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Abstract

We define a capacity for potentials of functions in Musielak-Orlicz spaces.
Basic properties of such capacity are studied. We also estimate the capacity
of balls and give some applications of the estimates.

1 Introduction

The notion of classical Newton capacity has been generalized to various forms.
Among others, Meyers [11] introduced a general notion of Lp-capacity, which is
defined by general potentials of functions in the Lebesgue space Lp and such notion
of capacity has been proved to provide rich results in the nonlinear potential theory
as well as in the study of various function spaces and partial differential equations;
see e.g., [1]. Most useful Lp-capacities are Riesz capacity and Bessel capacity, and
we can estimate the capacities of balls B(x, r) for these special cases, which are
used to obtain relations between these capacities and Hausdorff measures (cf. the
references cited above as well as [18] and [12]).

In [3], the notion of Lp-capacity was generalized by replacing Lp by Orlicz space.
Recently, there appeared several papers dealing with capacities for special type of
Orlicz spaces and estimates of the capacity of balls: [2], [9], [4], [14].

In the mean time, variable exponent Lebesgue spaces and Sobolev spaces were
introduced to discuss nonlinear partial differential equations with non-standard
growth condition, and Sobolev capacity for variable exponent Sobolev space has
been studied in connection with the related nonlinear potential theory: [7] and [6].
The Riesz capacity for the variable exponent Lebesgue space Lp(·) was considered
in [5], and then that for the space Lp(·)(logL)q(·) in [13].

The spaces Lp(·) and Lp(·)(logL)q(·) are special cases of the Musielak-Orlicz
spaces (or, generalized Orlicz spaces); see, [8], [15]. The purpose of the present
paper is to extend the notion of capacity to that defined by general potentials of
functions in fairy general Musielak-Orlicz spaces and to show that the capacity
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thus defined still satisfies fundamental properties shared by those capacities stated
above. We also give estimates of balls for our capacity and apply the estimates to
obtain local behavior of functions in the space and to relate the capacity with a
generalized harmonic measure.

2 Preliminaries

We consider a function Φ(x, t) : RN × [0,∞) → [0,∞) satisfying the following
conditions:

(Φ1) Φ(·, t) is measurable on RN for each t ≥ 0;

(Φ2) Φ(x, 0) = 0 and Φ(x, t) > 0 for t > 0;

(Φ3) Φ(x, ·) is convex for each x ∈ RN ;

(Φ4) Φ(x, 1) and 1/Φ(x, 1) are bounded;

(Φ5) There exists a constant A1 ≥ 1 such that

Φ(x, 2t) ≤ A1Φ(x, t) for all x ∈ RN and t > 0.

Remark 2.1. By (Φ2) and (Φ3), we see that Φ(x, t)/t is nondecreasing in t and
Φ(x, t) is strictly increasing in t for each x ∈ RN . In fact,

Φ(x, s) = Φ
(
x,
s

t
t
)
≤ s

t
Φ(x, t) < Φ(x, t)

for 0 < s < t.

For an open set G ⊂ RN , the Musielak-Orlicz space

LΦ(G) =

{
f ∈ L1

loc(G);

∫
G

Φ(y, |f(y)|/λ)dy <∞ for some λ > 0

}
is a Banach space with respect to the norm

∥f∥LΦ(G) = inf

{
λ > 0;

∫
G

Φ(y, |f(y)|/λ)dy ≤ 1

}
(cf. [15]).

Example 2.2. Let pj(x) (j = 1, . . . ,m) and qj(x) (j = 1, . . . ,m) be measurable
functions on RN such that

(P) 1 ≤ p−j := ess infx∈RNpj(x) ≤ ess supx∈RNpj(x) := p+j < ∞ for all j =
1, . . . ,m;
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(Q) −∞ < q−j := ess infx∈RN qj(x) ≤ ess supx∈RN qj(x) := q+j < ∞ for all j =
1, . . . ,m.

Let aj ≥ e satisfy (1+log aj)(pj(x)−1)+qj(x) ≥ 0 for all x ∈ RN and j = 1, . . . ,m.
For positive numbers bj, set

Φ{pj(·)},{qj(·)},{aj},{bj}(x, t) =
m∑
j=1

bjt
pj(x)(log(aj + t))qj(x).

Then this function satisfies (Φi) for i = 1, 2, 3, 4, 5 (cf. [10]).

As a kernel function on RN , we consider k(x) = k(|x|) (with the abuse of nota-
tion) with a positive nonincreasing lower semicontinuous function k(r) on (0,∞)
such that

(k1)
∫ 1

0
k(r)rN−1dr <∞.

By (k1), k(·) ∈ L1
loc(R

N). Further we see that limr→0+ r
Nk(r) = 0. We set

k(0) = limr→0+ k(r). We also consider the condition:

(k2) There exists a constant A2 ≥ 1 such that k(r) ≤ A2k(r + 1) for all r ≥ 1.

For 0 < α < N , the Riesz kernel Iα(x) = 1/|x|N−α and the Bessel kernel gα of
order α are typical examples of k(x) satisfying (k1) and (k2).

We define the k-potential for a locally integrable function f on RN by

k ∗ f(x) =
∫
RN

k(x− y)f(y)dy.

Here it is natural to assume that∫
RN

k(1 + |y|)|f(y)|dy <∞, (2.1)

which is equivalent to the condition that k ∗ |f | ̸≡ ∞ by the conditions (k1) and
(k2) (see [12, Theorem 1.1, Chapter 2]). Note that k ∗ f ∈ L1

loc(R
N) under this

assumption.

3 (k,Φ)-capacity

Throughout this paper, let A denote various positive constants independent of
the variables in question and let A(a, b, · · · ) be a constant which may depend on
a, b, . . .. For a measurable subset E of RN , we denote by |E| the Lebesgue measure
of E and by χE the characteristic function of E.

We introduce a notion of capacity as an extension of Meyers [11] and Mizuta
[12]. For a set E ⊂ RN and an open set G ⊂ RN , we define the (k,Φ)-capacity of
E relative to G by

Ck,Φ(E;G) = inf
f∈Sk(E;G)

∫
G

Φ (y, f(y)) dy,
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where Sk(E;G) is the family of all nonnegative measurable functions f on RN such
that f vanishes outside G and k ∗ f(x) ≥ 1 for every x ∈ E (cf. Futamura-Mizuta-
Shimomura [5]). Here, note that E ⊂ G is not required.

Proposition 3.1 (cf. [12, Theorem 1.1, Chapter 5]). Ck,Φ( · ;G) is a countably
subadditive, nondecreasing and outer capacity.

Proof. Clearly,

Ck,Φ(E1;G) ≤ Ck,Φ(E2;G) whenever E1 ⊂ E2.

Let f ∈ Sk(E;G). Since k ∗ f is lower semicontinuous, ω(a) = {x ∈ RN :
k ∗ f(x) > a} is an open set for every a > 0. Note that

Ck,Φ(E;G) ≤ Ck,Φ(ω(a);G) ≤
∫
G

Φ

(
y,
f(y)

a

)
dy

whenever 0 < a < 1. Since the condition (Φ5) implies

Φ

(
y,
f(y)

a

)
≤ A1Φ (y, f(y))

for 1/2 < a < 1, Lebesgue’s dominated convergence theorem implies that

Ck,Φ(E;G) ≤ inf
ω⊃E,ω:open

Ck,Φ(ω;G) ≤
∫
G

Φ (y, f(y)) dy,

which gives
Ck,Φ(E;G) = inf

ω⊃E,ω:open
Ck,Φ(ω;G).

Finally, let {Ej} be a countable family of sets in RN and set E =
∪

j Ej. We
may assume that Ck,Φ(E;G) <∞. For ε > 0, take fj ∈ Sk(Ej;G) such that∫

G

Φ (y, fj(y)) dy ≤ Ck,Φ(Ej;G) + ε2−j.

Consider the function f(y) = supj fj(y). Then it is easy to see that k ∗ f(x) ≥
k ∗ fj(x) ≥ 1 for all x ∈ Ej. Hence

Ck,Φ(E;G) ≤
∫
G

Φ (y, f(y)) dy

≤
∞∑
j=1

∫
G

Φ (y, fj(y)) dy ≤
∞∑
j=1

Ck,Φ(Ej;G) + ε.

Letting ε→ 0, we have

Ck,Φ(E;G) ≤
∞∑
j=1

Ck,Φ(Ej;G).
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Proposition 3.2 (cf. [12, Proposition 1.1, Chapter 5]). Ck,Φ(E;G) = 0 if and
only if there exists a nonnegative function f ∈ LΦ(RN) such that f(x) = 0 for
x ∈ RN \G and

k ∗ f(x) = ∞ whenever x ∈ E.

Proof. Suppose Ck,Φ(E;G) = 0. Then, for each positive integer j, there exists a
function fj ∈ Sk(E;G) with ∫

G

Φ(y, fj(y))dy < A−j
1

for A1 in (Φ5). Then ∥fj∥LΦ(RN ) ≤ 2−j, so that setting f =
∑

j fj, we have

f ∈ LΦ(RN). Since

k ∗ f(x) =
∞∑
j=1

k ∗ fj(x) = ∞

for x ∈ E, we obtain the required result.
Conversely, if there exists a nonnegative function f ∈ LΦ(RN) such that f(x) =

0 for x ∈ RN\G and k∗f(x) = ∞ whenever x ∈ E, then we see that f/a ∈ Sk(E;G)
for all a > 1. Hence we have by (Φ2) and (Φ3)

Ck,Φ(E;G) ≤
1

a

∫
G

Φ(y, f(y))dy → 0

as a→ ∞, as required.

We say that E is of (k,Φ)-capacity zero, written as Ck,Φ(E) = 0, if

Ck,Φ(E ∩G;G) = 0 for every bounded open set G.

Proposition 3.3 (cf. [12, Theorem 1.2, Chapter 5], [5, Lemma 4.1]). Suppose k
satisfies (k2). For E ⊂ RN , Ck,Φ(E) = 0 if and only if there exists a nonnegative
function f ∈ LΦ(RN) such that k ∗ f ̸≡ ∞ and

k ∗ f(x) = ∞ whenever x ∈ E.

Proof. First, suppose there exists a nonnegative function f ∈ LΦ(RN) such that
k ∗ f ̸≡ ∞ and k ∗ f(x) = ∞ whenever x ∈ E. Let G be a bounded open set. If
x ∈ G, then by (k2) there exists A(x) > 0 such that k(x− y) ≤ A(x)k(1 + |y|) for
all y ∈ RN \G. Hence k ∗ f ̸≡ ∞ implies∫

RN\G
k(x− y)f(y)dy <∞

for all x ∈ G. Hence we have∫
G

k(x− y)f(y)dy = ∞ whenever x ∈ E ∩G,
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which implies from Proposition 3.2 that Ck,Φ(E ∩ G;G) = 0. Thus Ck,Φ(E) = 0
follows.

Conversely, suppose Ck,Φ(E) = 0. Then, since Ck,Φ(E ∩ B(0, j);B(0, j)) = 0
for any j ≥ 1, we can find a function fj ∈ Sk(E ∩ B(0, j);B(0, j)) such that∫
B(0,j)

Φ(y, fj(y))dy ≤ A−j
1 . Then, ∥fj∥LΦ(B(0,j)) ≤ 2−j and from Remark 2.1, (Φ4)

and (Φ5) we see that∫
B(0,j)

k(1 + |y|)fj(y)dy

≤ k(1)

∫
B(0,j)

fj(y)dy

= k(1)

{∫
B(0,j)∩{y:fj(y)≤2−j}

fj(y)dy +

∫
B(0,j)∩{y:fj(y)>2−j}

fj(y)dy

}

≤ k(1)

{
σNj

N2−j +

∫
B(0,j)

fj(y)
Φ(y, fj(y))

fj(y)

2−j

Φ(y, 2−j)
dy

}
≤ k(1)

{
σNj

N2−j +
2−jAj

1

infy∈RN Φ(y, 1)

∫
B(0,j)

Φ(y, fj(y))dy

}
≤ A2−jjN ,

where σN denotes the Lebesgue measure of the unit ball B(0, 1). Hence setting
f =

∑∞
j=1 fj, we have ∥f∥LΦ(RN ) ≤ 1 and∫
RN

k(1 + |y|)f(y)dy ≤
∞∑
j=1

∫
B(0,j)

k(1 + |y|)fj(y)dy ≤ A

∞∑
j=1

2−jjN <∞.

Thus we have f ∈ LΦ(RN) such that k ∗ f ̸≡ ∞ and k ∗ f(x) = ∞ whenever
x ∈ E.

Corollary 3.4 (cf. [12, Corollary 1.2, Chapter 5]). Suppose k satisfies (k2). If
Ck,Φ(E;G) = 0 for some bounded open set G, then Ck,Φ(E) = 0.

Lemma 3.5 (cf. [12, Theorem 1.3, Chapter 5]). Suppose G is an open set and k
satisfies (k2) . Let {fj} be a sequence in LΦ(G) which converges to f in LΦ(G).
Then there exist a subsequence {fjn} and a set F ⊂ G such that

lim
n→∞

k ∗ fjn(x) = k ∗ f(x) for x ∈ G \ F,

and Ck,Φ(F ;G) = 0.

Proof. We may assume that Ck,Φ(G;G) > 0, so that every f ∈ LΦ(G) satisfies
(2.1). For each positive integers i and j, consider the set

Ei,j = {x ∈ G : |k ∗ fj(x)− k ∗ f(x)| > 2−i}.
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Then we have by (Φ5)

Ck,Φ(Ei,j;G) ≤
∫
G

Φ
(
y, 2i|fj(y)− f(y)|

)
dy

≤ Ai
1

∫
G

Φ (y, |fj(y)− f(y)|) dy.

Since {fj} converges to f in LΦ(G), we can find a subsequence {fjn} such that∫
G

Φ(y, |fjn(y)− f(y)|)dy ≤ (A12)
−n.

Set F =
∩∞

ℓ=1

∪∞
n=ℓEn,jn . Then it follows from Proposition 3.1 that

Ck,Φ(F ;G) ≤
∞∑
n=ℓ

Ck,Φ(En,jn ;G) ≤
∞∑
n=ℓ

2−n → 0,

as ℓ→ ∞, from which Ck,Φ(F ;G) = 0 follows. Since

lim
n→∞

|k ∗ fjn(x)− k ∗ f(x)| = 0

for x ∈ G \ F , we obtain the required result.

We say that a property holds (k,Φ)-q.e. on a set E if it holds for all x ∈ E
except those in a set F with Ck,Φ(F ) = 0. By Corollary 3.4 and Lemma 3.5, we
have the following result.

Corollary 3.6. Suppose G is a bounded open set and k satisfies (k2) . Let
{fj} be a sequence in LΦ(G) which converges to f in LΦ(G). Then there exists a
subsequence {fjn} such that

lim
n→∞

k ∗ fjn(x) = k ∗ f(x) for (k,Φ)-q.e. x ∈ G.

Proposition 3.7 (cf. [12, Theorem 1.4, Chapter 5]). Suppose k satisfies (k2).
Suppose further that LΦ(RN) is reflexive. If Ej ⊂ Ej+1 and E =

∪∞
j=1Ej, then

lim
j→∞

Ck,Φ(Ej;G) = Ck,Φ(E;G).

Proof. We may assume that there exists a constant M > 1 such that

Ck,Φ(Ej;G) ≤M.

For each positive integer j, we take fj ∈ Sk(Ej;G) such that∫
G

Φ(y, fj(y))dy ≤ Ck,Φ(Ej;G) + 2−j.
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Then ∥fj∥LΦ(RN ) ≤M+1. By the reflexivity of LΦ(RN), there exists a subsequence
{fjk} which converges weakly to f in LΦ(RN). Then Mazur’s lemma implies that
there exists a sequence {λℓ,k} of nonnegative numbers such that

∑
k≥ℓ λℓ,k = 1 and

gℓ =
∑
k≥ℓ

λℓ,kfjk

converges to f in LΦ(RN). Then we see that gℓ(x) = 0 for x ∈ RN \G and

k ∗ gℓ(x) ≥ 1 for x ∈ Ejℓ .

We apply Lemma 3.5 to obtain a subsequence {gℓk} and a set F ⊂ G such that
k ∗ gℓk(x) converges to k ∗ f(x) for every x ∈ E \ F and Ck,Φ(F ;G) = 0. Thus

k ∗ f(x) ≥ 1 whenever x ∈ E \ F.

Hence, Fatou’s lemma and (Φ3) yield

Ck,Φ(E;G) ≤ Ck,Φ(F ;G) + Ck,Φ(E \ F ;G)

≤
∫
G

Φ(y, f(y))dy

≤ lim inf
ℓ→∞

∫
G

Φ(y, gℓ(y))dy

≤ lim
ℓ→∞

(
lim
j→∞

Ck,Φ(Ej;G) + 2−ℓ

)
≤ lim

j→∞
Ck,Φ(Ej;G).

Thus the required equality holds.

Remark 3.8. For reflexivity of LΦ(RN), see Appendix. In particular, for Φp(·),q(·),a(x, t) =
tp(x)(log(a + t))q(x), LΦp(·),q(·),a(RN) (= Lp(·)(logL)q(·)(RN) ; cf [10]) is reflexive if
1 < p− ≤ p+ < ∞, −∞ < q− ≤ q+ < ∞ and (1 + log a)(p(x) − 1) + q(x) ≥ 0 for
all x ∈ RN (see Corollary 5.4; also cf. Ohno [16]).

We say that a function u is (k,Φ)-quasicontinuous on Rn if, for any ε > 0
and R > 0, there exists an open set ω such that Ck,Φ(ω;B(0, R)) < ε and u is
continuous on B(0, R) \ ω.

Proposition 3.9 (cf. [12, Theorem 7.1, Chapter 6]). Suppose k is continuous on
RN \ {0} and satisfies (k2). If f ∈ LΦ(RN) satisfies (2.1), then k ∗ f is (k,Φ)-
quasicontinuous on RN .

Proof. For R > 0, write

k ∗ f(x) =

∫
B(0,R)

k(x− y)f(y)dy +

∫
RN\B(0,R)

k(x− y)f(y)dy

= u1(x) + u2(x).

8



For L > 0, define

u1,L(x) =

∫
B(0,R)

k(x− y)fL(y)dy,

where fL = max{min{f, L},−L}. Then note that u2 and u1,L are continuous on
B(0, R). Consider the open sets

Ej,L =

{
x ∈ RN :

∫
B(0,R)

k(x− y)|f(y)− fL(y)|dy > 2−j

}
.

For each j, there exists Lj > 0 such that∫
RN

Φ(y, |f(y)− fLj
(y)|)dy < (A12)

−j.

Since 2j|f − fLj
|χB(0,R) ∈ Sk(Ej,Lj

;B(0, R)), it follows from (Φ5) that

Ck,Φ(Ej,Lj
;B(0, R)) ≤ Aj

1

∫
B(0,R)

Φ(y, |f(y)− fLj
(y)|)dy ≤ 2−j.

Now, letting

ωℓ =
∞∪
j=ℓ

Ej,Lj
,

we see that

Ck,Φ(ωℓ;B(0, R)) ≤
∞∑
j=ℓ

Ck,Φ(Ej,Lj
;B(0, R))

≤
∞∑
j=ℓ

2−j → 0

as ℓ → ∞ and u1,Lj
converges to u1 uniformly on B(0, R) \ ωℓ. Thus k ∗ f is

continuous on B(0, R) \ ωℓ and the present proposition is obtained.

4 Estimates of (k,Φ)-capacity of balls and a gen-

eralized Hausdorff measure

For r > 0 and x ∈ RN , define

hk,Φ(r;x) = rN sup
y∈B(x,r)

Φ(y, r−N k̄(r)−1)

and

h̃k,Φ(r;x) = rN inf
y∈B(x,r)

Φ(y, r−N k̄(r)−1),
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where

k̄(r) =
1

|B(0, r)|

∫
B(0,r)

k(x)dx =
N

rN

∫ r

0

k(ρ)ρN−1dρ.

Note that k̄(r) is a nonincreasing positive continuous function satisfying doubling
condition, k̄(r) ≥ k(r) and limr→0+ r

N k̄(r) = 0.

Example 4.1. (1) If k(r) = rα−N with 0 < α < N and Φ(x, t) = tp(x) with
1 ≤ p− ≤ p+ <∞, then

hk,Φ(r; x) ≈ rN−αp+
B(x,r) , p+B(x,r) = sup

y∈B(x,r)

p(y)

and
h̃k,Φ(r; x) ≈ rN−αp−

B(x,r) , p−B(x,r) = inf
y∈B(x,r)

p(y)

for 0 < r ≤ 1. (Here h1(r) ≈ h2(r) means that A−1h2(r) ≤ h1(r) ≤ Ah2(r) for a
constant A > 0.)

If p(·) is log-Hölder continuous, then

hk,Φ(r; x) ≈ h̃k,Φ(r;x) ≈ rN−αp(x)

for 0 < r ≤ 1.
(2) If k(r) is as above and Φ(x, t) = tp(x)(log(a + t))q(x) with p(·) as above,

−∞ < q− ≤ q+ < ∞, a ≥ e and (1 + log a)(p(x) − 1) + q(x) ≥ 0 for all x ∈ RN ,
then

hk,Φ(r;x) ≤ ArN−αp+
B(x,r)(log(e+ 1/r))q

+
B(x,r)

and
h̃k,Φ(r;x) ≥ A′rN−αp−

B(x,r)(log(e+ 1/r))q
−
B(x,r)

for 0 < r ≤ 1. If p(·) is log-Hölder continuous and q(·) is log-log-Hölder continuous,
then

hk,Φ(r; x) ≈ h̃k,Φ(r;x) ≈ rN−αp(x)(log(e+ 1/r))q(x)

for 0 < r ≤ 1.

Proposition 4.2 (cf. [13, Lemma 4.1]). There exists a constant A > 0 such that

A−1h̃k,Φ(r; x) ≤ Ck,Φ(B(x, r);B(x, r)) ≤ Ahk,Φ(r; x)

for all 0 < r ≤ 1 and x ∈ RN .

Proof. For 0 < r ≤ 1, consider the function

fr(y) = χB(x,r)(y).

If z ∈ B(x, r), then

k ∗ fr(z) =
∫
B(x,r)

k(z − y) dy ≥ θN

∫
B(0,r)

k(y) dy = θ′Nr
N k̄(r)
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with positive constants θN and θ′N depending only on N . It follows from the
definition of capacity that

Ck,Φ(B(x, r);B(x, r)) ≤
∫
B(x,r)

Φ(y, θ′N
−1
r−N k̄(r)−1)dy

≤ A

∫
B(x,r)

Φ(y, r−N k̄(r)−1)dy

≤ Ahk,Φ(r; x),

which proves the second inequality of the proposition.
Let f ∈ Sk(B(x, r);B(x, r)). Then

1 ≤ 1

|B(x, r)|

∫
B(x,r)

k ∗ f(z) dz

=

∫
B(x,r)

(
1

|B(x, r)|

∫
B(x,r)

k(z − y) dz

)
f(y)dy

≤
∫
B(x,r)

(
1

|B(0, r)|

∫
B(0,r)

k(z)dz

)
f(y) dy

= k̄(r)

∫
B(x,r)

f(y)dy.

For ε > 0, we see from (Φ3) and (Φ5) that∫
B(x,r)

f(y)dy ≤ |B(0, 1)|εk̄(r)−1 +

∫
B(x,r)

Φ(y, f(y))
εr−N k̄(r)−1

Φ(y, εr−N k̄(r)−1)
dy

≤ |B(0, 1)|εk̄(r)−1

+ A(ε)r−N k̄(r)−1
(

inf
y∈B(x,r)

Φ(y, r−N k̄(r)−1)
)−1

∫
B(x,r)

Φ(y, f(y))dy

= |B(0, 1)|εk̄(r)−1 + A(ε)k̄(r)−1h̃k,Φ(r;x)
−1

∫
B(x,r)

Φ(y, f(y))dy,

so that
1 ≤ |B(0, 1)|ε+ A(ε)h̃k,Φ(r; x)

−1Ck,Φ(B(x, r);B(x, r)).

Hence, letting |B(0, 1)|ε = 1/2 we have

Ck,Φ(B(x, r);B(x, r)) ≥ Ah̃k,Φ(r;x).

Remark 4.3. Proposition 4.2 implies that

Ck,Φ(B(x, r);B(x, 1)) ≤ Ahk,Φ(r;x)

whenever 0 < r ≤ 1. This estimate is trivial if

lim inf
r→0+

hk,Φ(r;x) > 0. (4.1)

11



As the case where k(r) = rα−N (0 < α < N) and Φ(x, t) = tN/α shows, it can
happen that

lim
r→0+

Ck,Φ(B(x, r);B(x, 1)) = 0 (4.2)

even if (4.1) holds (cf., e.g., [12, Chapter 5, Theorem 2.1]).

In view of this remark, it is desirable to obtain non-trivial estimates in case
both (4.1) and (4.2) occur. Here, we consider the special case where Φ(x, t) is of
the form

Φp(·),φ(x, t) = tp(x)φ(x, t)

with a variable exponent p(·) such that 1 < p− ≤ p+ <∞ and φ(x, t) is uniformly
of log-type in t ≥ 1: there exists a constant A0 ≥ 1 such that

A−1
0 φ(x, t) ≤ φ(x, t2) ≤ A0φ(x, t) whenever x ∈ RN and t ≥ 1. (4.3)

We naturally assume that Φp(·),φ(x, t) satisfies (Φ1), (Φ2), (Φ3), (Φ4) and (Φ5).

Proposition 4.4. Set

ψ(x, s) = sup
|x−y|=s−1, s≤t≤s2

φ(y, t) for x ∈ RN , s ≥ 1

and

h(x, r) =

(∫ 1

r

k(2ρ)p(x)
′
ψ(x, ρ−1)1−p(x)′ρN−1dρ

)1−p(x)

for x ∈ RN and 0 < r ≤ 1/2, where p(x)′ = p(x)/(p(x)− 1).
Assume that p(·) is log-Hölder continuous at x0 ∈ RN and

(A) r 7→ rNk(r)p(x0)′ is of log-type for 0 < r ≤ 1.

Then, there exists a constant A = A(x0) > 0 such that

Ck,Φp(·),φ(B(x0, r);B(x0, 1)) ≤ Ah(x0, r)

for 0 < r ≤ 1/2.

Remark 4.5. Assumption (A) is nearly a necessary condition for (4.1) and (4.2).

Proof of Proposition 4.4. We assume that x0 = 0. For simplicity, let p = p(0),
ψ(s) = ψ(0, s), and h(r) = h(0, r). We may assume that h(r) → 0 as r → 0+. Set

g(r) = h(r)1/(1−p) =

∫ 1

r

k(2ρ)p
′
ψ(ρ−1)1−p′ρN−1dρ.

First note that (4.3), (Φ4) and (Φ5) imply

A−1
2 [log(e+ t)]−σ ≤ φ(x, t) ≤ A2[log(e+ t)]σ

12



for x ∈ RN and t ≥ 1 with some constants σ > 0 and A2 ≥ 1, so that,

A−1
2 [log(e+ s)]−σ ≤ ψ(s) ≤ A3[log(e+ s)]σ (4.4)

for s ≥ 1. Hence, together with our assumption (A), we see that

lim
r→0+

rεg(r) = 0 (4.5)

for any ε > 0.
Now, let a = 5p/N . By (4.5), there is r1 : 0 < r1 ≤ 1/2 such that

g(r) ≤ 1

2
r−1/a for 0 < r ≤ r1. (4.6)

Then
g(r)−a ≥ 2ar > r for 0 < r ≤ r1.

Choose r2 : 0 < r2 ≤ r1 such that g(r2) ≥ r
−1/a
1 . Then, g(r)−a ≤ r1 for 0 < r ≤ r2

and (4.6) implies

g(g(r)−a) ≤ 1

2
g(r) for 0 < r ≤ r2. (4.7)

For 0 < r ≤ r2, consider the function

fr(y) = 2ω−1
N g(r)−1k(2|y|)p′−1ψ(|y|−1)1−p′χB(0,g(r)−a)\B(0,r)(y),

where ωN is the surface area of the unit sphere in RN . If x ∈ B(0, r), then
|x− y| ≤ 2|y| for |y| ≥ r, so that

k ∗ fr(x) ≥
∫
B(0,g(r)−a)\B(0,r)

k(2|y|)fr(y) dy

= 2g(r)−1

∫ g(r)−a

r

k(2ρ)p
′
ψ(ρ−1)1−p′ρN−1 dρ

= 2g(r)−1
(
g(r)− g(g(r)−a)

)
≥ 1,

where we used (4.7) to deduce the last inequality. Hence fr ∈ Sk(B(0, r);B(0, 1)),
so that

Ck,Φp(·),φ(B(0, r);B(0, 1)) ≤
∫
B(0,1)

fr(y)
p(y)φ(y, fr(y)) dy. (4.8)

Let b = (3/5)(N/p) = 3/a. We shall show that there exists r0 : 0 < r0 ≤ r2
such that

|y|−b ≤ fr(y) ≤ |y|−2b for r ≤ |y| < g(r)−a (4.9)

whenever 0 < r ≤ r0.
Let η(ρ) = 2ω−1

N k(2ρ)p
′−1ψ(ρ−1)1−p′ (0 < ρ ≤ 1). Since

k(2ρ)p
′−1ψ(ρ−1)1−p′ = ρ−N/p[ρNk(2ρ)p

′
]1/pψ(ρ−1)1−p′
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and −N/p = −5/a, by (A) and (4.4) there exists r0 : 0 < r0 ≤ r2 such that

ρ−4/a ≤ η(ρ) ≤ ρ−6/a for 0 < ρ ≤ g(r0)
−a. (4.10)

Let 0 < r ≤ r0. Since fr(y) = g(r)−1η(|y|) for r ≤ |y| < g(r)−a (≤ 1/2), (4.10)
implies

fr(y) ≥ g(r)−1|y|−4/a > |y|1/a|y|−4/a = |y|−3/a = |y|−b

for r ≤ |y| < g(r)−a, and

fr(y) ≤ g(r)−1|y|−6/a ≤ |y|−6/a = |y|−2b

for r ≤ |y| < g(r)−a. Thus (4.9) holds.
In view of (4.9), the log-Hölder continuity of p(·) at 0 implies

fr(y)
p(y) ≤ A4fr(y)

p

for r ≤ |y| < g(r)−a.
To estimate φ(y, fr(y)), consider an auxiliary function

ψ̃(y, s) = sup
s≤t≤s2

φ(y, t)

for s ≥ 1. Choose m ∈ N such that 2m−1 ≤ b < 2m in case b ≥ 1, 2−m ≤ b < 2−m+1

in case b < 1. Then, by (4.3) we have

ψ̃(y, sb) ≤ Am
0 ψ̃(y, s)

for s ≥ 1. Hence, by (4.9)

φ(y, fr(y)) ≤ ψ̃(y, |y|−b) ≤ Am
0 ψ̃(y, |y|−1) ≤ Am

0 ψ(|y|−1)

for r ≤ |y| < g(r)−a. Hence we have

fr(y)
p(y)φ(y, fr(y)) ≤ Ag(r)−pk(2|y|)p′ψ(|y|−1)1−p′

for y ∈ B(0, g(r)−a) \B(0, r), so that by (4.8)

Ck,Φp(·),φ(B(0, r);B(0, 1))

≤ Ag(r)−p

∫ g(r)−a

r

k(2ρ)p
′
ψ(ρ−1)1−p′ρN−1 dρ ≤ Ag(r)1−p = Ah(r)

for 0 < r ≤ r0. The required estimate is trivial for r0 < r ≤ 1/2.

Example 4.6. Let k(r) = rα−N (0 < α < N) and

Φ(x, t) = Φp(·),q(·),a(x, t) = tp(x)(log(a+ t))q(x),
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namely, φ(x, t) = (log(a+ t))q(x). For these k and Φ, Ck,Φ is denoted by Cα,p(·),q(·).
Suppose αp(x0) = N , p(·) is log-Hölder continuous and q(·) is log-log-Hölder con-
tinuous at x0. Then ψ(x0, s) ≈ log(e+ s)q(x0), so that

h(x0, r) ≈
(∫ 1

r

log(e+ 1/ρ)q(x0)(1−p(x0)′)
dρ

ρ

)1−p(x0)

.

Thus, applying the above proposition, we have (cf. [2]):

(1) if q(x0) < p(x0)− 1, then

Cα,p(·),q(·)(B(x0, r);B(x0, 1)) ≤ A log(e+ 1/r)q(x0)+1−p(x0)

for 0 < r ≤ 1/2; and
(2) if q(x0) = p(x0)− 1, then

Cα,p(·),q(·)(B(x0, r);B(x0, 1)) ≤ A log
(
log(e+ 1/r)

)1−p(x0)

for 0 < r ≤ 1/2.
If q(x0) > p(x0)− 1, then limr→0+ h(x0, r) > 0.

Theorem 4.7 (cf. [5, Lemma 4.4],[13, Lemma 4.3]). If f ∈ LΦ(RN), then there
exists a set E ⊂ RN with Ck,Φ(E) = 0 such that

lim
r→0+

1

Ck,Φ(B(x, 5r);B(x, 5r))

∫
B(x,r)

Φ(y, |f(y)|)dy = 0

for all x ∈ RN \ E.

Proof. For δ > 0, consider the set

Eδ =

{
x ∈ RN : lim sup

r→0+
Ck,Φ(B(x, 5r);B(x, 5r))−1

∫
B(x,r)

Φ(y, f(y))dy > δ

}
.

By subadditivity and Corollary 3.4, it suffices to show that Ck,Φ(Eδ∩B(0, R);B(0, 2R)) =
0 for all R > 1. Let 0 < ε < 1. For each x ∈ Eδ ∩B(0, R), we find 0 < r(x) < ε/5
such that ∫

B(x,r(x))

Φ(y, |f(y)|)dy > δCk,Φ(B(x, 5r(x));B(x, 5r(x))). (4.11)

By the Vitali covering lemma (see [17, Lemma, p. 9]), there exists a disjoint family
{Bj} of balls Bj = B(xj, r(xj)) such that

∪
j B(xj, 5r(xj)) ⊃ Eδ ∩ B(0, R). Then

we have by (4.11)

Ck,Φ(Eδ ∩B(0, R);B(0, 2R)) ≤
∑
j

Ck,Φ(B(xj, 5r(xj));B(xj, 5r(xj)))

≤ δ−1

∫
∪

j Bj

Φ(y, |f(y)|)dy. (4.12)
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Set L(ε) = inf0<r<ε r
−N k̄(r)−1. Then L(ε) → ∞ as ε → 0+ and we may assume

that L(ε) > 1. By Proposition 4.2, (4.11), (Φ3) and (Φ4),

|Bj| = Ah̃k,Φ(5r(xj);xj)

{
inf

y∈B(xj ,5r(xj))
Φ
(
y, (5r(xj))

−N k̄(5r(xj))
−1
)}−1

≤ ACk,Φ(B(xj, 5r(xj));B(xj, 5r(xj)))

{
inf

y∈B(xj ,5r(xj))
Φ
(
y, L(ε)

)}−1

≤ Aδ−1L(ε)−1

{
inf

y∈B(xj ,5r(xj))
Φ(y, 1)

}−1 ∫
Bj

Φ(y, |f(y)|)dy

≤ Aδ−1L(ε)−1

∫
Bj

Φ(y, |f(y)|)dy.

Hence we have ∣∣∣∣∣∪
j

Bj

∣∣∣∣∣ ≤ Aδ−1L(ε)−1

∫
RN

Φ(y, |f(y)|)dy → 0

as ε→ 0+. Thus, from (4.12) and the absolute continuity of integral we obtain

Ck,Φ(Eδ ∩B(0, R);B(0, 2R)) = 0,

as required.

Corollary 4.8. Suppose

lim sup
r→0+

supy∈B(x,r)Φ(y, r
−N k̄(r)−1)

infy∈B(x,r)Φ(y, r−N k̄(r)−1)
<∞ (4.13)

for every x ∈ RN . If f ∈ LΦ(RN), then there exists a set E ⊂ RN with Ck,Φ(E) = 0
such that

lim
r→0+

1

rNΦ(x, r−N k̄(r)−1)

∫
B(x,r)

Φ(y, |f(y)|)dy = 0

for all x ∈ RN \ E.

Remark 4.9. Condition (4.13) is a kind of continuity of Φ(x, t) in x. For example,
in the case k(r) = rα−N (0 < α < N) and Φ(x, t) = tp(x)(log(a + t))q(x) as in
Example 4.1 (2), (4.13) is satisfied if p(x) is log-Hölder continuous and q(x) is
log-log-Hölder continuous.

A function h(r; x) : (0, r̃) × RN → (0,∞) (r̃ > 0) may be called a variable
measure function if limr→0+ h(r;x) = 0 for every x ∈ RN . Given such a function,
the generalized Hausdorff measure Hh can be defined as in the case of ordinary
measure function.
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Let h̄(r; x) = sup0<ρ≤r h(ρ;x). For E ⊂ RN and 0 < δ < r̃, let

H
(δ)
h (E) = inf

{∑
j

h̄(rj;xj);E ⊂
∪
j

B(xj, rj), 0 < rj ≤ δ

}
.

Since H
(δ)
h (E) increases as δ decreases, we define the generalized Hausdorff measure

with respect to h by
Hh(E) = lim

δ→0+
H

(δ)
h (E).

Clearly, H
(δ)
h (E) and Hh(E) are measures on RN .

Theorem 4.10. Suppose that limr→0+ hk,Φ(r; x) = 0 for every x ∈ RN . If
Hhk,Φ

(E) = 0, then Ck,Φ(E) = 0.

Proof. Suppose Hhk,Φ
(E) = 0. By subadditivity and Corollary 3.4, it suffices to

show that Ck,Φ(E∩B(0, R);B(0, 2R)) = 0 for all R > 1. SinceHhk,Φ
(E∩B(0, R)) =

0, for ε > 0, there exists a family {B(xj, rj)} such that 0 < rj < 1, E ⊂
∪

j B(xj, rj)
and ∑

j

hk,Φ(rj; xj) < ε.

Then Proposition 4.2 yields

Ck,Φ(E ∩B(0, R);B(0, 2R)) ≤
∑
j

Ck,Φ(B(xj, rj);B(xj, rj))

≤ A
∑
j

hk,Φ(rj; xj) < Aε.

Hence, we have Ck,Φ(E ∩B(0, R);B(0, 2R)) = 0.

5 Appendix

In this section, we consider two functions Φ(x, t) and Ψ(x, t) satisfying conditions
(Φi), i = 1, 2, 3, 4, 5, and discuss the duality between LΦ(RN) and LΨ(RN):

Proposition 5.1. Let φ(x, t) = Φ(x, t)/t and ψ(x, t) = Ψ(x, t)/t for x ∈ RN and

t > 0. Suppose there is a constant Ã ≥ 1 such that

Ã−1t ≤ ψ
(
x, φ(x, t)

)
≤ Ãt (5.1)

for all x ∈ RN and t > 0. Then LΨ(RN) is the dual space of LΦ(RN).

It is known that if Φ∗ is the complementary function of Φ, then LΦ∗
(RN) is the

dual space of LΦ(RN) provided that

lim
t→0+

φ(x, t) = 0 and lim
t→∞

φ(x, t) = ∞ (5.2)
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(see, e.g., [15, Theorem 13.15 and Theorem 13.17]). Note that assumption (5.1)
implies (5.2) as well as

lim
t→0+

ψ(x, t) = 0 and lim
t→∞

ψ(x, t) = ∞.

Therefore, we show the above proposition by verifying that Ψ is comparable to the
complementary function Φ∗, namely we show

Lemma 5.2. Under the assumptions of Proposition 5.1, there exists a constant
A ≥ 1 such that

A−1Φ∗(x, t) ≤ Ψ(x, t) ≤ AΦ∗(x, t)

for all x ∈ RN and t > 0.

Proof. First, note that φ(x, · ) and ψ(x, · ) are non-decreasing continuous on (0,∞)
by condition (Φ3).

Recall that

Φ∗(x, t) = sup
s>0

(
st− Φ(x, s)

)
= sup

s>0
s
(
t− φ(x, s)

)
for t > 0. By the continuity of φ(x, · ), there exists σ = σ(x, t) > 0 such that

Φ∗(x, t) = σ
(
t− φ(x, σ)

)
.

Note that 0 < φ(x, σ) < t. Hence, by (5.1),

Ã−1σ ≤ ψ
(
x, φ(x, σ)

)
≤ ψ(x, t).

Therefore,
Φ∗(x, t) ≤ tσ ≤ Ãtψ(x, t) = ÃΨ(x, t).

Conversely, given t > 0, choose s > 0 such that φ(x, s) = t/2. Then, by (5.1)

Φ∗(x, t) ≥ t

2
s ≥ t

2
Ã−1ψ(x, φ(x, s)) = Ã−1Ψ(x, t/2) ≥ A−1Ψ(x, t),

where we used (Φ5) for Ψ to derive the last inequality.

Example 5.3. Let p(·) and q(·) be measurable variable exponents onRN satisfying

(p1) 1 < p− ≤ p+ <∞ ;

(q1) −∞ < q− ≤ q+ <∞.

If we choose a ≥ e such that (1 + log a)(p(x)− 1) + q(x) ≥ 0 for all x ∈ RN , then

Φp(·),q(·),a(x, t) = tp(x)(log(a+ t))q(x)

satisfies conditions (Φi), i = 1, 2, 3, 4, 5.
Set p∗ = p(x)/(p(x)−1), q∗(x) = −q(x)/(p(x)−1) and log a∗ = max(1, q+−1).

Then we see that Φp∗(·),q∗(·),a∗(x, t) also satisfies the conditions (Φi), i = 1, 2, 3, 4, 5.
By elementary calculus, we see that (5.1) holds for Φ = Φp(·),q(·),a and Ψ =

Φp∗(·),q∗(·),a∗ . Thus, by Proposition 5.1, we have

Corollary 5.4. The dual space of LΦp(·),q(·),a(RN) is LΦp∗(·),q∗(·),a∗ (RN), and LΦp(·),q(·),a(RN)
is reflexive.
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