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Abstract

Our aim in this paper is to discuss Trudinger’s exponential integrability
for Riesz potentials of functions in generalized grand Morrey spaces. Our
result will imply the boundedness of the Riesz potential operator from a
grand Morrey space to a Morrey space.

1 Introduction

Let Rn denote the n-dimensional Euclidean space. We denote by B(x, r) the
open ball centered at x of radius r and denote by |E| the Lebesgue measure of a
measurable set E ⊂ Rn. In this paper, let G be a bounded open set in Rn. We
denote by dG the diameter of G

In 1938, Morrey [8] considered the integral growth condition on derivatives
over balls, in order to study the existence and regularity for partial differential
equations. A family of functions with the integral growth condition is then called
a Morrey space after his name. A systematical study for Morrey spaces was done
by Peetre [10] in 1969, where the Morrey space Lp,ν(G) is a family of f ∈ L1

loc(G)
satisfying the Morrey condition

sup
x∈G,0<r<dG

rν

|B(x, r)|

∫
G∩B(x,r)

|f(y)|pdy <∞

for p ≥ 1 and ν > 0 (see also Nakai [9]). Grand Lebesgue spaces were introduced in
[2] for the sake of study of the integrability of the Jacobian (see also [3, 4, 11, 12]).

For 0 < α < n and a locally integrable function f on G, we define the Riesz
potential Uαf of order α by

Uαf(x) =

∫
G

|x− y|α−nf(y) dy;

for fundamental properties of Riesz potentials, we refer the reader to the book by
the first author [6].
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Meskhi [5] investigated the boundedness for several integral operators, including
the Riesz potential operator, in the grand Morrey spaces Lp),ν,θ(G) which consists
of all functions f ∈ L1

loc(G) satisfying the grand Morrey condition

sup
x∈G,0<r<dG,0<ε<p−1

εθ
rν

|B(x, r)|

∫
G∩B(x,r)

|f(y)|p−ε dy <∞

for p > 1, ν > 0 and θ > 0; in what follows, let f = 0 outside G. Our main aim in
this paper is to establish Trudinger’s exponential integrability for Riesz potentials
of functions in generalized grand Morrey spaces which will be mentioned below.

In view of Fusco, Lions and Sbordone [1], we see that if f is a measurable
function on G satisfying the grand Lebesgue condition

lim
ε→0+

εθ
∫
G

|f(y)|n−ε dy = 0,

then ∫
G

exp(|U1f(x)|n/(n−1+θ)) dx <∞.

We also obtain Trudinger’s exponential integrability for Riesz potentials of func-
tions in grand Lebesgue spaces.

Throughout this paper, let C denote various constants independent of the vari-
ables in question, and C(a, b, · · · ) a constant that depends on a, b, · · · . The symbol
g ∼ h means that C−1h ≤ g ≤ Ch for some constant C > 0.

2 Grand Morrey spaces

Let φ be a positive nondecreasing function on (0,∞) satisfying the following con-
dition:

(φ1) there exists a constant A1 ≥ 1 such that

A−1
1 rn ≤ φ(r) ≤ A1 for 0 < r < 1;

(φ2) φ is doubling on (0,∞), namely there exists a constant A2 ≥ 1 such that

φ(2t) ≤ A2φ(t) for t > 0.

For β > 0, set

ψβ(r) =

∫ 2dG

1/r

tβφ(t)−1/p(log(2dG/t))
θ/p dt

t

when r ≥ 1/dG; and set
ψβ(r) = dGψβ(1/dG)r

when 0 < r < 1/dG.
Let us begin with the following result, which is easily proved by (φ2).

Lemma 2.1. For β > 0, ψβ is increasing and doubling on [0,∞).
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Now, for p > 1 and θ > 0, we introduce the generalized grand Morrey space
Lp),φ,θ(G) which consists of all measurable functions f on G such that

∥f∥Lp),φ,θ(G) = inf

{
λ > 0 : sup

x∈G,0<r<dG,0<ε<p−1
εθ

φ(r)

|B(x, r)|

×
∫
B(x,r)

|f(y)/λ|p−ε dy ≤ 1

}
<∞;

recall here that f = 0 outside G.
In case φ(r) = rν , Lp),φ,θ(G) is denoted by Lp),ν,θ(G) for simplicity; in particular,

Lp),n,θ(G) is usually written as Lp),θ(G).
Our main aim in this paper is to establish the following exponential integrability

for Riesz potentials of functions in Lp),φ,θ(G).

Theorem 2.2. For 0 < β < α there exist constants c1, c2 > 0 such that

1

|B(z, r)|

∫
B(z,r)

{
ψ−1
α (c1Uαf(x))

}α−β
dx ≤ c2ψβ(1/r)

for all z ∈ G, 0 < r < dG and f ≥ 0 with ∥f∥Lp),φ,θ(G) ≤ 1.

Remark 2.3. In Theorem 2.2, set

Φα(r) =
{
ψ−1
α (c1r)

}α−β

and
φβ(r) = ψβ(1/r)

−1.

Then the theorem insists that Uαf is an element of the Morrey space LΦα,φβ(G)
(which is defined in a natural way) when f ∈ Lp),φ,θ(G).

Example 2.4. Let φ(r) = rαp(log(c0 + r−1))τ1{log(log(c0 + r−1))}τ2 , where τ1, τ2
are constants and c0 > 1 is chosen so that φ is decreasing on (0,∞).

(1) If τ1 < p+ θ, then

ψα(r) ∼ (log(c0 + r))(p+θ−τ1)/p{log(log(c0 + r))}−τ2/p

and
(ψα)

−1(r) ∼ exp
(
rp/(p+θ−τ1)(log(c0 + r))τ2/(p+θ−τ1)

)
;

(2) if τ1 = p+ θ and τ2 < p, then

ψα(r) ∼ {log(log(c0 + r))}1−τ2/p

and
(ψα)

−1(r) ∼ exp(exp(rp/(p−τ2)));

(3) if τ1 = p+ θ and τ2 = p, then

ψα(r) ∼ log(log(log(c0 + r)))

and
(ψα)

−1(r) ∼ exp(exp(exp r));

3



(4) if τ1 = p+ θ and τ2 > p, then ψα(∞) <∞, so that

ψα(r) ∼ 1

for large r > 0.

Corollary 2.5. Let φ(r) = rαp(log(c0 + r−1))τ1{log(log(c0 + r−1))}τ2 as above.
If 0 < η < α, then there exist constants c1, c2 > 0 (depending on η) such that

(1) in case τ1 < p+ θ,

1

|B(z, r)|

∫
B(z,r)

exp
[
c1Uαf(x)

1/(1+(θ−τ1)/p)

×(log(c0 + Uαf(x)))
τ2/(p+θ−τ1)

]
dx ≤ c2r

−η;

(2) in case τ1 = p+ θ and τ2 < p,

1

|B(z, r)|

∫
B(z,r)

exp
[
exp

(
c1Uαf(x)

1/(1−τ2/p)
)]
dx ≤ c2r

−η

for all z ∈ G, 0 < r < dG and f ≥ 0 with ∥f∥Lp),φ,θ(G) ≤ 1.

In fact, to prove (1), letting 0 < α− β < η < α, we see from Theorem 2.2 and
Example 2.4 (1) that

1

|B(z, r)|

∫
B(z,r)

exp
[
c1(α− β)Uαf(x)

1/(1+(θ−τ1)/p)

× (log(c0 + Uαf(x)))
τ2/(p+θ−τ1)

]
dx

≤ c2r
−(α−β)(log(c0 + r))(θ−τ1)/p{log(log(c0 + r))}−τ2/p

for all z ∈ G, 0 < r < dG and f ≥ 0 with ∥f∥Lp),φ,θ(G) ≤ 1. Hence it suffices to
note that

c2r
−(α−β)(log(c0 + r))(θ−τ1)/p{log(log(c0 + r))}−τ2/p ≤ C(η)r−η

when 0 < r < dG. Assetion (2) can be proved similarly.
For a proof of Theorem 2.2, we prepare some lemmas.

Lemma 2.6. There exists a constant C > 1 such that

1

|B(x, r)|

∫
B(x,r)

f(y) dy ≤ Cφ(r)−1/p(log(2dG/r))
θ/p (2.1)

for all x ∈ G, 0 < r < dG and f ≥ 0 with ∥f∥Lp),φ,θ(G) ≤ 1.

Proof. Let f be a nonnegative measurable function onG such that ∥f∥Lp),φ,θ(G) ≤ 1.
Then note that

εθ
φ(r)

|B(x, r)|

∫
B(x,r)

f(y)p−ε dy ≤ 1
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for all x ∈ G, 0 < r < dG and 0 < ε < p− 1. We have by Jensen’s inequality

1

|B(x, r)|

∫
B(x,r)

f(y) dy ≤
(

1

|B(x, r)|

∫
B(x,r)

f(y)p−ε dy

)1/(p−ε)

≤ ε−θ/(p−ε)φ(r)−1/(p−ε).

Here, taking ε = min{(p− 1)/2, (log(2dG/r))
−1}, we find by (φ1)

1

|B(x, r)|

∫
B(x,r)

f(y) dy ≤ Cφ(r)−1/p(log(2dG/r))
θ/p,

since r−1/(log(2dG/r)) is bounded above when 0 < r < dG. This proves the lemma.

Lemma 2.7. Let 0 < β < α. Then there exists a constant C > 0 such that

1

|B(z, r)|

∫
B(z,r)

Uβf(x) dx ≤ Cβ−1ψβ(1/r)

for all z ∈ G, 0 < r < dG and f ≥ 0 satisfying (2.1).

Proof. Let z ∈ G, 0 < r < dG and 0 < β < α. For f ≥ 0 satisfying (2.1) , write

Uβf(x) =

∫
B(z,2r)

|x− y|β−nf(y) dy +

∫
G\B(z,2r)

|x− y|β−nf(y) dy

= U1(x) + U2(x).

By Fubini’s theorem, (2.1) and (φ2), we have

1

|B(z, r)|

∫
B(z,r)

U1(x) dx =
1

|B(z, r)|

∫
B(z,2r)

(∫
B(z,r)

|x− y|β−n dx

)
f(y) dy

≤ Cβ−1rβ
1

|B(z, r)|

∫
B(z,2r)

f(y) dy

≤ Cβ−1rβφ(2r)−1/p(log(2dG/r))
θ/p

≤ Cβ−1ψβ(1/r)

since

ψβ(1/r) ≥
∫ 3r/2

r

tβφ(t)−1/p(log(2dG/t))
θ/p dt

t
≥ rβφ(r)−1/p(log(2dG/r))

θ/p.

For U2, note that

U2(x) ≤ C

∫
G\B(z,2r)

|z − y|β−nf(y) dy

for x ∈ B(z, r). Here we have only to consider the case 0 < r < dG/2 since
U2(x) = 0 for r ≥ dG/2. Hence we obtain

U2(x) ≤ C

∫ 2dG

2r

tβ−n

(∫
B(z,t)

f(y) dy

)
dt

t

≤ C

∫ 2dG

2r

tβφ(t)−1/p(log(2dG/t))
θ/p dt

t

≤ Cψβ(1/r)

by Lemma 2.1, which proves the present lemma.
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Now we are ready to prove Theorem 2.2.

Proof of Theorem 2.2. Let f be a nonnegative measurable function on G satisfying
∥f∥Lp),φ,θ(G) ≤ 1. Then we have by Lemma 2.6

1

|B(x, r)|

∫
B(x,r)

f(y) dy ≤ Cφ(r)−1/p(log(2dG/r))
θ/p

for all x ∈ G and 0 < r < dG.
For x ∈ G and 0 < δ ≤ dG, write

Uαf(x) =

∫
B(x,δ)

|x− y|α−nf(y) dy +

∫
G\B(x,δ)

|x− y|α−nf(y) dy

= U1(x) + U2(x).

For 0 < β < α we have

U1(x) ≤ δα−β

∫
B(x,δ)

|x− y|β−nf(y) dy ≤ δα−βUβf(x)

and

U2(x) ≤ C

∫ 2dG

δ

tα−N

(∫
B(x,t)

f(y) dy

)
dt

t

≤ C

∫ 2dG

δ

tαφ(t)−1/p(log(2dG/t))
θ/p dt

t

≤ Cψα(δ
−1)

since∫ 2dG

dG

tα−N

(∫
B(x,t)

f(y) dy

)
dt

t
≤ C ≤ C

∫ 2dG

dG

tαφ(t)−1/p(log(2dG/t))
θ/p dt

t
.

Hence it follows that

Uαf(x) ≤ C
{
δα−βUβf(x) + ψα(δ

−1)
}
.

If {Uβf(x)}−1/(α−β) ≤ dG, then we take δ = {Uβf(x)}−1/(α−β) to obtain

Uαf(x) ≤ Cψα({Uβf(x)}1/(α−β));

if {Uβf(x)}−1/(α−β) ≥ dG, then we take δ = dG to obtain

Uαf(x) ≤ C.

Hence
Uαf(x) ≤ C1ψα(1 + {Uβf(x)}1/(α−β)),

which together with Lemma 2.7 gives

1

|B(z, r)|

∫
B(z,r)

{
ψ−1
α (Uαf(x)/C1)

}α−β
dx ≤ C

1

|B(z, r)|

∫
B(z,r)

{1 + Uβf(x)} dx

≤ C
{
1 + β−1ψβ(1/r)

}
≤ C(β)ψβ(1/r)

for z ∈ G and 0 < r < dG. The proof is now completed.

6



Remark 2.8. If f ∈ Lp,ν(G) with ν = αp < n, then, in view of the proof of
Theorem 2.2, we find constants c1, c2 > 0 such that

rη

|B(z, r)|

∫
B(z,r)

exp (c1η|Uαf(x)|) dx ≤ c2η
−1

for all z ∈ G, 0 < r < dG and 0 < η < α; for this, see also [7]. Here we can not
add an exponent q > 1 such that

rη

|B(z, r)|

∫
B(z,r)

exp(c1η|Uαf(x)|q) dx ≤ c2η
−1.

But, in case ν = αp = n, this is not the case, as will be seen in Theorem 3.1.
For this, consider the function f(y) = |y|−αχB(y), where B = B(0, 1). If

n− αp > 0, then

rν

|B(z, r)|

∫
B(x,r)

f(y)p dy ≤ rν

|B(z, r)|

∫
B(x,r)

|x− y|−αp dy ≤ C

for all x ∈ B and 0 < r < 2, so that f ∈ Lp,ν(B).
On the other hand, we see that

Uαf(x) ≥
∫
B\B(0,2|x|)

|x− y|α−nf(y) dy

≥ 2α−n

∫
B\B(0,2|x|)

|y|−n dy

≥ C log(1/|x|)

for x ∈ B(0, 1/3). Hence∫
B(0,r)

exp (c{Uαf(x)}q) dx = ∞

for all r > 0, c > 0 and q > 1.

Remark 2.9. If (α− 1)p < ν < αp, then there exists a constant C > 0 such that

|Uαf(x)− Uαf(z)| ≤ C|x− z|α−ν/p(log(e+ 1/|x− z|))θ/p

for all x, z ∈ G and f ≥ 0 satisfying ∥f∥Lp),ν,θ(G) ≤ 1 (for instance, see [7]).

3 Grand Lebesgue spaces

In view of Fusco, Lions and Sbordone [1], we see that if

lim
ε→0+

εθ
∫
G

|f(y)|n−ε dy = 0,

then ∫
G

exp
(
|U1f(x)|n/(n−1+θ)

)
dx <∞.

In connection with their result, we can prove the following result.
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Theorem 3.1. Let αp = n. Then for 0 < η < α there exist constants c1, c2 > 0
such that

1

|B(z, r)|

∫
B(z,r)

exp
(
c1{Uαf(x)}1/(1+(θ−1)/p)

)
dx ≤ c2r

−η

for all z ∈ G, 0 < r < dG and f ≥ 0 satisfying ∥f∥Lp),θ(G) ≤ 1.

Remark 3.2. In Corollary 2.5, letting 0 < η < α and φ(r) = rn(log(c0 + r−1))τ

with τ < p+ θ, we can find constants c1, c2 > 0 such that

1

|B(z, r)|

∫
B(z,r)

exp
(
c1{Uαf(x)}1/(1+(θ−τ)/p)

)
dx ≤ c2r

−η

for all z ∈ G, 0 < r < dG and f ≥ 0 satisfying ∥f∥Lp),φ,θ(G) ≤ 1. When τ < 1,
Theorem 3.1 gives a result better than this.

For a proof of Theorem 3.1, we have only to give the next result.

Proposition 3.3. Let αp = n. Then for 0 < β < α there exist constants c1, c2 > 0
such that

1

|B(z, r)|

∫
B(z,r)

exp
(
c1{Uαf(x)}1/(1+(θ−1)/p)

)
dx ≤ c2ψβ(1/r)

for all z ∈ G, 0 < r < dG and f ≥ 0 satisfying ∥f∥Lp),φ,θ(G) ≤ 1.

To prove Proposition 3.3, we prepare the next lemma.

Lemma 3.4. Let αp = n. Then there exists a constant C > 0 such that∫
G\B(x,r)

|x− y|α−nf(y) dy ≤ C(log(2dG/r))
1−(1−θ)/p

for all x ∈ G, 0 < r ≤ dG and f ≥ 0 satisfying ∥f∥Lp),φ,θ(G) ≤ 1.

Proof. Let p = n/α and f be a nonnegative measurable function on G satisfying
∥f∥Lp),φ,θ(G) ≤ 1. Then note that∫

G

f(y)p−ε dy ≤ ε−θ

for all 0 < ε < p − 1. For x ∈ G, 0 < r ≤ dG and 0 < ε < p − 1, we have by
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Hölder’s inequality∫
G\B(x,r)

|x− y|α−nf(y) dy

≤
(∫

G\B(x,r)

|x− y|(α−n)(p−ε)′ dy

)1/(p−ε)′ (∫
G\B(x,r)

f(y)p−ε dy

)1/(p−ε)

≤ C

(∫ dG

r

t(α−n)(p−ε)′+n−1 dt

)1/(p−ε)′

ε−θ/(p−ε)

≤ C

(∫ dG

r

t−αε/(p−ε−1)−1 dt

)1/(p−ε)′

ε−θ/(p−ε)

≤ C

(
r−αε/(p−ε−1)

αε/(p− ε− 1)

)1/(p−ε)′

ε−θ/(p−ε)

≤ Cr−αε/(p−ε)ε−1/(p−ε)′−θ/(p−ε)

≤ Cr−αε/(p−ε)ε−1/p′−θ/p.

Now, taking ε = min{(p− 1)/2, (log(2dG/r))
−1}, we find∫

G\B(x,r)

|x− y|α−nf(y) dy ≤ C(log(2dG/r))
1/p′+θ/p,

which gives the result.

Proof of Proposition 3.3. Let f be a nonnegative measurable function on G satis-
fying ∥f∥Lp),φ,θ(G) ≤ 1. Then for 0 < β < α we have by Lemma 3.4

Uαf(x) =

∫
B(x,δ)

|x− y|α−nf(y) dy +

∫
G\B(x,δ)

|x− y|α−nf(y) dy

≤ δα−βUβf(x) + C(log(2dG/r))
1−(1−θ)/p.

Here, as in the proof of Theorem 2.2, we have the inequality

Uαf(x) ≤ C1(log(e+ Uβf(x)))
1−(1−θ)/p.

Hence we find

1

|B(z, r)|

∫
B(z,r)

exp
(
{Uαf(x)/C1}1/(1−(1−θ)/p)

)
dx

≤ C
1

|B(z, r)|

∫
B(z,r)

{1 + Uβf(x)} dx

≤ Cψβ(1/r)

for all z ∈ G and 0 < r < dG, in view of Lemma 2.7 . Now we obtain the present
result.
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