# Capacity for potentials of functions in Musielak-Orlicz spaces 

Fumi-Yuki Maeda, Yoshihiro Mizuta, Takao Ohno and Tetsu Shimomura


#### Abstract

We define a capacity for potentials of functions in Musielak-Orlicz spaces. Basic properties of such capacity are studied. We also estimate the capacity of balls and give some applications of the estimates.


## 1 Introduction

The notion of classical Newton capacity has been generalized to various forms. Among others, Meyers [11] introduced a general notion of $L^{p}$-capacity, which is defined by general potentials of functions in the Lebesgue space $L^{p}$ and such notion of capacity has been proved to provide rich results in the nonlinear potential theory as well as in the study of various function spaces and partial differential equations; see e.g., [1]. Most useful $L^{p}$-capacities are Riesz capacity and Bessel capacity, and we can estimate the capacities of balls $B(x, r)$ for these special cases, which are used to obtain relations between these capacities and Hausdorff measures (cf. the references cited above as well as [18] and [12]).

In [3], the notion of $L^{p}$-capacity was generalized by replacing $L^{p}$ by Orlicz space. Recently, there appeared several papers dealing with capacities for special type of Orlicz spaces and estimates of the capacity of balls: [2], [9], [4], [14].

In the mean time, variable exponent Lebesgue spaces and Sobolev spaces were introduced to discuss nonlinear partial differential equations with non-standard growth condition, and Sobolev capacity for variable exponent Sobolev space has been studied in connection with the related nonlinear potential theory: [7] and [6]. The Riesz capacity for the variable exponent Lebesgue space $L^{p(\cdot)}$ was considered in [5], and then that for the space $L^{p(\cdot)}(\log L)^{q(\cdot)}$ in [13].

The spaces $L^{p(\cdot)}$ and $L^{p(\cdot)}(\log L)^{q(\cdot)}$ are special cases of the Musielak-Orlicz spaces (or, generalized Orlicz spaces); see, [8], [15]. The purpose of the present paper is to extend the notion of capacity to that defined by general potentials of functions in fairy general Musielak-Orlicz spaces and to show that the capacity

Key words and phrases : capacity, Musielak-Orlicz space, variable exponent
thus defined still satisfies fundamental properties shared by those capacities stated above. We also give estimates of balls for our capacity and apply the estimates to obtain local behavior of functions in the space and to relate the capacity with a generalized harmonic measure.

## 2 Preliminaries

We consider a function $\Phi(x, t): \mathbf{R}^{N} \times[0, \infty) \rightarrow[0, \infty)$ satisfying the following conditions:
(Ф1) $\Phi(\cdot, t)$ is measurable on $\mathbf{R}^{N}$ for each $t \geq 0$;
$(\Phi 2) \quad \Phi(x, 0)=0$ and $\Phi(x, t)>0$ for $t>0$;
(Ф3) $\Phi(x, \cdot)$ is convex for each $x \in \mathbf{R}^{N}$;
$(\Phi 4) \quad \Phi(x, 1)$ and $1 / \Phi(x, 1)$ are bounded;
( $\Phi 5$ ) There exists a constant $A_{1} \geq 1$ such that

$$
\Phi(x, 2 t) \leq A_{1} \Phi(x, t) \quad \text { for all } x \in \mathbf{R}^{N} \text { and } t>0 .
$$

Remark 2.1. By ( $\Phi 2$ ) and ( $\Phi 3$ ), we see that $\Phi(x, t) / t$ is nondecreasing in $t$ and $\Phi(x, t)$ is strictly increasing in $t$ for each $x \in \mathbf{R}^{N}$. In fact,

$$
\Phi(x, s)=\Phi\left(x, \frac{s}{t} t\right) \leq \frac{s}{t} \Phi(x, t)<\Phi(x, t)
$$

for $0<s<t$.
For an open set $G \subset \mathbf{R}^{N}$, the Musielak-Orlicz space

$$
L^{\Phi}(G)=\left\{f \in L_{l o c}^{1}(G) ; \int_{G} \Phi(y,|f(y)| / \lambda) d y<\infty \text { for some } \lambda>0\right\}
$$

is a Banach space with respect to the norm

$$
\|f\|_{L^{\Phi}(G)}=\inf \left\{\lambda>0 ; \int_{G} \Phi(y,|f(y)| / \lambda) d y \leq 1\right\}
$$

(cf. [15]).
Example 2.2. Let $p_{j}(x)(j=1, \ldots, m)$ and $q_{j}(x)(j=1, \ldots, m)$ be measurable functions on $\mathbf{R}^{N}$ such that
(P) $1 \leq p_{j}^{-}:=\operatorname{ess}_{\inf }^{x \in \mathbf{R}^{N}} p_{j}(x) \leq \operatorname{esssup}_{x \in \mathbf{R}^{N}} p_{j}(x):=p_{j}^{+}<\infty$ for all $j=$ $1, \ldots, m$;
(Q) $-\infty<q_{j}^{-}:=\operatorname{essinf}_{x \in \mathbf{R}^{N}} q_{j}(x) \leq \operatorname{ess}_{\sup }^{x \in \mathbf{R}^{N}} q_{j}(x):=q_{j}^{+}<\infty$ for all $j=$ $1, \ldots, m$.

Let $a_{j} \geq e$ satisfy $\left(1+\log a_{j}\right)\left(p_{j}(x)-1\right)+q_{j}(x) \geq 0$ for all $x \in \mathbf{R}^{N}$ and $j=1, \ldots, m$. For positive numbers $b_{j}$, set

$$
\Phi_{\left\{p_{j}(\cdot)\right\},\left\{q_{j}(\cdot)\right\},\left\{a_{j}\right\},\left\{b_{j}\right\}}(x, t)=\sum_{j=1}^{m} b_{j} t^{p_{j}(x)}\left(\log \left(a_{j}+t\right)\right)^{q_{j}(x)} .
$$

Then this function satisfies ( $\Phi i$ ) for $i=1,2,3,4,5$ (cf. [10]).
As a kernel function on $\mathbf{R}^{N}$, we consider $k(x)=k(|x|)$ (with the abuse of notation) with a positive nonincreasing lower semicontinuous function $k(r)$ on $(0, \infty)$ such that
(k1) $\int_{0}^{1} k(r) r^{N-1} d r<\infty$.
By (k1), $k(\cdot) \in L_{l o c}^{1}\left(\mathbf{R}^{N}\right)$. Further we see that $\lim _{r \rightarrow 0+} r^{N} k(r)=0$. We set $k(0)=\lim _{r \rightarrow 0+} k(r)$. We also consider the condition:
(k2) There exists a constant $A_{2} \geq 1$ such that $k(r) \leq A_{2} k(r+1)$ for all $r \geq 1$.
For $0<\alpha<N$, the Riesz kernel $I_{\alpha}(x)=1 /|x|^{N-\alpha}$ and the Bessel kernel $g_{\alpha}$ of order $\alpha$ are typical examples of $k(x)$ satisfying (k1) and (k2).

We define the $k$-potential for a locally integrable function $f$ on $\mathbf{R}^{N}$ by

$$
k * f(x)=\int_{\mathbf{R}^{N}} k(x-y) f(y) d y
$$

Here it is natural to assume that

$$
\begin{equation*}
\int_{\mathbf{R}^{N}} k(1+|y|)|f(y)| d y<\infty, \tag{2.1}
\end{equation*}
$$

which is equivalent to the condition that $k *|f| \not \equiv \infty$ by the conditions (k1) and (k2) (see [12, Theorem 1.1, Chapter 2]). Note that $k * f \in L_{l o c}^{1}\left(\mathbf{R}^{N}\right)$ under this assumption.

## $3(k, \Phi)$-capacity

Throughout this paper, let $A$ denote various positive constants independent of the variables in question and let $A(a, b, \cdots)$ be a constant which may depend on $a, b, \ldots$. For a measurable subset $E$ of $\mathbf{R}^{N}$, we denote by $|E|$ the Lebesgue measure of $E$ and by $\chi_{E}$ the characteristic function of $E$.

We introduce a notion of capacity as an extension of Meyers [11] and Mizuta [12]. For a set $E \subset \mathbf{R}^{N}$ and an open set $G \subset \mathbf{R}^{N}$, we define the ( $k, \Phi$ )-capacity of $E$ relative to $G$ by

$$
C_{k, \Phi}(E ; G)=\inf _{f \in S_{k}(E ; G)} \int_{G} \Phi(y, f(y)) d y
$$

where $S_{k}(E ; G)$ is the family of all nonnegative measurable functions $f$ on $\mathbf{R}^{N}$ such that $f$ vanishes outside $G$ and $k * f(x) \geq 1$ for every $x \in E$ (cf. Futamura-MizutaShimomura [5]). Here, note that $E \subset G$ is not required.

Proposition 3.1 (cf. [12, Theorem 1.1, Chapter 5]). $C_{k, \Phi}(\cdot ; G)$ is a countably subadditive, nondecreasing and outer capacity.

Proof. Clearly,

$$
C_{k, \Phi}\left(E_{1} ; G\right) \leq C_{k, \Phi}\left(E_{2} ; G\right) \quad \text { whenever } E_{1} \subset E_{2} .
$$

Let $f \in S_{k}(E ; G)$. Since $k * f$ is lower semicontinuous, $\omega(a)=\left\{x \in \mathbf{R}^{N}\right.$ : $k * f(x)>a\}$ is an open set for every $a>0$. Note that

$$
C_{k, \Phi}(E ; G) \leq C_{k, \Phi}(\omega(a) ; G) \leq \int_{G} \Phi\left(y, \frac{f(y)}{a}\right) d y
$$

whenever $0<a<1$. Since the condition ( $\Phi 5$ ) implies

$$
\Phi\left(y, \frac{f(y)}{a}\right) \leq A_{1} \Phi(y, f(y))
$$

for $1 / 2<a<1$, Lebesgue's dominated convergence theorem implies that

$$
C_{k, \Phi}(E ; G) \leq \inf _{\omega \supset E, \omega: \text { open }} C_{k, \Phi}(\omega ; G) \leq \int_{G} \Phi(y, f(y)) d y
$$

which gives

$$
C_{k, \Phi}(E ; G)=\inf _{\omega \supset E, \omega: \text { :open }} C_{k, \Phi}(\omega ; G) .
$$

Finally, let $\left\{E_{j}\right\}$ be a countable family of sets in $\mathbf{R}^{N}$ and set $E=\bigcup_{j} E_{j}$. We may assume that $C_{k, \Phi}(E ; G)<\infty$. For $\varepsilon>0$, take $f_{j} \in S_{k}\left(E_{j} ; G\right)$ such that

$$
\int_{G} \Phi\left(y, f_{j}(y)\right) d y \leq C_{k, \Phi}\left(E_{j} ; G\right)+\varepsilon 2^{-j} .
$$

Consider the function $f(y)=\sup _{j} f_{j}(y)$. Then it is easy to see that $k * f(x) \geq$ $k * f_{j}(x) \geq 1$ for all $x \in E_{j}$. Hence

$$
\begin{aligned}
C_{k, \Phi}(E ; G) & \leq \int_{G} \Phi(y, f(y)) d y \\
& \leq \sum_{j=1}^{\infty} \int_{G} \Phi\left(y, f_{j}(y)\right) d y \leq \sum_{j=1}^{\infty} C_{k, \Phi}\left(E_{j} ; G\right)+\varepsilon
\end{aligned}
$$

Letting $\varepsilon \rightarrow 0$, we have

$$
C_{k, \Phi}(E ; G) \leq \sum_{j=1}^{\infty} C_{k, \Phi}\left(E_{j} ; G\right)
$$

Proposition 3.2 (cf. [12, Proposition 1.1, Chapter 5]). $C_{k, \Phi}(E ; G)=0$ if and only if there exists a nonnegative function $f \in L^{\Phi}\left(\mathbf{R}^{N}\right)$ such that $f(x)=0$ for $x \in \mathbf{R}^{N} \backslash G$ and

$$
k * f(x)=\infty \quad \text { whenever } x \in E
$$

Proof. Suppose $C_{k, \Phi}(E ; G)=0$. Then, for each positive integer $j$, there exists a function $f_{j} \in S_{k}(E ; G)$ with

$$
\int_{G} \Phi\left(y, f_{j}(y)\right) d y<A_{1}^{-j}
$$

for $A_{1}$ in $(\Phi 5)$. Then $\left\|f_{j}\right\|_{L^{\Phi}\left(\mathbf{R}^{N}\right)} \leq 2^{-j}$, so that setting $f=\sum_{j} f_{j}$, we have $f \in L^{\Phi}\left(\mathbf{R}^{N}\right)$. Since

$$
k * f(x)=\sum_{j=1}^{\infty} k * f_{j}(x)=\infty
$$

for $x \in E$, we obtain the required result.
Conversely, if there exists a nonnegative function $f \in L^{\Phi}\left(\mathbf{R}^{N}\right)$ such that $f(x)=$ 0 for $x \in \mathbf{R}^{N} \backslash G$ and $k * f(x)=\infty$ whenever $x \in E$, then we see that $f / a \in S_{k}(E ; G)$ for all $a>1$. Hence we have by ( $\Phi 2$ ) and ( $\Phi 3$ )

$$
C_{k, \Phi}(E ; G) \leq \frac{1}{a} \int_{G} \Phi(y, f(y)) d y \rightarrow 0
$$

as $a \rightarrow \infty$, as required.
We say that $E$ is of $(k, \Phi)$-capacity zero, written as $C_{k, \Phi}(E)=0$, if

$$
C_{k, \Phi}(E \cap G ; G)=0 \quad \text { for every bounded open set } G \text {. }
$$

Proposition 3.3 (cf. [12, Theorem 1.2, Chapter 5], [5, Lemma 4.1]). Suppose $k$ satisfies (k2). For $E \subset \mathbf{R}^{N}, C_{k, \Phi}(E)=0$ if and only if there exists a nonnegative function $f \in L^{\Phi}\left(\mathbf{R}^{N}\right)$ such that $k * f \not \equiv \infty$ and

$$
k * f(x)=\infty \quad \text { whenever } x \in E
$$

Proof. First, suppose there exists a nonnegative function $f \in L^{\Phi}\left(\mathbf{R}^{N}\right)$ such that $k * f \not \equiv \infty$ and $k * f(x)=\infty$ whenever $x \in E$. Let $G$ be a bounded open set. If $x \in G$, then by (k2) there exists $A(x)>0$ such that $k(x-y) \leq A(x) k(1+|y|)$ for all $y \in \mathbf{R}^{N} \backslash G$. Hence $k * f \not \equiv \infty$ implies

$$
\int_{\mathbf{R}^{N} \backslash G} k(x-y) f(y) d y<\infty
$$

for all $x \in G$. Hence we have

$$
\int_{G} k(x-y) f(y) d y=\infty \quad \text { whenever } x \in E \cap G
$$

which implies from Proposition 3.2 that $C_{k, \Phi}(E \cap G ; G)=0$. Thus $C_{k, \Phi}(E)=0$ follows.

Conversely, suppose $C_{k, \Phi}(E)=0$. Then, since $C_{k, \Phi}(E \cap B(0, j) ; B(0, j))=0$ for any $j \geq 1$, we can find a function $f_{j} \in S_{k}(E \cap B(0, j) ; B(0, j))$ such that $\int_{B(0, j)} \Phi\left(y, f_{j}(y)\right) d y \leq A_{1}^{-j}$. Then, $\left\|f_{j}\right\|_{L^{\Phi}(B(0, j))} \leq 2^{-j}$ and from Remark 2.1, ( $\Phi 4$ ) and ( $\Phi 5$ ) we see that

$$
\begin{aligned}
& \int_{B(0, j)} k(1+|y|) f_{j}(y) d y \\
\leq & k(1) \int_{B(0, j)} f_{j}(y) d y \\
= & k(1)\left\{\int_{B(0, j) \cap\left\{y: f_{j}(y) \leq 2^{-j}\right\}} f_{j}(y) d y+\int_{B(0, j) \cap\left\{y: f_{j}(y)>2^{-j}\right\}} f_{j}(y) d y\right\} \\
\leq & k(1)\left\{\sigma_{N} j^{N} 2^{-j}+\int_{B(0, j)} f_{j}(y) \frac{\Phi\left(y, f_{j}(y)\right)}{f_{j}(y)} \frac{2^{-j}}{\Phi\left(y, 2^{-j}\right)} d y\right\} \\
\leq & k(1)\left\{\sigma_{N} j^{N} 2^{-j}+\frac{2^{-j} A_{1}^{j}}{\inf _{y \in \mathbf{R}^{N}} \Phi(y, 1)} \int_{B(0, j)} \Phi\left(y, f_{j}(y)\right) d y\right\} \\
\leq & A 2^{-j} j^{N},
\end{aligned}
$$

where $\sigma_{N}$ denotes the Lebesgue measure of the unit ball $B(0,1)$. Hence setting $f=\sum_{j=1}^{\infty} f_{j}$, we have $\|f\|_{L^{\Phi}\left(\mathbf{R}^{N}\right)} \leq 1$ and

$$
\int_{\mathbf{R}^{N}} k(1+|y|) f(y) d y \leq \sum_{j=1}^{\infty} \int_{B(0, j)} k(1+|y|) f_{j}(y) d y \leq A \sum_{j=1}^{\infty} 2^{-j} j^{N}<\infty
$$

Thus we have $f \in L^{\Phi}\left(\mathbf{R}^{N}\right)$ such that $k * f \not \equiv \infty$ and $k * f(x)=\infty$ whenever $x \in E$.

Corollary 3.4 (cf. [12, Corollary 1.2, Chapter 5]). Suppose $k$ satisfies (k2). If $C_{k, \Phi}(E ; G)=0$ for some bounded open set $G$, then $C_{k, \Phi}(E)=0$.

Lemma 3.5 (cf. [12, Theorem 1.3, Chapter 5]). Suppose $G$ is an open set and $k$ satisfies (k2). Let $\left\{f_{j}\right\}$ be a sequence in $L^{\Phi}(G)$ which converges to $f$ in $L^{\Phi}(G)$. Then there exist a subsequence $\left\{f_{j_{n}}\right\}$ and a set $F \subset G$ such that

$$
\lim _{n \rightarrow \infty} k * f_{j_{n}}(x)=k * f(x) \quad \text { for } x \in G \backslash F,
$$

and $C_{k, \Phi}(F ; G)=0$.
Proof. We may assume that $C_{k, \Phi}(G ; G)>0$, so that every $f \in L^{\Phi}(G)$ satisfies (2.1). For each positive integers $i$ and $j$, consider the set

$$
E_{i, j}=\left\{x \in G:\left|k * f_{j}(x)-k * f(x)\right|>2^{-i}\right\} .
$$

Then we have by ( $\Phi 5$ )

$$
\begin{aligned}
C_{k, \Phi}\left(E_{i, j} ; G\right) & \leq \int_{G} \Phi\left(y, 2^{i}\left|f_{j}(y)-f(y)\right|\right) d y \\
& \leq A_{1}^{i} \int_{G} \Phi\left(y,\left|f_{j}(y)-f(y)\right|\right) d y
\end{aligned}
$$

Since $\left\{f_{j}\right\}$ converges to $f$ in $L^{\Phi}(G)$, we can find a subsequence $\left\{f_{j_{n}}\right\}$ such that

$$
\int_{G} \Phi\left(y,\left|f_{j_{n}}(y)-f(y)\right|\right) d y \leq\left(A_{1} 2\right)^{-n}
$$

Set $F=\bigcap_{\ell=1}^{\infty} \bigcup_{n=\ell}^{\infty} E_{n, j_{n}}$. Then it follows from Proposition 3.1 that

$$
C_{k, \Phi}(F ; G) \leq \sum_{n=\ell}^{\infty} C_{k, \Phi}\left(E_{n, j_{n}} ; G\right) \leq \sum_{n=\ell}^{\infty} 2^{-n} \rightarrow 0
$$

as $\ell \rightarrow \infty$, from which $C_{k, \Phi}(F ; G)=0$ follows. Since

$$
\lim _{n \rightarrow \infty}\left|k * f_{j_{n}}(x)-k * f(x)\right|=0
$$

for $x \in G \backslash F$, we obtain the required result.
We say that a property holds $(k, \Phi)$-q.e. on a set $E$ if it holds for all $x \in E$ except those in a set $F$ with $C_{k, \Phi}(F)=0$. By Corollary 3.4 and Lemma 3.5, we have the following result.

Corollary 3.6. Suppose $G$ is a bounded open set and $k$ satisfies (k2) . Let $\left\{f_{j}\right\}$ be a sequence in $L^{\Phi}(G)$ which converges to $f$ in $L^{\Phi}(G)$. Then there exists a subsequence $\left\{f_{j_{n}}\right\}$ such that

$$
\lim _{n \rightarrow \infty} k * f_{j_{n}}(x)=k * f(x) \quad \text { for }(k, \Phi) \text {-q.e. } x \in G
$$

Proposition 3.7 (cf. [12, Theorem 1.4, Chapter 5]). Suppose $k$ satisfies (k2). Suppose further that $L^{\Phi}\left(\mathbf{R}^{N}\right)$ is reflexive. If $E_{j} \subset E_{j+1}$ and $E=\bigcup_{j=1}^{\infty} E_{j}$, then

$$
\lim _{j \rightarrow \infty} C_{k, \Phi}\left(E_{j} ; G\right)=C_{k, \Phi}(E ; G)
$$

Proof. We may assume that there exists a constant $M>1$ such that

$$
C_{k, \Phi}\left(E_{j} ; G\right) \leq M
$$

For each positive integer $j$, we take $f_{j} \in S_{k}\left(E_{j} ; G\right)$ such that

$$
\int_{G} \Phi\left(y, f_{j}(y)\right) d y \leq C_{k, \Phi}\left(E_{j} ; G\right)+2^{-j}
$$

Then $\left\|f_{j}\right\|_{L^{\Phi}\left(\mathbf{R}^{N}\right)} \leq M+1$. By the reflexivity of $L^{\Phi}\left(\mathbf{R}^{N}\right)$, there exists a subsequence $\left\{f_{j_{k}}\right\}$ which converges weakly to $f$ in $L^{\Phi}\left(\mathbf{R}^{N}\right)$. Then Mazur's lemma implies that there exists a sequence $\left\{\lambda_{\ell, k}\right\}$ of nonnegative numbers such that $\sum_{k \geq \ell} \lambda_{\ell, k}=1$ and

$$
g_{\ell}=\sum_{k \geq \ell} \lambda_{\ell, k} f_{j_{k}}
$$

converges to $f$ in $L^{\Phi}\left(\mathbf{R}^{N}\right)$. Then we see that $g_{\ell}(x)=0$ for $x \in \mathbf{R}^{N} \backslash G$ and

$$
k * g_{\ell}(x) \geq 1 \quad \text { for } x \in E_{j_{\ell}} .
$$

We apply Lemma 3.5 to obtain a subsequence $\left\{g_{\ell_{k}}\right\}$ and a set $F \subset G$ such that $k * g_{\ell_{k}}(x)$ converges to $k * f(x)$ for every $x \in E \backslash F$ and $C_{k, \Phi}(F ; G)=0$. Thus

$$
k * f(x) \geq 1 \quad \text { whenever } x \in E \backslash F
$$

Hence, Fatou's lemma and ( $\Phi 3$ ) yield

$$
\begin{aligned}
C_{k, \Phi}(E ; G) & \leq C_{k, \Phi}(F ; G)+C_{k, \Phi}(E \backslash F ; G) \\
& \leq \int_{G} \Phi(y, f(y)) d y \\
& \leq \liminf _{\ell \rightarrow \infty} \int_{G} \Phi\left(y, g_{\ell}(y)\right) d y \\
& \leq \lim _{\ell \rightarrow \infty}\left(\lim _{j \rightarrow \infty} C_{k, \Phi}\left(E_{j} ; G\right)+2^{-\ell}\right) \\
& \leq \lim _{j \rightarrow \infty} C_{k, \Phi}\left(E_{j} ; G\right) .
\end{aligned}
$$

Thus the required equality holds.
Remark 3.8. For reflexivity of $L^{\Phi}\left(\mathbf{R}^{N}\right)$, see Appendix. In particular, for $\Phi_{p(\cdot), q(\cdot), a}(x, t)=$ $t^{p(x)}(\log (a+t))^{q(x)}, L^{\Phi_{p(\cdot), q(\cdot), a}}\left(\mathbf{R}^{N}\right)\left(=L^{p(\cdot)}(\log L)^{q(\cdot)}\left(\mathbf{R}^{N}\right) ;\right.$ cf $\left.[10]\right)$ is reflexive if $1<p^{-} \leq p^{+}<\infty,-\infty<q^{-} \leq q^{+}<\infty$ and $(1+\log a)(p(x)-1)+q(x) \geq 0$ for all $x \in \mathbf{R}^{N}$ (see Corollary 5.4; also cf. Ohno [16]).

We say that a function $u$ is $(k, \Phi)$-quasicontinuous on $\mathbf{R}^{n}$ if, for any $\varepsilon>0$ and $R>0$, there exists an open set $\omega$ such that $C_{k, \Phi}(\omega ; B(0, R))<\varepsilon$ and $u$ is continuous on $B(0, R) \backslash \omega$.

Proposition 3.9 (cf. [12, Theorem 7.1, Chapter 6]). Suppose $k$ is continuous on $\mathbf{R}^{N} \backslash\{0\}$ and satisfies (k2). If $f \in L^{\Phi}\left(\mathbf{R}^{N}\right)$ satisfies (2.1), then $k * f$ is $(k, \Phi)$ quasicontinuous on $\mathbf{R}^{N}$.

Proof. For $R>0$, write

$$
\begin{aligned}
k * f(x) & =\int_{B(0, R)} k(x-y) f(y) d y+\int_{\mathbf{R}^{N} \backslash B(0, R)} k(x-y) f(y) d y \\
& =u_{1}(x)+u_{2}(x) .
\end{aligned}
$$

For $L>0$, define

$$
u_{1, L}(x)=\int_{B(0, R)} k(x-y) f_{L}(y) d y
$$

where $f_{L}=\max \{\min \{f, L\},-L\}$. Then note that $u_{2}$ and $u_{1, L}$ are continuous on $B(0, R)$. Consider the open sets

$$
E_{j, L}=\left\{x \in \mathbf{R}^{N}: \int_{B(0, R)} k(x-y)\left|f(y)-f_{L}(y)\right| d y>2^{-j}\right\} .
$$

For each $j$, there exists $L_{j}>0$ such that

$$
\int_{\mathbf{R}^{N}} \Phi\left(y,\left|f(y)-f_{L_{j}}(y)\right|\right) d y<\left(A_{1} 2\right)^{-j} .
$$

Since $2^{j}\left|f-f_{L_{j}}\right| \chi_{B(0, R)} \in S_{k}\left(E_{j, L_{j}} ; B(0, R)\right)$, it follows from ( $\Phi 5$ ) that

$$
C_{k, \Phi}\left(E_{j, L_{j}} ; B(0, R)\right) \leq A_{1}^{j} \int_{B(0, R)} \Phi\left(y,\left|f(y)-f_{L_{j}}(y)\right|\right) d y \leq 2^{-j}
$$

Now, letting

$$
\omega_{\ell}=\bigcup_{j=\ell}^{\infty} E_{j, L_{j}},
$$

we see that

$$
\begin{aligned}
C_{k, \Phi}\left(\omega_{\ell} ; B(0, R)\right) & \leq \sum_{j=\ell}^{\infty} C_{k, \Phi}\left(E_{j, L_{j}} ; B(0, R)\right) \\
& \leq \sum_{j=\ell}^{\infty} 2^{-j} \rightarrow 0
\end{aligned}
$$

as $\ell \rightarrow \infty$ and $u_{1, L_{j}}$ converges to $u_{1}$ uniformly on $B(0, R) \backslash \omega_{\ell}$. Thus $k * f$ is continuous on $B(0, R) \backslash \omega_{\ell}$ and the present proposition is obtained.

## 4 Estimates of $(k, \Phi)$-capacity of balls and a generalized Hausdorff measure

For $r>0$ and $x \in \mathbf{R}^{N}$, define

$$
h_{k, \Phi}(r ; x)=r^{N} \sup _{y \in B(x, r)} \Phi\left(y, r^{-N} \bar{k}(r)^{-1}\right)
$$

and

$$
\tilde{h}_{k, \Phi}(r ; x)=r^{N} \inf _{y \in B(x, r)} \Phi\left(y, r^{-N} \bar{k}(r)^{-1}\right),
$$

where

$$
\bar{k}(r)=\frac{1}{|B(0, r)|} \int_{B(0, r)} k(x) d x=\frac{N}{r^{N}} \int_{0}^{r} k(\rho) \rho^{N-1} d \rho .
$$

Note that $\bar{k}(r)$ is a nonincreasing positive continuous function satisfying doubling condition, $\bar{k}(r) \geq k(r)$ and $\lim _{r \rightarrow 0+} r^{N} \bar{k}(r)=0$.

Example 4.1. (1) If $k(r)=r^{\alpha-N}$ with $0<\alpha<N$ and $\Phi(x, t)=t^{p(x)}$ with $1 \leq p^{-} \leq p^{+}<\infty$, then
and

$$
\tilde{h}_{k, \Phi}(r ; x) \approx r^{N-\alpha p_{B(x, r)}^{-}}, \quad p_{B(x, r)}^{-}=\inf _{y \in B(x, r)} p(y)
$$

for $0<r \leq 1$. (Here $h_{1}(r) \approx h_{2}(r)$ means that $A^{-1} h_{2}(r) \leq h_{1}(r) \leq A h_{2}(r)$ for a constant $A>0$.)

If $p(\cdot)$ is $\log$-Hölder continuous, then

$$
h_{k, \Phi}(r ; x) \approx \tilde{h}_{k, \Phi}(r ; x) \approx r^{N-\alpha p(x)}
$$

for $0<r \leq 1$.
(2) If $k(r)$ is as above and $\Phi(x, t)=t^{p(x)}(\log (a+t))^{q(x)}$ with $p(\cdot)$ as above, $-\infty<q^{-} \leq q^{+}<\infty, a \geq e$ and $(1+\log a)(p(x)-1)+q(x) \geq 0$ for all $x \in \mathbf{R}^{N}$, then

$$
h_{k, \Phi}(r ; x) \leq A r^{N-\alpha p_{B(x, r)}^{+}(\log (e+1 / r))^{q_{B(x, r)}^{+}}, ~\left(\frac{1}{4}\right.}
$$

and

$$
\tilde{h}_{k, \Phi}(r ; x) \geq A^{\prime} r^{N-\alpha p_{B(x, r)}^{-}}(\log (e+1 / r))^{q_{B(x, r)}^{-}}
$$

for $0<r \leq 1$. If $p(\cdot)$ is $\log$-Hölder continuous and $q(\cdot)$ is $\log$-log-Hölder continuous, then

$$
h_{k, \Phi}(r ; x) \approx \tilde{h}_{k, \Phi}(r ; x) \approx r^{N-\alpha p(x)}(\log (e+1 / r))^{q(x)}
$$

for $0<r \leq 1$.
Proposition 4.2 (cf. [13, Lemma 4.1]). There exists a constant $A>0$ such that

$$
A^{-1} \tilde{h}_{k, \Phi}(r ; x) \leq C_{k, \Phi}(B(x, r) ; B(x, r)) \leq A h_{k, \Phi}(r ; x)
$$

for all $0<r \leq 1$ and $x \in \mathbf{R}^{N}$.
Proof. For $0<r \leq 1$, consider the function

$$
f_{r}(y)=\chi_{B(x, r)}(y) .
$$

If $z \in B(x, r)$, then

$$
k * f_{r}(z)=\int_{B(x, r)} k(z-y) d y \geq \theta_{N} \int_{B(0, r)} k(y) d y=\theta_{N}^{\prime} r^{N} \bar{k}(r)
$$

with positive constants $\theta_{N}$ and $\theta_{N}^{\prime}$ depending only on $N$. It follows from the definition of capacity that

$$
\begin{aligned}
C_{k, \Phi}(B(x, r) ; B(x, r)) & \leq \int_{B(x, r)} \Phi\left(y, \theta_{N}^{\prime-1} r^{-N} \bar{k}(r)^{-1}\right) d y \\
& \leq A \int_{B(x, r)} \Phi\left(y, r^{-N} \bar{k}(r)^{-1}\right) d y \\
& \leq A h_{k, \Phi(r ; x),}
\end{aligned}
$$

which proves the second inequality of the proposition.
Let $f \in S_{k}(B(x, r) ; B(x, r))$. Then

$$
\begin{aligned}
1 & \leq \frac{1}{|B(x, r)|} \int_{B(x, r)} k * f(z) d z \\
& =\int_{B(x, r)}\left(\frac{1}{|B(x, r)|} \int_{B(x, r)} k(z-y) d z\right) f(y) d y \\
& \leq \int_{B(x, r)}\left(\frac{1}{|B(0, r)|} \int_{B(0, r)} k(z) d z\right) f(y) d y \\
& =\bar{k}(r) \int_{B(x, r)} f(y) d y .
\end{aligned}
$$

For $\varepsilon>0$, we see from ( $\Phi 3$ ) and ( $\Phi 5$ ) that

$$
\begin{aligned}
\int_{B(x, r)} f(y) d y \leq & |B(0,1)| \varepsilon \bar{k}(r)^{-1}+\int_{B(x, r)} \Phi(y, f(y)) \frac{\varepsilon r^{-N} \bar{k}(r)^{-1}}{\Phi\left(y, \varepsilon r^{-N} \bar{k}(r)^{-1}\right)} d y \\
\leq & |B(0,1)| \varepsilon \bar{k}(r)^{-1} \\
& +A(\varepsilon) r^{-N} \bar{k}(r)^{-1}\left(\inf _{y \in B(x, r)} \Phi\left(y, r^{-N} \bar{k}(r)^{-1}\right)\right)^{-1} \int_{B(x, r)} \Phi(y, f(y)) d y \\
= & |B(0,1)| \varepsilon \bar{k}(r)^{-1}+A(\varepsilon) \bar{k}(r)^{-1} \tilde{h}_{k, \Phi}(r ; x)^{-1} \int_{B(x, r)} \Phi(y, f(y)) d y,
\end{aligned}
$$

so that

$$
1 \leq|B(0,1)| \varepsilon+A(\varepsilon) \tilde{h}_{k, \Phi}(r ; x)^{-1} C_{k, \Phi}(B(x, r) ; B(x, r)) .
$$

Hence, letting $|B(0,1)| \varepsilon=1 / 2$ we have

$$
C_{k, \Phi}(B(x, r) ; B(x, r)) \geq A \tilde{h}_{k, \Phi}(r ; x) .
$$

Remark 4.3. Proposition 4.2 implies that

$$
C_{k, \Phi}(B(x, r) ; B(x, 1)) \leq A h_{k, \Phi}(r ; x)
$$

whenever $0<r \leq 1$. This estimate is trivial if

$$
\begin{equation*}
\liminf _{r \rightarrow 0+} h_{k, \Phi}(r ; x)>0 \tag{4.1}
\end{equation*}
$$

As the case where $k(r)=r^{\alpha-N}(0<\alpha<N)$ and $\Phi(x, t)=t^{N / \alpha}$ shows, it can happen that

$$
\begin{equation*}
\lim _{r \rightarrow 0+} C_{k, \Phi}(B(x, r) ; B(x, 1))=0 \tag{4.2}
\end{equation*}
$$

even if (4.1) holds (cf., e.g., [12, Chapter 5, Theorem 2.1]).
In view of this remark, it is desirable to obtain non-trivial estimates in case both (4.1) and (4.2) occur. Here, we consider the special case where $\Phi(x, t)$ is of the form

$$
\Phi_{p(\cdot), \varphi}(x, t)=t^{p(x)} \varphi(x, t)
$$

with a variable exponent $p(\cdot)$ such that $1<p^{-} \leq p^{+}<\infty$ and $\varphi(x, t)$ is uniformly of $\log$-type in $t \geq 1$ : there exists a constant $A_{0} \geq 1$ such that

$$
\begin{equation*}
A_{0}^{-1} \varphi(x, t) \leq \varphi\left(x, t^{2}\right) \leq A_{0} \varphi(x, t) \quad \text { whenever } \quad x \in \mathbf{R}^{N} \text { and } t \geq 1 . \tag{4.3}
\end{equation*}
$$

We naturally assume that $\Phi_{p(\cdot), \varphi}(x, t)$ satisfies ( $\Phi 1$ ), ( $\Phi 2$ ), ( $\Phi 3$ ), ( $\Phi 4$ ) and ( $\Phi 5$ ).
Proposition 4.4. Set

$$
\psi(x, s)=\sup _{|x-y|=s^{-1}, s \leq t \leq s^{2}} \varphi(y, t) \quad \text { for } x \in \mathbf{R}^{N}, s \geq 1
$$

and

$$
h(x, r)=\left(\int_{r}^{1} k(2 \rho)^{p(x)^{\prime}} \psi\left(x, \rho^{-1}\right)^{1-p(x)^{\prime}} \rho^{N-1} d \rho\right)^{1-p(x)}
$$

for $x \in \mathbf{R}^{N}$ and $0<r \leq 1 / 2$, where $p(x)^{\prime}=p(x) /(p(x)-1)$.
Assume that $p(\cdot)$ is $\log$-Hölder continuous at $x_{0} \in \mathbf{R}^{N}$ and
(A) $r \mapsto r^{N} k(r)^{p\left(x_{0}\right)^{\prime}}$ is of log-type for $0<r \leq 1$.

Then, there exists a constant $A=A\left(x_{0}\right)>0$ such that

$$
C_{k, \Phi_{p(\cdot), \varphi}}\left(B\left(x_{0}, r\right) ; B\left(x_{0}, 1\right)\right) \leq A h\left(x_{0}, r\right)
$$

for $0<r \leq 1 / 2$.
Remark 4.5. Assumption (A) is nearly a necessary condition for (4.1) and (4.2).
Proof of Proposition 4.4. We assume that $x_{0}=0$. For simplicity, let $p=p(0)$, $\psi(s)=\psi(0, s)$, and $h(r)=h(0, r)$. We may assume that $h(r) \rightarrow 0$ as $r \rightarrow 0+$. Set

$$
g(r)=h(r)^{1 /(1-p)}=\int_{r}^{1} k(2 \rho)^{p^{\prime}} \psi\left(\rho^{-1}\right)^{1-p^{\prime}} \rho^{N-1} d \rho .
$$

First note that (4.3), ( $\Phi 4$ ) and ( $\Phi 5$ ) imply

$$
A_{2}^{-1}[\log (e+t)]^{-\sigma} \leq \varphi(x, t) \leq A_{2}[\log (e+t)]^{\sigma}
$$

for $x \in \mathbf{R}^{N}$ and $t \geq 1$ with some constants $\sigma>0$ and $A_{2} \geq 1$, so that,

$$
\begin{equation*}
A_{2}^{-1}[\log (e+s)]^{-\sigma} \leq \psi(s) \leq A_{3}[\log (e+s)]^{\sigma} \tag{4.4}
\end{equation*}
$$

for $s \geq 1$. Hence, together with our assumption (A), we see that

$$
\begin{equation*}
\lim _{r \rightarrow 0+} r^{\varepsilon} g(r)=0 \tag{4.5}
\end{equation*}
$$

for any $\varepsilon>0$.
Now, let $a=5 p / N$. By (4.5), there is $r_{1}: 0<r_{1} \leq 1 / 2$ such that

$$
\begin{equation*}
g(r) \leq \frac{1}{2} r^{-1 / a} \quad \text { for } \quad 0<r \leq r_{1} \tag{4.6}
\end{equation*}
$$

Then

$$
g(r)^{-a} \geq 2^{a} r>r \quad \text { for } \quad 0<r \leq r_{1}
$$

Choose $r_{2}: 0<r_{2} \leq r_{1}$ such that $g\left(r_{2}\right) \geq r_{1}^{-1 / a}$. Then, $g(r)^{-a} \leq r_{1}$ for $0<r \leq r_{2}$ and (4.6) implies

$$
\begin{equation*}
g\left(g(r)^{-a}\right) \leq \frac{1}{2} g(r) \quad \text { for } \quad 0<r \leq r_{2} \tag{4.7}
\end{equation*}
$$

For $0<r \leq r_{2}$, consider the function

$$
f_{r}(y)=2 \omega_{N}^{-1} g(r)^{-1} k(2|y|)^{p^{\prime}-1} \psi\left(|y|^{-1}\right)^{1-p^{\prime}} \chi_{B\left(0, g(r)^{-a}\right) \backslash B(0, r)}(y),
$$

where $\omega_{N}$ is the surface area of the unit sphere in $\mathbf{R}^{N}$. If $x \in B(0, r)$, then $|x-y| \leq 2|y|$ for $|y| \geq r$, so that

$$
\begin{aligned}
k * f_{r}(x) & \geq \int_{B\left(0, g(r)^{-a}\right) \backslash B(0, r)} k(2|y|) f_{r}(y) d y \\
& =2 g(r)^{-1} \int_{r}^{g(r)^{-a}} k(2 \rho)^{p^{\prime}} \psi\left(\rho^{-1}\right)^{1-p^{\prime}} \rho^{N-1} d \rho \\
& =2 g(r)^{-1}\left(g(r)-g\left(g(r)^{-a}\right)\right) \geq 1
\end{aligned}
$$

where we used (4.7) to deduce the last inequality. Hence $f_{r} \in S_{k}(B(0, r) ; B(0,1))$, so that

$$
\begin{equation*}
C_{k, \Phi_{p(\cdot), \varphi}}(B(0, r) ; B(0,1)) \leq \int_{B(0,1)} f_{r}(y)^{p(y)} \varphi\left(y, f_{r}(y)\right) d y \tag{4.8}
\end{equation*}
$$

Let $b=(3 / 5)(N / p)=3 / a$. We shall show that there exists $r_{0}: 0<r_{0} \leq r_{2}$ such that

$$
\begin{equation*}
|y|^{-b} \leq f_{r}(y) \leq|y|^{-2 b} \quad \text { for } r \leq|y|<g(r)^{-a} \tag{4.9}
\end{equation*}
$$

whenever $0<r \leq r_{0}$.
Let $\eta(\rho)=2 \omega_{N}^{-1} k(2 \rho)^{p^{\prime}-1} \psi\left(\rho^{-1}\right)^{1-p^{\prime}} \quad(0<\rho \leq 1)$. Since

$$
k(2 \rho)^{p^{\prime}-1} \psi\left(\rho^{-1}\right)^{1-p^{\prime}}=\rho^{-N / p}\left[\rho^{N} k(2 \rho)^{p^{\prime}}\right]^{1 / p} \psi\left(\rho^{-1}\right)^{1-p^{\prime}}
$$

and $-N / p=-5 / a$, by (A) and (4.4) there exists $r_{0}: 0<r_{0} \leq r_{2}$ such that

$$
\begin{equation*}
\rho^{-4 / a} \leq \eta(\rho) \leq \rho^{-6 / a} \quad \text { for } \quad 0<\rho \leq g\left(r_{0}\right)^{-a} . \tag{4.10}
\end{equation*}
$$

Let $0<r \leq r_{0}$. Since $f_{r}(y)=g(r)^{-1} \eta(|y|)$ for $r \leq|y|<g(r)^{-a}(\leq 1 / 2)$, (4.10) implies

$$
f_{r}(y) \geq g(r)^{-1}|y|^{-4 / a}>|y|^{1 / a}|y|^{-4 / a}=|y|^{-3 / a}=|y|^{-b}
$$

for $r \leq|y|<g(r)^{-a}$, and

$$
f_{r}(y) \leq g(r)^{-1}|y|^{-6 / a} \leq|y|^{-6 / a}=|y|^{-2 b}
$$

for $r \leq|y|<g(r)^{-a}$. Thus (4.9) holds.
In view of (4.9), the log-Hölder continuity of $p(\cdot)$ at 0 implies

$$
f_{r}(y)^{p(y)} \leq A_{4} f_{r}(y)^{p}
$$

for $r \leq|y|<g(r)^{-a}$.
To estimate $\varphi\left(y, f_{r}(y)\right)$, consider an auxiliary function

$$
\tilde{\psi}(y, s)=\sup _{s \leq t \leq s^{2}} \varphi(y, t)
$$

for $s \geq 1$. Choose $m \in \mathbf{N}$ such that $2^{m-1} \leq b<2^{m}$ in case $b \geq 1,2^{-m} \leq b<2^{-m+1}$ in case $b<1$. Then, by (4.3) we have

$$
\tilde{\psi}\left(y, s^{b}\right) \leq A_{0}^{m} \tilde{\psi}(y, s)
$$

for $s \geq 1$. Hence, by (4.9)

$$
\varphi\left(y, f_{r}(y)\right) \leq \tilde{\psi}\left(y,|y|^{-b}\right) \leq A_{0}^{m} \tilde{\psi}\left(y,|y|^{-1}\right) \leq A_{0}^{m} \psi\left(|y|^{-1}\right)
$$

for $r \leq|y|<g(r)^{-a}$. Hence we have

$$
f_{r}(y)^{p(y)} \varphi\left(y, f_{r}(y)\right) \leq A g(r)^{-p} k(2|y|)^{p^{\prime}} \psi\left(|y|^{-1}\right)^{1-p^{\prime}}
$$

for $y \in B\left(0, g(r)^{-a}\right) \backslash B(0, r)$, so that by (4.8)

$$
\begin{aligned}
C_{k, \Phi_{p(\cdot), \varphi}} & (B(0, r) ; B(0,1)) \\
\leq & A g(r)^{-p} \int_{r}^{g(r)^{-a}} k(2 \rho)^{p^{\prime}} \psi\left(\rho^{-1}\right)^{1-p^{\prime}} \rho^{N-1} d \rho \leq A g(r)^{1-p}=A h(r)
\end{aligned}
$$

for $0<r \leq r_{0}$. The required estimate is trivial for $r_{0}<r \leq 1 / 2$.
Example 4.6. Let $k(r)=r^{\alpha-N}(0<\alpha<N)$ and

$$
\Phi(x, t)=\Phi_{p(\cdot), q(\cdot), a}(x, t)=t^{p(x)}(\log (a+t))^{q(x)}
$$

namely, $\varphi(x, t)=(\log (a+t))^{q(x)}$. For these $k$ and $\Phi, C_{k, \Phi}$ is denoted by $C_{\alpha, p(\cdot), q(\cdot)}$. Suppose $\alpha p\left(x_{0}\right)=N, p(\cdot)$ is $\log$-Hölder continuous and $q(\cdot)$ is log-log-Hölder continuous at $x_{0}$. Then $\psi\left(x_{0}, s\right) \approx \log (e+s)^{q\left(x_{0}\right)}$, so that

$$
h\left(x_{0}, r\right) \approx\left(\int_{r}^{1} \log (e+1 / \rho)^{q\left(x_{0}\right)\left(1-p\left(x_{0}\right)^{\prime}\right)} \frac{d \rho}{\rho}\right)^{1-p\left(x_{0}\right)} .
$$

Thus, applying the above proposition, we have (cf. [2]):
(1) if $q\left(x_{0}\right)<p\left(x_{0}\right)-1$, then

$$
C_{\alpha, p(\cdot), q(\cdot)}\left(B\left(x_{0}, r\right) ; B\left(x_{0}, 1\right)\right) \leq A \log (e+1 / r)^{q\left(x_{0}\right)+1-p\left(x_{0}\right)}
$$

for $0<r \leq 1 / 2$; and
(2) if $q\left(x_{0}\right)=p\left(x_{0}\right)-1$, then

$$
C_{\alpha, p(\cdot), q(\cdot)}\left(B\left(x_{0}, r\right) ; B\left(x_{0}, 1\right)\right) \leq A \log (\log (e+1 / r))^{1-p\left(x_{0}\right)}
$$

for $0<r \leq 1 / 2$.
If $q\left(x_{0}\right)>p\left(x_{0}\right)-1$, then $\lim _{r \rightarrow 0+} h\left(x_{0}, r\right)>0$.
Theorem 4.7 (cf. [5, Lemma 4.4],[13, Lemma 4.3]). If $f \in L^{\Phi}\left(\mathbf{R}^{N}\right)$, then there exists a set $E \subset \mathbf{R}^{N}$ with $C_{k, \Phi}(E)=0$ such that

$$
\lim _{r \rightarrow 0+} \frac{1}{C_{k, \Phi}(B(x, 5 r) ; B(x, 5 r))} \int_{B(x, r)} \Phi(y,|f(y)|) d y=0
$$

for all $x \in \mathbf{R}^{N} \backslash E$.
Proof. For $\delta>0$, consider the set

$$
E_{\delta}=\left\{x \in \mathbf{R}^{N}: \limsup _{r \rightarrow 0+} C_{k, \Phi}(B(x, 5 r) ; B(x, 5 r))^{-1} \int_{B(x, r)} \Phi(y, f(y)) d y>\delta\right\}
$$

By subadditivity and Corollary 3.4, it suffices to show that $C_{k, \Phi}\left(E_{\delta} \cap B(0, R) ; B(0,2 R)\right)=$ 0 for all $R>1$. Let $0<\varepsilon<1$. For each $x \in E_{\delta} \cap B(0, R)$, we find $0<r(x)<\varepsilon / 5$ such that

$$
\begin{equation*}
\int_{B(x, r(x))} \Phi(y,|f(y)|) d y>\delta C_{k, \Phi}(B(x, 5 r(x)) ; B(x, 5 r(x))) . \tag{4.11}
\end{equation*}
$$

By the Vitali covering lemma (see [17, Lemma, p. 9]), there exists a disjoint family $\left\{B_{j}\right\}$ of balls $B_{j}=B\left(x_{j}, r\left(x_{j}\right)\right)$ such that $\bigcup_{j} B\left(x_{j}, 5 r\left(x_{j}\right)\right) \supset E_{\delta} \cap B(0, R)$. Then we have by (4.11)

$$
\begin{align*}
C_{k, \Phi}\left(E_{\delta} \cap B(0, R) ; B(0,2 R)\right) & \leq \sum_{j} C_{k, \Phi}\left(B\left(x_{j}, 5 r\left(x_{j}\right)\right) ; B\left(x_{j}, 5 r\left(x_{j}\right)\right)\right) \\
& \leq \delta^{-1} \int_{\cup_{j} B_{j}} \Phi(y,|f(y)|) d y \tag{4.12}
\end{align*}
$$

Set $L(\varepsilon)=\inf _{0<r<\varepsilon} r^{-N} \bar{k}(r)^{-1}$. Then $L(\varepsilon) \rightarrow \infty$ as $\varepsilon \rightarrow 0+$ and we may assume that $L(\varepsilon)>1$. By Proposition 4.2, (4.11), ( $\Phi 3$ ) and ( $\Phi 4$ ),

$$
\begin{aligned}
\left|B_{j}\right| & =A \tilde{h}_{k, \Phi}\left(5 r\left(x_{j}\right) ; x_{j}\right)\left\{\inf _{y \in B\left(x_{j}, 5 r\left(x_{j}\right)\right)} \Phi\left(y,\left(5 r\left(x_{j}\right)\right)^{-N} \bar{k}\left(5 r\left(x_{j}\right)\right)^{-1}\right)\right\}^{-1} \\
& \leq A C_{k, \Phi}\left(B\left(x_{j}, 5 r\left(x_{j}\right)\right) ; B\left(x_{j}, 5 r\left(x_{j}\right)\right)\right)\left\{\inf _{y \in B\left(x_{j}, 5 r\left(x_{j}\right)\right)} \Phi(y, L(\varepsilon))\right\}^{-1} \\
& \leq A \delta^{-1} L(\varepsilon)^{-1}\left\{\inf _{y \in B\left(x_{j}, 5 r\left(x_{j}\right)\right)} \Phi(y, 1)\right\}^{-1} \int_{B_{j}} \Phi(y,|f(y)|) d y \\
& \leq A \delta^{-1} L(\varepsilon)^{-1} \int_{B_{j}} \Phi(y,|f(y)|) d y .
\end{aligned}
$$

Hence we have

$$
\left|\bigcup_{j} B_{j}\right| \leq A \delta^{-1} L(\varepsilon)^{-1} \int_{\mathbf{R}^{N}} \Phi(y,|f(y)|) d y \rightarrow 0
$$

as $\varepsilon \rightarrow 0+$. Thus, from (4.12) and the absolute continuity of integral we obtain

$$
C_{k, \Phi}\left(E_{\delta} \cap B(0, R) ; B(0,2 R)\right)=0,
$$

as required.
Corollary 4.8. Suppose

$$
\begin{equation*}
\limsup _{r \rightarrow 0+} \frac{\sup _{y \in B(x, r)} \Phi\left(y, r^{-N} \bar{k}(r)^{-1}\right)}{\inf _{y \in B(x, r)} \Phi\left(y, r^{-N} \bar{k}(r)^{-1}\right)}<\infty \tag{4.13}
\end{equation*}
$$

for every $x \in \mathbf{R}^{N}$. If $f \in L^{\Phi}\left(\mathbf{R}^{N}\right)$, then there exists a set $E \subset \mathbf{R}^{N}$ with $C_{k, \Phi}(E)=0$ such that

$$
\lim _{r \rightarrow 0+} \frac{1}{r^{N} \Phi\left(x, r^{-N} \bar{k}(r)^{-1}\right)} \int_{B(x, r)} \Phi(y,|f(y)|) d y=0
$$

for all $x \in \mathbf{R}^{N} \backslash E$.
Remark 4.9. Condition (4.13) is a kind of continuity of $\Phi(x, t)$ in $x$. For example, in the case $k(r)=r^{\alpha-N}(0<\alpha<N)$ and $\Phi(x, t)=t^{p(x)}(\log (a+t))^{q(x)}$ as in Example 4.1 (2), (4.13) is satisfied if $p(x)$ is $\log$-Hölder continuous and $q(x)$ is log-log-Hölder continuous.

A function $h(r ; x):(0, \tilde{r}) \times \mathbf{R}^{N} \rightarrow(0, \infty)(\tilde{r}>0)$ may be called a variable measure function if $\lim _{r \rightarrow 0+} h(r ; x)=0$ for every $x \in \mathbf{R}^{N}$. Given such a function, the generalized Hausdorff measure $H_{h}$ can be defined as in the case of ordinary measure function.

Let $\bar{h}(r ; x)=\sup _{0<\rho \leq r} h(\rho ; x)$. For $E \subset \mathbf{R}^{N}$ and $0<\delta<\tilde{r}$, let

$$
H_{h}^{(\delta)}(E)=\inf \left\{\sum_{j} \bar{h}\left(r_{j} ; x_{j}\right) ; E \subset \bigcup_{j} B\left(x_{j}, r_{j}\right), 0<r_{j} \leq \delta\right\}
$$

Since $H_{h}^{(\delta)}(E)$ increases as $\delta$ decreases, we define the generalized Hausdorff measure with respect to $h$ by

$$
H_{h}(E)=\lim _{\delta \rightarrow 0+} H_{h}^{(\delta)}(E)
$$

Clearly, $H_{h}^{(\delta)}(E)$ and $H_{h}(E)$ are measures on $\mathbf{R}^{N}$.
Theorem 4.10. Suppose that $\lim _{r \rightarrow 0+} h_{k, \Phi}(r ; x)=0$ for every $x \in \mathbf{R}^{N}$. If $H_{h_{k, \Phi}}(E)=0$, then $C_{k, \Phi}(E)=0$.

Proof. Suppose $H_{h_{k, \Phi}}(E)=0$. By subadditivity and Corollary 3.4, it suffices to show that $C_{k, \Phi}(E \cap B(0, R) ; B(0,2 R))=0$ for all $R>1$. Since $H_{h_{k, \Phi}}(E \cap B(0, R))=$ 0 , for $\varepsilon>0$, there exists a family $\left\{B\left(x_{j}, r_{j}\right)\right\}$ such that $0<r_{j}<1, E \subset \bigcup_{j} B\left(x_{j}, r_{j}\right)$ and

$$
\sum_{j} h_{k, \Phi}\left(r_{j} ; x_{j}\right)<\varepsilon .
$$

Then Proposition 4.2 yields

$$
\begin{aligned}
C_{k, \Phi}(E \cap B(0, R) ; B(0,2 R)) & \leq \sum_{j} C_{k, \Phi}\left(B\left(x_{j}, r_{j}\right) ; B\left(x_{j}, r_{j}\right)\right) \\
& \leq A \sum_{j} h_{k, \Phi}\left(r_{j} ; x_{j}\right)<A \varepsilon
\end{aligned}
$$

Hence, we have $C_{k, \Phi}(E \cap B(0, R) ; B(0,2 R))=0$.

## 5 Appendix

In this section, we consider two functions $\Phi(x, t)$ and $\Psi(x, t)$ satisfying conditions $(\Phi i), i=1,2,3,4,5$, and discuss the duality between $L^{\Phi}\left(\mathbf{R}^{N}\right)$ and $L^{\Psi}\left(\mathbf{R}^{N}\right)$ :

Proposition 5.1. Let $\varphi(x, t)=\Phi(x, t) / t$ and $\psi(x, t)=\Psi(x, t) / t$ for $x \in \mathbf{R}^{N}$ and $t>0$. Suppose there is a constant $\widetilde{A} \geq 1$ such that

$$
\begin{equation*}
\widetilde{A}^{-1} t \leq \psi(x, \varphi(x, t)) \leq \widetilde{A} t \tag{5.1}
\end{equation*}
$$

for all $x \in \mathbf{R}^{N}$ and $t>0$. Then $L^{\Psi}\left(\mathbf{R}^{N}\right)$ is the dual space of $L^{\Phi}\left(\mathbf{R}^{N}\right)$.
It is known that if $\Phi^{*}$ is the complementary function of $\Phi$, then $L^{\Phi^{*}}\left(\mathbf{R}^{N}\right)$ is the dual space of $L^{\Phi}\left(\mathbf{R}^{N}\right)$ provided that

$$
\begin{equation*}
\lim _{t \rightarrow 0+} \varphi(x, t)=0 \quad \text { and } \quad \lim _{t \rightarrow \infty} \varphi(x, t)=\infty \tag{5.2}
\end{equation*}
$$

(see, e.g., [15, Theorem 13.15 and Theorem 13.17]). Note that assumption (5.1) implies (5.2) as well as

$$
\lim _{t \rightarrow 0+} \psi(x, t)=0 \quad \text { and } \quad \lim _{t \rightarrow \infty} \psi(x, t)=\infty
$$

Therefore, we show the above proposition by verifying that $\Psi$ is comparable to the complementary function $\Phi^{*}$, namely we show
Lemma 5.2. Under the assumptions of Proposition 5.1, there exists a constant $A \geq 1$ such that

$$
A^{-1} \Phi^{*}(x, t) \leq \Psi(x, t) \leq A \Phi^{*}(x, t)
$$

for all $x \in \mathbf{R}^{N}$ and $t>0$.
Proof. First, note that $\varphi(x, \cdot)$ and $\psi(x, \cdot)$ are non-decreasing continuous on $(0, \infty)$ by condition ( $\Phi 3$ ).

Recall that

$$
\Phi^{*}(x, t)=\sup _{s>0}(s t-\Phi(x, s))=\sup _{s>0} s(t-\varphi(x, s))
$$

for $t>0$. By the continuity of $\varphi(x, \cdot)$, there exists $\sigma=\sigma(x, t)>0$ such that

$$
\Phi^{*}(x, t)=\sigma(t-\varphi(x, \sigma))
$$

Note that $0<\varphi(x, \sigma)<t$. Hence, by (5.1),

$$
\tilde{A}^{-1} \sigma \leq \psi(x, \varphi(x, \sigma)) \leq \psi(x, t)
$$

Therefore,

$$
\Phi^{*}(x, t) \leq t \sigma \leq \widetilde{A} t \psi(x, t)=\widetilde{A} \Psi(x, t)
$$

Conversely, given $t>0$, choose $s>0$ such that $\varphi(x, s)=t / 2$. Then, by (5.1)

$$
\Phi^{*}(x, t) \geq \frac{t}{2} s \geq \frac{t}{2} \widetilde{A}^{-1} \psi(x, \varphi(x, s))=\widetilde{A}^{-1} \Psi(x, t / 2) \geq A^{-1} \Psi(x, t)
$$

where we used ( $\Phi 5$ ) for $\Psi$ to derive the last inequality.
Example 5.3. Let $p(\cdot)$ and $q(\cdot)$ be measurable variable exponents on $\mathbf{R}^{N}$ satisfying (p1) $1<p^{-} \leq p^{+}<\infty$;
(q1) $-\infty<q^{-} \leq q^{+}<\infty$.
If we choose $a \geq e$ such that $(1+\log a)(p(x)-1)+q(x) \geq 0$ for all $x \in \mathbf{R}^{N}$, then

$$
\Phi_{p(\cdot), q(\cdot), a}(x, t)=t^{p(x)}(\log (a+t))^{q(x)}
$$

satisfies conditions $(\Phi i), i=1,2,3,4,5$.
Set $p^{*}=p(x) /(p(x)-1), q^{*}(x)=-q(x) /(p(x)-1)$ and $\log a^{*}=\max \left(1, q^{+}-1\right)$. Then we see that $\Phi_{p^{*}(\cdot), q^{*}(\cdot), a^{*}}(x, t)$ also satisfies the conditions $(\Phi i), i=1,2,3,4,5$.

By elementary calculus, we see that (5.1) holds for $\Phi=\Phi_{p(\cdot), q(\cdot), a}$ and $\Psi=$ $\Phi_{p^{*}(\cdot), q^{*}(\cdot), a^{*}}$. Thus, by Proposition 5.1, we have
Corollary 5.4. The dual space of $L^{\Phi_{p(\cdot), q(\cdot), a}}\left(\mathbf{R}^{N}\right)$ is $L^{\Phi_{p^{*}(\cdot), q^{*}(\cdot), a^{*}}}\left(\mathbf{R}^{N}\right)$, and $L^{\Phi_{p(\cdot), q(\cdot), a}}\left(\mathbf{R}^{N}\right)$ is reflexive.

## References

[1] D. R. Adams and L. I. Hedberg, Function spaces and potential theory, Springer, 1996.
[2] D. R. Adams and R. Hurri-Syrjänen, Capacity estimates, Proc. Amer. Math. Soc. 131 (2003), 1159-1167.
[3] N. Aïssaoui and A. Benkirane, Capacités dans les espaces d'Orlicz, Ann. Sci. Math. Québec 18 (1994), 1-23.
[4] T. Futamura, Y. Mizuta, T. Ohno and T. Shimomura, Orlicz-Sobolev capacity of balls, to appear in Illinois J. Math.
[5] T. Futamura, Y. Mizuta and T. Shimomura, Sobolev embedding for Riesz potential spaces of variable exponent, Math. Nachr. 279 (2006), 1463-1473.
[6] P. Harjulehto, P. Hästö and M. Koskenoja, Properties of capacities in variable exponent Sobolev spaces, J. Anal. Appl. 5 (2007), no. 2, 71-92.
[7] P. Harjulehto P. Hästö, M. Koskenoja and S. Varonen, Sobolev capacity on the space $W^{1, p(\cdot)}\left(\mathbf{R}^{N}\right)$, J. Funct. Spaces Appl. 1(1) (2003), 17-33.
[8] H. Hudzik, The problems of separability, duality reflexivity and comparison for generalized Orlicz-Sobolev space $W_{M}^{k}(\Omega)$, Comment. Math. 21 (1979), 315324.
[9] J. Joensuu, Estimates for certain Orlicz-Sobolev capacities of an Euclidean ball, Nonlinear Anal. 72 (2010), 4316-4330.
[10] F-Y. Maeda, Y. Mizuta and T. Ohno, Approximate identities and Young type inequalities in variable Lebesgue-Orlicz spaces $L^{p(\cdot)}(\log L)^{q(\cdot)}$, Ann. Acad. Sci. Fenn. Math. 35, (2010), 405-420.
[11] N. G. Meyers, A theory of capacities for potentials in Lebesgue classes, Math. Scand. 8 (1970), 255-292.
[12] Y. Mizuta, Potential theory in Euclidean spaces, Gakkōtosyo, Tokyo, 1996.
[13] Y. Mizuta, T. Ohno and T. Shimomura, Sobolev's inequalities and vanishing integrability for Riesz potentials of functions in $L^{p(\cdot)}(\log L)^{q(\cdot)}$, J. Math. Anal. Appl. 345 (2008), 70-85.
[14] Y. Mizuta, T. Ohno and T. Shimomura, Weighted Orlicz-Riesz capacity of balls, Proc. Amer. Math. Soc. 138, (2010), no. 12, 4291-4302.
[15] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes Math. 1034, Springer, 1983.
[16] T. Ohno, Compact embeddings in the generalized Sobolev space $W_{0}^{1, p(\cdot)}(G)$ and existence of solutions for nonlinear elliptic problems, Nonlinear Anal. 71 (2009), 1534-1541.
[17] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, 1970.
[18] W. P. Ziemer, Weakly differentiable functions, Springer-Verlag, New York, 1989.

4-24 Furue-higashi-machi, Nishi-ku<br>Hiroshima 733-0872, Japan<br>E-mail: fymaeda@h6.dion.ne.jp<br>and<br>Department of Mathematics<br>Graduate School of Science<br>Hiroshima University<br>Higashi-Hiroshima 739-8521, Japan<br>E-mail: yomizuta@hiroshima-u.ac.jp and<br>Faculty of Education and Welfare Science<br>Oita University<br>Dannoharu Oita-city 870-1192, Japan<br>E-mail: t-ohno@oita-u.ac.jp and<br>Department of Mathematics<br>Graduate School of Education<br>Hiroshima University<br>Higashi-Hiroshima 739-8524, Japan<br>E-mail: tshimo@hiroshima-u.ac.jp

