\begin{aligned}
& \int_{A(0)}|y|^{2 m-n+\alpha+\varepsilon} d \mu_{u}(y) \\
= & \sum_{j=0}^{\infty} \int_{B\left(2^{-j} r_{0}\right) \backslash B\left(2^{-j-1} r_{0}\right)}|y|^{2 m-n+\alpha+\varepsilon} d \mu_{u}(y) \\
\leq & \sum_{j=0}^{\infty}\left(2^{-j} r_{0}\right)^{2-n+\alpha+\varepsilon} \int_{B\left(2^{-j} r_{0}\right) \backslash B\left(2^{-j-1} r_{0}\right)}|y|^{2 m-2} d \mu_{u}(y) \\
\leq & C \sum_{j=0}^{\infty} 2^{-j \varepsilon}<\infty,
\end{aligned}
$$

as required.
Finally we discuss a fine limit property for Riesz potentials (see also [7, Proposition 4.2]). For this purpose, set

$$
\mathcal{R}_{2 m} \mu(x)=\int_{A(0)}\left|\mathcal{R}_{2 m}(x-y)\right| d \mu(y)
$$

where μ is a nonnegative measure on $A(0)$.
Lemma 2.6. Let $2 m \leq n$. Then for every $\alpha, \beta>0$ there exists a nonnegative measure μ such that
(1) $\int_{A(0)}|y|^{-\alpha} d \mu(y)<\infty$;
(2) $\limsup _{x \rightarrow 0}|x|^{\beta} \mathcal{R}_{2 m} \mu(x)=\infty$.

Proof. Take a sequence $\left\{x_{j}\right\}$ such that $\left|x_{j}\right|=1 / j$. For sequences $\left\{a_{j}\right\}$ and $\left\{r_{j}\right\}$ of positive numbers, set

$$
\mu=\sum_{j} a_{j} r_{j}^{-n} \chi_{B\left(x_{j}, r_{j}\right)}
$$

where χ_{E} denotes the characteristic function of a measurable set E. Now it suffices to choose $\left\{a_{j}\right\}$ and $\left\{r_{j}\right\}$ such that
(1) $\int_{A(0)}|y|^{-\alpha} d \mu(y) \leq C \sum_{j} j^{\alpha} a_{j}<\infty$;
(2) $\mathcal{R}_{2 m} \mu\left(x_{j}\right) \geq C \mathcal{R}_{2 m}\left(r_{j}\right) a_{j} \geq C j^{2 \beta}$ for each j;
this is possible since $\lim _{x \rightarrow 0} \mathcal{R}_{2 m}(x)=\infty$ when $2 m \leq n$. In fact, we choose $\left\{a_{j}\right\}$ such that $0<a_{j}<j^{-\alpha} 2^{-j}$ and $\left\{r_{j}\right\}$ such that $\left\{B\left(x_{j}, r_{j}\right)\right\}$ is a disjoint family and $\mathcal{R}_{2 m}\left(r_{j}\right)>a_{j}^{-1} j^{2 \beta}$.

Note here that (1) gives
(3) $M\left(\mathcal{R}_{2 m} \mu, r\right)$ is bounded when $2 m \leq n$.

3 Representation formula

In the same manner as [11, Lemmas 6,8 and 9$]$ (see also $[7,(3.12),(4.5)]$), we have the following results.

Lemma 3.1. Let $2 m-3 \leq L \leq 2 m-2$. Then there exists a constant $C>0$ such that
$\left|\mathcal{R}_{2 m, L}(x, y)\right| \leq C \begin{cases}|y|^{L+1} \min \{\log (1 /|y|), \log (1 /|x|)\} & \text { if } L=2 m-3 \text { and } n=2, \\ |y|^{L}|x|^{2 m-L-3} \mathcal{R}_{2}(x) \min \{|y|,|x|\} & \text { if } L=2 m-2 \text { or } n \geq 3\end{cases}$
for all $x, y \in B(1)$ and $|x-y|>|x| / 2$; if $2 m>n$, then
$\left|\mathcal{R}_{2 m, L}(x, y)\right| \leq C \begin{cases}|y|^{L+1} \min \{\log (1 /|y|), \log (1 /|x|)\} & \text { if } L=2 m-3 \text { and } n=2, \\ |y|^{L}|x|^{2 m-L-3} \mathcal{R}_{2}(x) \min \{|y|,|x|\} & \text { if } L=2 m-2 \text { or } n \geq 3\end{cases}$
for all $x, y \in B(1)$.
Lemma 3.2. If $L>2 m-2$, then there exists a constant $C>0$ such that

$$
\left|\mathcal{R}_{2 m, L}(x, y)\right| \leq C|y|^{L}|x|^{2 m-n-L-1} \min \{|y|,|x|\}
$$

for all $x, y \in B(1)$ and $|x-y|>|x| / 2$; if $2 m>n$, then

$$
\left|\mathcal{R}_{2 m, L}(x, y)\right| \leq C|y|^{L}|x|^{2 m-n-L-1} \min \{|y|,|x|\}
$$

for all $x, y \in B(1)$.
Lemma 3.3. Let u be a super-polyharmonic function on $B(1) \backslash\{0\}$ with $\mu_{u}=$ $(-\Delta)^{m} u \geq 0$. Suppose that there exist constants $\alpha \geq n-2$ and $C>0$ such that

$$
M\left((-1)^{m} u, r\right) \leq C \begin{cases}r^{-\alpha} & \text { when } \alpha>0 \\ \log (1 / r) & \text { when } \alpha=0\end{cases}
$$

whenever $0<r<r_{0}$. Then

$$
\lim _{r \rightarrow 0} r^{q} M\left(\left|\mathcal{R}_{2 m, L} \mu_{u}\right|, r\right)=0
$$

for all $q>\alpha$, where L is the integer such that $2 m-n+\alpha-1<L \leq 2 m-n+\alpha$ when $\alpha>n-2$ and $L=2 m-3$ when $\alpha=n-2$.

Proof. First we consider the case $\alpha>n-2$, and take $\varepsilon>0$ such that $2 m-n+$ $\alpha+\varepsilon-1 \leq L<2 m-n+\alpha+\varepsilon$ and $\varepsilon<q-\alpha$. If $2 m>n$, then, since $L \geq 2 m-2$ in case $\alpha>n-2$, we have by Lemmas 2.5, 3.1 and 3.2

$$
\begin{aligned}
\left|\mathcal{R}_{2 m, L} \mu_{u}(x)\right| & \leq C|x|^{2 m-L-3} \mathcal{R}_{2}(x) \int_{A(0)}|y|^{L} \min \{|y|,|x|\} d \mu_{u}(y) \\
& \leq C|x|^{-\alpha-\varepsilon+n-2} \mathcal{R}_{2}(x) \int_{A(0)}|y|^{2 m-n+\alpha+\varepsilon} d \mu_{u}(y) \\
& \leq C|x|^{-\alpha-\varepsilon+n-2} \mathcal{R}_{2}(x)
\end{aligned}
$$

which gives

$$
\begin{equation*}
\lim _{r \rightarrow 0} r^{q} f_{S(r)}\left|\mathcal{R}_{2 m, L} \mu_{u}(x)\right| d S(x)=0 \tag{3.1}
\end{equation*}
$$

for $q>\alpha$. If $2 m-n \leq 0$, then

$$
\begin{aligned}
\left|\mathcal{R}_{2 m, L}(x, y)\right| \leq & C \mathcal{R}_{2 m}(x-y) \chi_{\{y:|x-y|<|x| / 2\}}(y) \\
& +\left.C|y|\right|^{L}|x|^{2 m-L-3} \mathcal{R}_{2}(x) \min \{|y|,|x|\} .
\end{aligned}
$$

Noting from Lemma 2.1 that

$$
f_{S(r)} \mathcal{R}_{2 m}(x-y) d S(x) \leq C \mathcal{R}_{2 m}(r)
$$

when $r / 2<|y|<3 r / 2$, we obtain (3.1) for $q>\alpha$, as above.
Similarly, if $\alpha=n-2$ and $L=2 m-3$, then

$$
f_{S(r)}\left|\mathcal{R}_{2 m, L} \mu_{u}(x)\right| d S(x) \leq C r^{2-n} \log (1 / r) \int_{A(0)}|y|^{2 m-2} d \mu_{u}(y) \leq C r^{-\alpha} \log (1 / r)
$$

which implies (3.1) for $q>\alpha$, as required.
Theorem 3.4. Let u be a super-polyharmonic function on $B(1) \backslash\{0\}$ with $\mu_{u}=$ $(-\Delta)^{m} u \geq 0$. Suppose that there exist constants $\alpha \geq n-2$ and $C>0$ such that

$$
M\left((-1)^{m} u, r\right) \leq C \begin{cases}r^{-\alpha} & \text { when } \alpha>0 \\ \log (1 / r) & \text { when } \alpha=0\end{cases}
$$

whenever $0<r<r_{0}$. Then there exists a function $h_{0} \in \mathcal{H}^{m}(A(0))$ such that

$$
u(x)=\mathcal{R}_{2 m, L} \mu_{u}(x)+h_{0}(x)
$$

for $x \in A(0)$, where L is the integer such that $2 m-n+\alpha-1<L \leq 2 m-n+\alpha$ when $\alpha>n-2$ and $L=2 m-3$ when $\alpha=n-2$.

Proof. Since $\mathcal{R}_{2 m, L} \mu_{u}(x)$ is super-polyharmonic in $A(0)$ by Lemma 3.3, we see that

$$
u(x)-\mathcal{R}_{2 m, L} \mu_{u}(x)
$$

is polyharmonic of order m in $A(0)$ (in the sense of distributions). By Weyl's lemma, there exists a function $h_{0} \in \mathcal{H}^{m}(A(0))$ such that

$$
h_{0}(x)=u(x)-\mathcal{R}_{2 m, L} \mu_{u}(x)
$$

for $x \in A(0)$.
Now we are ready to prove Theorem 1.3.
Proof of Theorem 1.3. By Theorem 3.4, there exists a function $h_{0} \in \mathcal{H}^{m}(A(0))$ such that

$$
u(x)=\mathcal{R}_{2 m, L} \mu_{u}(x)+h_{0}(x)
$$

for $x \in A(0)$. Since

$$
\begin{aligned}
\left((-1)^{m} h_{0}(x)\right)^{+} & \leq\left((-1)^{m} u(x)\right)^{+}+\left((-1)^{m+1} \mathcal{R}_{2 m, L} \mu_{u}(x)\right)^{+} \\
& \leq\left((-1)^{m} u(x)\right)^{+}+\left|\mathcal{R}_{2 m, L} \mu_{u}(x)\right|,
\end{aligned}
$$

we have

$$
\liminf _{r \rightarrow 0} r^{q} M\left(\left((-1)^{m} h_{0}\right)^{+}, r\right)=0
$$

for $q>\alpha$, by Lemma 3.3. Hence, in case $\alpha>n-2$, we find a function $h \in$ $\mathcal{H}^{m}\left(B\left(r_{0}\right)\right)$ and constants $\left\{c_{\lambda}\right\}$ such that

$$
\begin{aligned}
h_{0}(x) & =\sum_{|\lambda|<q+2 m-n} c_{\lambda} D^{\lambda} \mathcal{R}_{2 m}(x)+h(x) \\
& =\sum_{|\lambda| \leq L} c_{\lambda} D^{\lambda} \mathcal{R}_{2 m}(x)+h(x)
\end{aligned}
$$

for $x \in A(0)$ with the aid of [6, Theorem 1.2]; in case $\alpha=n-2$,

$$
h_{0}(x)=\sum_{|\lambda| \leq 2 m-2} c_{\lambda} D^{\lambda} \mathcal{R}_{2 m}(x)+h(x) .
$$

Thus the theorem is obtained.

4 Proof of Theorem 1.1

For a proof of Theorem 1.1 we prepare the following lemma (see also [7, Proposition 4.1]).

Lemma 4.1. Let m be even. Suppose that u is a super-polyharmonic function on $B(1) \backslash\{0\}$ with $\mu_{u}=(-\Delta)^{m} u \geq 0$ and

$$
M\left((-1)^{m} u, r\right) \leq C \mathcal{R}_{2}(r) \quad \text { whenever } 0<r<r_{0}
$$

for some constant $C>0$. Then

$$
\liminf _{x \rightarrow 0} \mathcal{R}_{2}(x)^{-1}(-1)^{m} \mathcal{R}_{2 m, 2 m-3} \mu_{u}(x) \geq 0
$$

Proof. By Lemma 2.4 (2) we have

$$
\int_{A(0)}|y|^{2 m-2} d \mu_{u}(y)<\infty
$$

First we show the case $n \geq 3$. Then Lemma 3.1 gives

$$
(-1)^{m} \mathcal{R}_{2 m, 2 m-3}(x, y) \geq-C|y|^{2 m-3}|x|^{2-n} \min \{|y|,|x|\}
$$

since $(-1)^{m} \mathcal{R}_{2 m}(x-y) \geq 0$ when m is even and $2 m \leq n$. Hence, if m is even, then

$$
(-1)^{m} \mathcal{R}_{2 m, 2 m-3} \mu_{u}(x) \geq-C|x|^{2-n} \int_{A(0)}|y|^{2 m-3} \min \{|y|,|x|\} d \mu_{u}(y)
$$

which together with Lebesgue's dominated convergence theorem gives

$$
\liminf _{x \rightarrow 0}|x|^{n-2}(-1)^{m} \mathcal{R}_{2 m, 2 m-3} \mu_{u}(x) \geq 0
$$

Next we consider the case $n=2$. The above discussions yield

$$
(-1)^{m} \mathcal{R}_{2 m, 2 m-3} \mu_{u}(x) \geq-C \int_{A(0)}|y|^{2 m-2} \min \{\log (1 /|y|), \log (1 /|x|)\} d \mu_{u}(y)
$$

so that

$$
\liminf _{x \rightarrow 0}(\log (1 /|x|))^{-1}(-1)^{m} \mathcal{R}_{2 m, 2 m-3} \mu_{u}(x) \geq 0
$$

as required.
Proof of Theorem 1.1. First we show that (1) implies (2). For this purpose, we suppose that m is even or $2 m>n$, and take a super-polyharmonic function u on $B(1) \backslash\{0\}$ with $\mu_{u}=-\Delta^{m} u \geq 0$ satisfying (1-1) - (1-3). By Theorem 1.3, there exist a function $h \in \mathcal{H}^{m}\left(B\left(r_{0}\right)\right)$ and constants c_{λ} such that

$$
u(x)=\mathcal{R}_{2 m, 2 m-3} \mu_{u}(x)+h(x)+\sum_{|\lambda| \leq 2 m-2} c_{\lambda} D^{\lambda} \mathcal{R}_{2 m}(x)
$$

for $x \in A(0)$. Then, by Lemma 4.1, we have

$$
\liminf _{x \rightarrow 0} \mathcal{R}_{2}(x)^{-1}(-1)^{m} u(x) \geq-C>-\infty
$$

which contradicts with (1-3).
The implication $(2) \Rightarrow(1)$ is obtained by Lemma 2.6.

References

[1] A. Abkar and H. Hedenmalm, A Riesz representation formula for superbiharmonic functions, Ann. Acad. Sci. Fenn. Math. 26 (2001), 305-324.
[2] N. Aronszajn, T. M. Creese and L. J. Lipkin, Polyharmonic functions, Clarendon Press, 1983.
[3] T. Futamura, K. Kishi and Y. Mizuta, A generalization of Bôcher's theorem for polyharmonic functions, Hiroshima Math. J. 31 (2001), 59-70.
[4] T. Futamura, K. Kishi and Y. Mizuta, Removability of sets for subpolyharmonic functions, Hiroshima. Math. J. 33 (2003), 31-42.
[5] T. Futamura, K. Kitaura and Y. Mizuta, Isolated singularities, growth of spherical means and Riesz decomposition for superbiharmonic functions, Hiroshima Math. J. 38 (2008), 231-241.
[6] T. Futamura and Y. Mizuta, Isolated singularities of super-polyharmonic functions, Hokkaido. Math. J. 33 (2004), 675-695.
[7] M. Ghergu, A. Moradifam and S. D. Taliaferro, Isolated singularities for polyharmonic inequalities, preprint.
[8] W. K. Hayman and P. B. Kennedy, Subharmonic functions, Vol. 1, Academic Press, London, 1976.
[9] W. K. Hayman and B. Korenblum, Representation and uniqueness theorems for polyharmonic functions, J. Anal. Math. 60 (1993), 113-133.
[10] E. Ligocka, Elementary proofs of the Liouville and Bôcher theorems for polyharmonic functions, Ann. Polon. Math. 68 (1998), 257-265.
[11] Y. Mizuta, An integral representation and fine limits at infinity for functions whose Laplacians iterated m times are measures, Hiroshima Math. J. 27 (1997), 415-427.
[12] P. Pizetti, Sulla media deivalori che una funzione dei punti dello spazio assume alla superficie di una sfera, Rend. Lincei 5 (1909), 309-316.

Department of Mathematics
Daido University
Nagoya 457-8530, Japan
E-mail : futamura@daido-it.ac.jp
and
Department of Mathematics
Graduate School of Science
Hiroshima University
Higashi-Hiroshima 739-8521, Japan
e-mail : yomizuta@hiroshima-u.ac.jp and
Faculty of Education and Welfare Science Oita University
Dannoharu Oita-city 870-1192, Japan
E-mail: t-ohno@oita-u.ac.jp

[^0]: 2000 Mathematics Subject Classification : Primary 31B30, 31B05, 31B15
 Key words and phrases : polyharmonic functions, super-polyharmonic functions, spherical means, Riesz decomposition

