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Abstract

We consider a Riesz decomposition theorem for super-polyharmonic func-
tions satisfying certain growth condition on surface integrals in the punc-
tured unit ball. We give a condition that super-polyharmonic functions u
have the bound

u(z) = O(Ra()),

where Ro denotes the fundamental solution for —Aw in R"™.

1 Introduction

Let B(x,r) denote the open ball centered at x with radius r, whose boundary is
written as S(x,r) = 0B(x,r). If x = 0, then we simply write B(r) = B(0,r) and
S(r)=5(0,7). Fix r9, 0 < rg < 1. For 0 < r < r(, we set

Alr) ={z e R" :r < |z] <ro}.

For a Borel measurable function u on S(r), let us define the spherical mean over
S(r) by

1
M (u,r) :][ u(z) dS(z) = — / u(zx) dS(x),
5(r) WnT" Js(r)

where w,, denotes the surface area of the unit sphere S(1).

A real-valued function u on an open set {2 C R" is called polyharmonic of order
m on Q if u € C?"(Q) and A™u = 0 on €, where m is a positive integer and A™
denotes the Laplacian iterated m times. We denote by H™(£2) the space of poly-
harmonic functions of order m on €2; for fundamental properties of polyharmonic
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functions, we refer the reader to the book by N. Aronszajn, T. M. Creese and L.
J. Lipkin [2].

We say that a locally integrable Borel function w on €2 is super-polyharmonic
of order m in € if

(1) (—A)™u is a nonnegative measure on €2, that is,

/ u(z)(=A)"p(x) de >0 for all nonnegative ¢ € C5°(Q);
0

(2) w is lower semicontinuous in §2;
(3) every point of €2 is a Lebesgue point of u

(see [5]); (—A)™u is referred to as the Riesz measure of u and denoted by fi,,.
Consider the Riesz kernel of order 2m defined by

2m—n

Qpm(—1)" 2

. max{(),w} 2m—n
(=1) 2]

|z|*™ ™ log (1/]x]) if 2m — n is an even nonnegative integer,
R2m<l’> =

On.m otherwise,

where a,, ,, is a positive constant chosen such that (—A)™Ry, is the Dirac measure
at the origin. Note here that if 2m < n, then

. oo if 2m < n,
i Rom (@) = { 0 if 2m >n (1.1)

Following the book by K. Hayman and P. B. Kennedy [8], we consider the remainder
term in the Taylor expansion of Ry, (- — y) given by

N\
R2m,L(Iay) = ,R'2m(x - y) - Z %DARQWLCU)?
<L

where L is a real number; in case L < 0, set Ropm (%, y) = Rom(x — y).
For a nonnegative measure p on A(0), we define

Rzm,LM(l’) = RQm,L<x7 y)dlj’(y)
A(0)

Our first aim in this paper is to establish the following result.
THEOREM 1.1. The following are equivalent:

(1) there is a super-polyharmonic function u on B(1)\{0} with p,, = (—A)"u >0
such that

(1-1) M((—=1)™u,r) < Ro(r) for all 0 < r < ro;
(1-2) lilgl_jorlf Ro(r) "M (((—=1)™u)t,r) < oo;
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(1-3) ligl_}glf Ro(x) H—=1)"u(z) = —o0,

where v = max{v,0}.
(2) m is odd and 2m < n.

This extends a recent result by M. Ghergu, A. Moradifam and S. D. Taliaferro
[7, Theorem 1.1]; our result is stated as follows:

COROLLARY 1.2. The following are equivalent:

(1) there is a super-polyharmonic function u on B(1)\{0} with p,, = (—A)™u >0
such that
(1-4) (=1)™u <0,
(1-5) lim inf Ro(x) ™ (—1)"u(x) = —oo;
z—>

(2) m is odd and 2m < n.
It is easy to see from (1.1) that (2) is equivalent to
) Ty (—1)" R () = —ox.

To show Theorem 1.1, we apply the following Riesz decomposition theorem for
super-polyharmonic functions in the punctured unit ball (see also M. Ghergu, A.
Moradifam and S. D. Taliaferro [7, Theorem 3.1], where they treated the case when
(—=1)™u <0).

THEOREM 1.3. Let u be a super-polyharmonic function on B(1) \ {0} with p, =
(—A)™u > 0. Suppose that there exist constants o > n — 2 and C' > 0 with

—Q

r when o > 0
_ m < )
M{(=1)"u, 1) < C{ log(1/r) when a =0,

whenever 0 < r < ro. Suppose further that

lim inf ro‘_("_g)Rg(T)_lM(((—1)mu)+a7") < 00.

r—0

Then there exist a function h € H™(B(ry)) and constants cy such that if « > n—2,
then

w(x) = Rom,pitu(2) + h(z) + Z XD R ()

[AI<L
for all x € A(0), where L is the integer such that L <2m —n+a < L+ 1; and if
a=n — 2, then

u(x) = Romam—stu(r) + h(z) + > D Rop(2)

[A|<2m—2

for all x € A(0).



The case a > n—2 was treated in [6, Theorems 1.3 and 1.4]. For further related
results, we refer the reader to [1, 3, 4, 5, 9, 10].

Throughout this paper, let C' denote various positive constants independent
of the variables in question and let C(a,b,---) be a positive constant which may
depend on a,b, . . ..

2 Preliminaries and fundamental lemmas

Since A*Ry,, () is of rotation free, we write
AFRo (1) = AFRy, ()

when r = |z|.

LEMMA 2.1. Forr >0 and y € R",

m—1

Z a T N Ry (y)  if Jy| > 7,
M(R2m( - y)ﬂn) = jzol

m—

> iyl N Ry (r) iflyl <7,
§=0

where ap = 1 and .

2jlnn+2)---(n+25 —2)

a; =

for positive integers j.
Proof. Since A™Rop(- —y) = 0 in B(0,|y|), this equality holds for r < |y| by

Pizetti’s formula [12].
If |y| < r, then we have

M(Rom(- —y), 1) = L /S(T) Rom <|y7|x — —y> dS(x)

w1

1
= — Rm<x'——y)d5x’
WalYI"t Syl ? Y| )

m—1
. r
= Z a;1y|* A Rap, (m?/) .

=0
Since M (Rom(-—y),r) is a continuous function of r, the present lemma follows. [

LEMMA 2.2. Let u be a super-polyharmonic function on B(1) \ {0} with u, =
(—A)™u > 0. Then

M(u,r) = /A(T) (Z a7 N Ry (y) — ZajlyIZjNRzm(r)) dyia(y)

j=0 7=0

3

+ (bj?”Qj 4 er2m7n72j 4 djT,meanj log(l/r))
J

Il
o



for 0 < r < 1o, where b;, ¢; and d; are constants satisfying d; = 0 when j >
(2m —n)/2 or 2m — n is odd.

Proof. For 0 < R < r < 1y, u is represented as

u(l’) = A(R) ,R’Qm(x - y) d:“’u(?/) + hl,R<x)
= /A(R) (Rzm@ —y) — ; a;|y| ]NRQm(x)) dtu(y) + hao, ()

when = € A(R), where hy g, ho g € H™(A(R)). Hence we have by Lemma 2.1

M(u,r) = /A " (M(Rgm(- —y),7) - 2_: aj|y|2jAjR2m(r)) dpu(y) + M (ho,r,7)

7=0
m—1 m—1
_ /A o (Z a;r N Rom(y) = > ajly\mmzm(r)> dpa(y) + M(ho.p, 7).
"\ j=0 §=0

This equality implies that M (hg g, r) does not depend on R, so that, by [3, Lemma
1], we can find a constants b;, ¢j, d;(j = 0,1,---m — 1) independent of R such that
d; =0 when j > (2m —n)/2 or 2m — n is odd, and

M(hQ’R,T) — (bjT'Qj 4 er2mfn72j + djr2m7n72j lOg(l/T)) ’
J

3

Il
o

as required. [

Set B B
gm(t,7) = Z a; T N Rom (t) — Z a it AT Rop (r).

j=0 Jj=0
LEMMA 2.3. The following hold:
(1) (=1)™gm(t,r) >0 for r < t;

(2) (=D)™gu(t,r) > Cla)t*™2p(t,r) for t > ar and a > 1, where C(a) is a
positive constant and

[ log(t/r) ifn=2,
plt,r) = { r2-n ifn > 3.
Proof. For fixed r, set g, (t) = gm(t, 7). We prove this lemma by induction on m.

In case m = 1, we have

a(t) = as1 log(r/t) if n=2
! a1 (27 —r?) ifn > 3.
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Hence (1) and (2) hold for m = 1.
Suppose that (1) and (2) hold for m — 1 where m > 2. Note that

n—1
t

Since M (Raom(- — y),r) € C*™2(R"), we see that g,,(r) = g,,(r) = 0, so that

e = [ ([ ete) de) as

= [ ([ oo maom)as e

which gives (—1)™¢,,(t) > 0 for t > r.
First we consider the case n > 3. For a > 1, take a; and as such that 1 < ay <
a; < a. Then we have for t > ar

(1) gn(t) > /( sg”*(—l)m-lgm_l(»s)d»s) ds

asr

t s
C’(a)TQ_”/ st (/ §2m+"_5d§) ds

Z C(a)t2m—2r2—n.

I (t) = —Gm—1(2).

Agm(t) = g (1) +

v

Thus (2) holds for m.
Next we deal with the case n = 2. Since

P2 (=) gm(a, 1) < (=1)"gm(t, 1) < 77 (=1)"gm (b, 1)

for ar < t < br, it is sufficient to find constants ¢(m) > 1 such that ¢(m) is
increasing for m and

(=1)"gm(t, 1) = C" 2 log(t /)

for t > ¢(m)r. By (2.1), we have

) = [ €0l og ¢ de

_ 13 t
C 2m=3 og > | log — d
Z /c(m—l)ré (Ogr) ng 6

1
t 1

= C’tQm_Q/ g¥m=3 <log —S) log — ds
c(m—1)r/t r S

! 1
Ct*m=2 {log E/ s*m 3 og — ds — C’(m)}

T Je(m—1)/c(m) S

v

> Ot 2log(t/r).

The induction is completed. O



LEMMA 24. Let u be a super-polyharmonic function on B(1) \ {0} with u, =
(—A)™u > 0. Suppose that there exist constants o > n — 2 and C' > 0 such that

—Q

r when o > 0,

M((_l)muﬂa) < C{ log(l/r) when o = 0

for 0 < r < ry.
(1) If « > n — 2, then

lim sup ra+2"/ ly[*" 2 dpy(y) < oc.
r—+0 A(r)

(2) If « =n — 2, then
/ ly[*" 2 dp(y) < oo.
A(0)

Proof. First we show the case n > 3. For 0 < r < ry, we have by Lemmas 2.2 and
2.3,

M((~1)™u,r) > / o Vgl r) dia(y) = €2

> c@p [P duat) - O
A(2r)
Then we see that

P P ) < € (),
A(2r)

so that we have the required result.
Next we prove the case n = 2. For 0 < r < 1y, we have by Lemmas 2.2 and 2.3,

M((~1)™u,r) > / o CVan(lor) dia(y) — Clog(1/1)

> o) / W oslyl/7) din) — Clog(1/),

as required. [

LEMMA 2.5. Let u be a super-polyharmonic function on B(1) \ {0} with u, =
(—A)™u > 0. Suppose that there exist constants o > n — 2 and C' > 0 such that

—Q

r when o > 0,

M((=1)"u,r) < C{ log(1/r) when a = 0,

whenever 0 < r < ro. If « > n — 2, then

/ ly|*" et dp, (y) < oo
A(0)

for e > 0; if « = n — 2, then one can take ¢ = 0.
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Proof. By Lemma 2.4 (1), we have

/ W22 dp(y) < CroRo(r)~"
B(r)\B(r/2)

for 0 < r < rp, so that

/ P ()
A(0)

[e.9]

-3 !
B(279r9)\B(279~1rg)

J=0

B )

[e.9]

< S [ 72 dyn ()

]:0 B(2_jTO)\B(2_j_1T0)

o
< CZ 27¢ < 0,
=0

as required. O

Finally we discuss a fine limit property for Riesz potentials (see also [7, Propo-
sition 4.2]). For this purpose, set

Rampi(x) = /  [Rantz =)l duty)

where p is a nonnegative measure on A(0).

LEMMA 2.6. Let 2m < n. Then for every «, > 0 there exists a nonnegative
measure j such that

W) [ gl duly) < oc
A(0)

(2) limsup |z|"Romp(r) = co.
z—0

Proof. Take a sequence {z,} such that |z;| = 1/j. For sequences {a;} and {r;} of
positive numbers, set

H= Z a;r; " XB(aj )
j

where x g denotes the characteristic function of a measurable set E. Now it suffices
to choose {a;} and {r;} such that

(1) / ) <Y g <oc
0 -

J

(2) Rompt(wj) > ORam(r;)a; > C5%° for each j;
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this is possible since lin% Rom(x) = oo when 2m < n. In fact, we choose {a;}
T—

such that 0 < a; < j7*277 and {r;} such that {B(x;,r;)} is a disjoint family and
Rom(r;) > a; 5% O

Note here that (1) gives

(3) M(Rampt,7) is bounded when 2m < n.

3 Representation formula

In the same manner as [11, Lemmas 6, 8 and 9] (see also [7, (3.12), (4.5)]), we have
the following results.

LEMMA 3.1. Let 2m — 3 < L < 2m — 2. Then there exists a constant C' > 0 such
that

ly|** min{log(1/|y|), log(1/|z|)} if L =2m — 3 and n = 2,
<

[Ram.1(@,y)] < O{ [y E |z 3Ry () mind|y|, |z|} if L=2m —2orn>3
for all z,y € B(1) and |z — y| > |z|/2; if 2m > n, then

ly|EH min{log(1/]y|),log(1/|z|)} if L =2m — 3 and n = 2,

<
|R2m,L(~T;y>| = C{ ’y‘L‘$’2m_L_3R2(.I') m1n{\y|, ‘1"} ifL =2m — 2 or n >3

for all x,y € B(1).

LEMMA 3.2. If L > 2m — 2, then there exists a constant C' > 0 such that
R, (@, y)| < Cly|*|o[*"~*"" min{|y|, ||}

for all x,y € B(1) and |z — y| > |z|/2; if 2m > n, then
Rom,(z,y)] < Clyl"|«[* """ min{[y], |=[}

for all z,y € B(1).

LEMMA 3.3. Let u be a super-polyharmonic function on B(1) \ {0} with u, =
(—A)™u > 0. Suppose that there exist constants & > n — 2 and C' > 0 such that

r-e when a > 0,

M((=1)"u,r) < C{ log(1/r) when a = 0,

whenever 0 < r < rq. Then
lm 7'M (|Ram,ttul, ) =0
r—0

for all ¢ > «, where L is the integer such that 2m —n+a—-1< L <2m —n+ «
when o« >n —2 and L = 2m — 3 when o« = n — 2.



Proof. First we consider the case @ > n — 2, and take £ > 0 such that 2m —n +
at+e—1<L<2m—n+a+cande < qg—a. If 2m > n, then, since L > 2m — 2
in case @ > n — 2, we have by Lemmas 2.5, 3.1 and 3.2

Rompia(@)] < Claf™ Ry (x) / it minlyl o} )
0

IN

Clal " Ra(o) [ [ )
A(0)
< Clal ™ Ryfa),
which gives

r—0

lim rq][ |Rom,ppvu(x)|dS(x) =0 (3.1)
S(r)
for ¢ > a. If 2m —n <0, then

Romr(z,y)] < CRom (T — Y)X{y:fa—yl<lel/2} (Y)
+ Clyl* |z "Ry () min{|y|, ||}

Noting from Lemma 2.1 that
][ Rom(x —y) dS(x) < CRapm(r)
S(r)

when r/2 < |y| < 3r/2, we obtain (3.1) for ¢ > «, as above.
Similarly, if « =n — 2 and L = 2m — 3, then

F Ranam(@ds(e) < 0 og(r) [y dpaly) < Crlog(1/n),
5(r) A(0)

which implies (3.1) for ¢ > «, as required. ]

THEOREM 3.4. Let u be a super-polyharmonic function on B(1) \ {0} with p, =
(—A)™u > 0. Suppose that there exist constants o« > n — 2 and C' > 0 such that

r- when o > 0
_ m < Y
M{(=1)"u,r) < C{ log(1/r) when a =0,
whenever 0 < r < rg. Then there exists a function hy € H™(A(0)) such that
uw(x) = Rom ppu(x) + ho(x)

for x € A(0), where L is the integer such that 2m —n+a—1< L <2m—n+«a
when o >n —2 and L = 2m — 3 when a =n — 2.

Proof. Since Ry, 1w () is super-polyharmonic in A(0) by Lemma 3.3, we see that
u(x) - R2m,LNu(x)
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is polyharmonic of order m in A(0) (in the sense of distributions). By Weyl’s
lemma, there exists a function hy € H™(A(0)) such that

ho(z) = u(x) — Rom,Lptu()
for z € A(0). -

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. By Theorem 3.4, there exists a function hy € H™(A(0))
such that
uw(x) = Rom ppu(x) + ho(x)
for z € A(0). Since
(=) ho(@)® < (=D)™u(@)" + ()™ Rom ()
S ((_1>mu(x))+ + ‘R2m,Lﬂu($)‘7
we have

liminf r9M(((—1)"ho)*,7) =0

r—0
for ¢ > «a, by Lemma 3.3. Hence, in case a > n — 2, we find a function h €
H™(B(ro)) and constants {cy} such that

ho(z) = Y exDRom(z) + h(z)

[M<g+2m—n

— Z exD R () + h(z)

|AI<L

for x € A(0) with the aid of [6, Theorem 1.2]; in case & = n — 2,

ho(x) = D exD Ram(x) + h(x).

[A|<2m—2

Thus the theorem is obtained. O]

4 Proof of Theorem 1.1

For a proof of Theorem 1.1 we prepare the following lemma (see also [7, Proposition

4.1)).

LEMMA 4.1. Let m be even. Suppose that u is a super-polyharmonic function on
B(1)\ {0} with p, = (—A)™u > 0 and

M((=1)"u,r) < CRo(r) whenever 0 < r < rg
for some constant C > 0. Then

lim iglf Ro(2) H(=1)"Rom.am-_spiu(x) > 0.
r—r

11



Proof. By Lemma 2.4 (2) we have

/ Y| 2 dp, (y) < .
A(0)

First we show the case n > 3. Then Lemma 3.1 gives
(_1)mR2m,2m—3(‘r7 y) 2 _C|y|2m_3|x|2_n m1n{|y\, |.T|},
since (—1)"Rap(z —y) > 0 when m is even and 2m < n. Hence, if m is even, then

|2m—3

(1) Ramamspia(a) = —Cla / ming[y], [2]}da(y),

ly
A(0)

which together with Lebesgue’s dominated convergence theorem gives
lim i(I)lf 2|72 (=1)"Ram.2m—shtu(z) > 0.
T—

Next we consider the case n = 2. The above discussions yield

(—=1)"Ram2m-stu(r) > =C o [y1*"~* min{log(1/]y]), log(1/|z]) }dpu(y),

so that
timinf (log(1/|2]))" (~1)"Ra prs-apa(z) > 0,

as required. O

Proof of Theorem 1.1. First we show that (1) implies (2). For this purpose, we
suppose that m is even or 2m > n, and take a super-polyharmonic function u on
B(1) \ {0} with g, = —A™u > 0 satistying (1-1) — (1-3). By Theorem 1.3, there
exist a function h € H™(B(ry)) and constants ¢, such that

U(ZE) = Rgmgm_guu(fﬁ) + h(l’) + Z C/\DARQm(:B>

IAl<2m—2
for x € A(0). Then, by Lemma 4.1, we have

limiglf Ro(x) H(=1)"u(z) > —C > —o0,

which contradicts with (1-3).
The implication (2) = (1) is obtained by Lemma 2.6. O
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