Trudinger's inequality and continuity for Riesz potentials of functions in Musielak-Orlicz-Morrey spaces on metric measure spaces

Takao Ohno and Tetsu Shimomura

April 8, 2014

Abstract

In this paper we are concerned with Trudinger's inequality and continuity for Riesz potentials of functions in Musielak-Orlicz-Morrey spaces on metric measure spaces.

1 Introduction

A famous Trudinger inequality ([42]) insists that Sobolev functions in $W^{1, N}(G)$ satisfy finite exponential integrability, where G is an open bounded set in \mathbf{R}^{N} (see also [2], [5], [36], [43]). For $0<\alpha<N$, we define the Riesz potential of order α for a locally integrable function f on \mathbf{R}^{N} by

$$
U_{\alpha} f(x)=\int_{\mathbf{R}^{N}}|x-y|^{\alpha-N} f(y) d y .
$$

Great progress on Trudinger type inequalities has been made for Riesz potentials of order α in the limiting case $\alpha p=N$ (see e.g. [8], [9], [10], [11], [41]). Trudinger type exponential integrability was studied on Orlicz spaces in [3], [28] and [32], on generalized Morrey spaces $L^{1, \varphi}$ in [23] and [24], and on Orlicz-Morrey spaces in [33] and [38]. For Morrey spaces, which were introduced to estimate solutions of partial differential equations, we refer to [35] and [40].

Variable exponent Lebesgue spaces and Sobolev spaces were introduced to discuss nonlinear partial differential equations with non-standard growth condition. For a survey, see [6] and [7]. Trudinger type exponential integrability was investigated on variable exponent Lebesgue spaces $L^{p(\cdot)}$ in [12], [13] and [14] and on two variable exponents spaces $L^{p(\cdot)}(\log L)^{q(\cdot)}$ in [27]. See also [26] for two variable exponents spaces $L^{p(\cdot)}(\log L)^{q(\cdot)}$.

[^0]For $x \in \mathbf{R}^{N}$ and $r>0$, we denote by $B(x, r)$ the open ball centered at x with radius r and $d_{\Omega}=\sup \{d(x, y): x, y \in \Omega\}$ for a set $\Omega \subset \mathbf{R}^{N}$. For bounded measurable functions $\nu(\cdot): \mathbf{R}^{N} \rightarrow(0, N]$ and $\beta(\cdot): \mathbf{R}^{N} \rightarrow \mathbf{R}$, let $L^{p(\cdot), q(\cdot), \nu(\cdot), \beta(\cdot)}(G)$ be the set of all measurable functions f on G such that $\|f\|_{L^{p(\cdot), q(\cdot), \nu(\cdot), \beta(\cdot)}(G)}<\infty$, where

$$
\begin{aligned}
&\|f\|_{L^{p(\cdot), q(\cdot), \nu(\cdot), \beta(\cdot)}(G)}=\inf \{\lambda> 0 \\
& \sup _{x \in G, 0<r \leq d_{G}} \frac{r^{\nu(x)}(\log (e+1 / r))^{\beta(x)}}{|B(x, r)|} \\
&\left.\times \int_{B(x, r)}\left(\frac{|f(y)|}{\lambda}\right)^{p(y)}\left(\log \left(e+\frac{|f(y)|}{\lambda}\right)\right)^{q(y)} d y \leq 1\right\}
\end{aligned}
$$

we set $f=0$ outside G. As an extension of Trudinger [42] and [24, Corollaries 4.6 and 4.8], Mizuta, Nakai and the authors [25] proved Trudinger type exponential integrability for two variable exponent Morrey spaces $L^{p(\cdot), q(\cdot), \nu(\cdot), \beta(\cdot)}(G)$ when $p(\cdot)$ and $q(\cdot)$ are variable exponents satisfying the log-Hölder and loglog-Hölder conditions on G, respectively. The result is an improvement of [31, Theorems 4.4 and 4.5]. In fact we proved the following:

Theorem A. Suppose $\inf _{x \in \mathbf{R}^{N}} \nu(x)>0$ and $\inf _{x \in \mathbf{R}^{N}}(\alpha-\nu(x) / p(x)) \geq 0$ hold. Let ε be a constant such that

$$
\inf _{x \in \mathbf{R}^{n}}(\nu(x) / p(x)-\varepsilon)>0 \text { and } 0<\varepsilon<\alpha
$$

Then there exist constants $C_{1}, C_{2}>0$ such that
(1) in case $\sup _{x \in \mathbf{R}^{N}}(q(x)+\beta(x)) / p(x)<1$,

$$
\frac{r^{\nu / p(z)-\varepsilon}}{|B(z, r)|} \int_{B(z, r)} \exp \left(\frac{\left|U_{\alpha} f(x)\right|^{p(x) /(p(x)-q(x)-\beta(x))}}{C_{1}}\right) d x \leq C_{2}
$$

(2) in case $\inf _{x \in \mathbf{R}^{N}}(q(x)+\beta(x)) / p(x) \geq 1$,

$$
\frac{r^{\nu / p(z)-\varepsilon}}{|B(z, r)|} \int_{B(z, r)} \exp \left(\exp \left(\frac{\left|U_{\alpha} f(x)\right|}{C_{1}}\right)\right) d x \leq C_{2}
$$

for all $z \in G, 0<r<d_{G}$ and f satisfying $\|f\|_{L^{p(\cdot), q(\cdot), \nu(\cdot), \beta(\cdot)}(G)} \leq 1$.
Recently, Theorem A was extended to Musielak-Orlicz-Morrey spaces in [20]. Our main aim in this paper is to give a general version of Trudinger type exponential integrability for Riesz potentials $I_{\alpha} f$ of functions in Musielak-Orlicz-Morrey spaces $L^{\Phi, \kappa}(X)$ on metric measure spaces X (e.g., Corollary 4.6) as an extension of the above results (see Section 2 for the definitions of Φ and κ and Section 3 for the definition of $I_{\alpha} f$). Since we discuss the Morrey version, our strategy is to find an estimate of Riesz potentials by use of Riesz potentials of order ε, which plays a role of the maximal functions (see Section 3). What is new about this paper is that we can pass our results to the metric measure setting; the technique in [20] still works.

Beginning with Sobolev's embedding theorem (see e.g. [1], [2]), continuity properties of Riesz potentials or Sobolev functions have been studied by many
authors. Continuity of Riesz potentials of functions in Orlicz spaces was studied in [11], [21], [22], [29] and [32] (cf. also [30]). Then such continuity was investigated on generalized Morrey spaces $L^{1, \varphi}$ in [23] and [24], on Orlicz-Morrey spaces in [34], on variable exponent Lebesgue spaces in [12], [13] and [16] and on variable exponent Morrey spaces in [34]. In [25], Mizuta, Nakai and the authors also proved continuity for Riesz potentials of functions in two variable exponent Morrey spaces $L^{p(\cdot), q(\cdot), \nu(\cdot), \beta(\cdot)}(G)$.

In [20], these results have been extended to Musielak-Orlicz-Morrey spaces. Our second aim in this paper is to give a general version of continuity for Riesz potentials $I_{\alpha} f$ of functions in Musielak-Orlicz-Morrey spaces $L^{\Phi, \kappa}(X)$ on metric measure spaces (e.g., Corollary 5.6) as an extension of the above results.

In [39], we established Trudinger type exponential integrability for MusielakOrlicz spaces in the Euclidean setting by use of the maximal functions, which are a crucial tool as in Hedberg [18]. Our third aim in this paper is to give a general version of Trudinger type exponential integrability for Riesz potentials $I_{\alpha} f$ of functions in Musielak-Orlicz spaces $L^{\Phi}(X)$ on metric measure spaces (e.g., Corollary 7.2) as an extension of [13], [17] and [39]. To obtain our results, we need the boundedness of maximal operator on $L^{\Phi}(X)$ (see Lemma 6.1).

In the final section, we show the continuity for Riesz potentials $I_{\alpha} f$ of functions in Musielak-Orlicz spaces $L^{\Phi}(X)$ on metric measure spaces (see Corollary 8.2).

2 Preliminaries

Throughout this paper, let C denote various constants independent of the variables in question.

We denote by (X, d, μ) a metric measure space, where X is a set, d is a metric on X and μ is a nonnegative complete Borel regular outer measure on X which is finite in every bounded set. For simplicity, we often write X instead of (X, d, μ). For $x \in X$ and $r>0$, we denote by $B(x, r)$ the open ball centered at x with radius r and $d_{\Omega}=\sup \{d(x, y): x, y \in \Omega\}$ for a set $\Omega \subset X$.

We say that the measure μ is a doubling measure if there exists a constant $c_{0}>0$ such that $\mu(B(x, 2 r)) \leq c_{0} \mu(B(x, r))$ for every $x \in X$ and $0<r<d_{X}$. We say that X is a doubling space if μ is a doubling measure.

In this paper, we assume that X is a bounded set and a doubling space, that is $d_{X}<\infty$. This implies that $\mu(X)<\infty$.

We consider a function

$$
\Phi(x, t)=t \phi(x, t): X \times[0, \infty) \rightarrow[0, \infty)
$$

satisfying the following conditions $(\Phi 1)-(\Phi 4)$:
($\Phi 1$) $\phi(\cdot, t)$ is measurable on X for each $t \geq 0$ and $\phi(x, \cdot)$ is continuous on $[0, \infty)$ for each $x \in X$;
($\Phi 2$) there exists a constant $A_{1} \geq 1$ such that

$$
A_{1}^{-1} \leq \phi(x, 1) \leq A_{1} \quad \text { for all } x \in X
$$

(Ф3) $\quad \phi(x, \cdot)$ is uniformly almost increasing, namely there exists a constant $A_{2} \geq 1$ such that

$$
\phi(x, t) \leq A_{2} \phi(x, s) \quad \text { for all } x \in X \quad \text { whenever } 0 \leq t<s ;
$$

($\Phi 4$) there exists a constant $A_{3} \geq 1$ such that

$$
\phi(x, 2 t) \leq A_{3} \phi(x, t) \quad \text { for all } x \in X \text { and } t>0 .
$$

Note that ($\Phi 2$), ($\Phi 3$) and ($\Phi 4$) imply

$$
0<\inf _{x \in X} \phi(x, t) \leq \sup _{x \in X} \phi(x, t)<\infty
$$

for each $t>0$.
If $\Phi(x, \cdot)$ is convex for each $x \in X$, then ($\Phi 3$) holds with $A_{2}=1$; namely $\phi(x, \cdot)$ is non-decreasing for each $x \in X$.

Let $\bar{\phi}(x, t)=\sup _{0 \leq s \leq t} \phi(x, s)$ and

$$
\begin{equation*}
\bar{\Phi}(x, t)=\int_{0}^{t} \bar{\phi}(x, r) d r \tag{2.1}
\end{equation*}
$$

for $x \in X$ and $t \geq 0$. Then $\bar{\Phi}(x, \cdot)$ is convex and

$$
\begin{equation*}
\frac{1}{2 A_{3}} \Phi(x, t) \leq \bar{\Phi}(x, t) \leq A_{2} \Phi(x, t) \tag{2.2}
\end{equation*}
$$

for all $x \in X$ and $t \geq 0$.
We shall also consider the following condition:
($\Phi 5$) for every $\gamma_{1}, \gamma_{2}>0$, there exists a constant $B_{\gamma_{1}, \gamma_{2}} \geq 1$ such that

$$
\phi(x, t) \leq B_{\gamma_{1}, \gamma_{2}} \phi(y, t)
$$

whenever $d(x, y) \leq \gamma_{1} t^{-1 / \gamma_{2}}$ and $t \geq 1$.
Example 2.1. Let $p(\cdot)$ and $q_{j}(\cdot), j=1, \ldots, k$, be measurable functions on X such that
(P1) $1<p^{-}:=\inf _{x \in X} p(x) \leq \sup _{x \in X} p(x)=: p^{+}<\infty$
and
(Q1) $-\infty<q_{j}^{-}:=\inf _{x \in X} q_{j}(x) \leq \sup _{x \in X} q_{j}(x)=: q_{j}^{+}<\infty$
for all $j=1, \ldots, k$.
Set $L_{c}(t)=\log (c+t)$ for $c \geq e$ and $t \geq 0, L_{c}^{(1)}(t)=L_{c}(t), L_{c}^{(j+1)}(t)=L_{c}\left(L_{c}^{(j)}(t)\right)$ and

$$
\Phi(x, t)=t^{p(x)} \prod_{j=1}^{k}\left(L_{c}^{(j)}(t)\right)^{q_{j}(x)} .
$$

Then, $\Phi(x, t)$ satisfies ($\Phi 1$), ($\Phi 2$), ($\Phi 3$) and ($\Phi 4$).
Moreover, we see that $\Phi(x, t)$ satisfies ($\Phi 5$) if
(P2) $p(\cdot)$ is \log-Hölder continuous, namely

$$
|p(x)-p(y)| \leq \frac{C_{p}}{L_{e}(1 / d(x, y))}
$$

with a constant $C_{p} \geq 0$ and
(Q2) $q_{j}(\cdot)$ is $j+1$-log-Hölder continuous, namely

$$
\left|q_{j}(x)-q_{j}(y)\right| \leq \frac{C_{q_{j}}}{L_{e}^{(j+1)}(1 / d(x, y))}
$$

with constants $C_{q_{j}} \geq 0, j=1, \ldots k$.
Example 2.2. Let $p(\cdot)$ be a measurable function on X satisfying (P 1) and (P 2). Let $q_{1}(\cdot)$ be a measurable function on X satisfying (Q1) and (Q2) and let $q_{2}(\cdot)$ be a measurable function on X satisfying (Q1). Then

$$
\Phi(x, t)=t^{p(x)}(\log (e+t))^{q_{1}(x)}(\log (e+1 / t))^{q_{2}(x)}
$$

satisfies ($\Phi 1$), ($\Phi 2$), ($\Phi 3$), ($\Phi 4$) and ($\Phi 5$).
In view of (2.2), given $\Phi(x, t)$ as above, the associated Musielak-Orlicz space

$$
L^{\Phi}(X)=\left\{f \in L_{l o c}^{1}(X) ; \int_{X} \Phi(y,|f(y)|) d \mu(y)<\infty\right\}
$$

is a Banach space with respect to the norm

$$
\|f\|_{L^{\Phi}(X)}=\inf \left\{\lambda>0 ; \int_{X} \bar{\Phi}(y,|f(y)| / \lambda) d \mu(y) \leq 1\right\}
$$

(cf. [37]).
We also consider a function $\kappa(x, r): X \times\left(0, d_{X}\right] \rightarrow(0, \infty)$ satisfying the following conditions:
$(\kappa 1) \kappa(x, \cdot)$ is measurable for each $x \in X$;
($\kappa 2$) $\kappa(x, \cdot)$ is uniformly almost increasing on $\left(0, d_{X}\right]$, namely there exists a constant $Q_{1} \geq 1$ such that

$$
\kappa(x, r) \leq Q_{1} \kappa(x, s)
$$

for all $x \in X$ whenever $0<r<s \leq d_{X}$;
$(\kappa 3)$ there are constants $Q>0$ and $Q_{2} \geq 1$ such that

$$
Q_{2}^{-1} \min \left(1, r^{Q}\right) \leq \kappa(x, r) \leq Q_{2}
$$

for all $x \in X$ and $0<r \leq d_{X}$.

Example 2.3. For $Q>0$, let $\nu(\cdot)$ and $\beta_{j}(\cdot), j=1, \ldots k$ be measurable functions on X such that $\inf _{x \in X} \nu(x)>0, \sup _{x \in X} \nu(x) \leq Q$ and $-c(Q-\nu(x)) \leq \beta_{j}(x) \leq c$ for all $x \in X, j=1, \ldots, k$ and some constant $c>0$. Then

$$
\kappa(x, r)=r^{\nu(x)} \prod_{j=1}^{k}\left(L_{e}^{(j)}(1 / r)\right)^{\beta_{j}(x)}
$$

satisfies $(\kappa 1),(\kappa 2)$ and ($\kappa 3$).
For a locally integrable function f on X, define the $L^{\Phi, \kappa}$ norm

$$
\|f\|_{L^{\Phi, \kappa}(X)}=\inf \left\{\lambda>0: \sup _{x \in X, 0<r \leq d_{X}} \frac{\kappa(x, r)}{\mu(B(x, r))} \int_{X \cap B(x, r)} \bar{\Phi}(y,|f(y)| / \lambda) d \mu(y) \leq 1\right\} .
$$

See (2.1) for the definition of $\bar{\Phi}$. Let $L^{\Phi, \kappa}(X)$ denote the set of all functions f such that $\|f\|_{L^{\Phi, \kappa}(X)}<\infty$ (cf. [38]), which we call a Musielak-Orlicz-Morrey space. Note that $L^{\Phi, \kappa}(X)=L^{\Phi}(X)$ if $\mu(B(x, r)) \sim \kappa(x, r)$ for all $x \in X$ and $0<r \leq d_{X}$. (Here $h_{1}(x, s) \sim h_{2}(x, s)$ means that $C^{-1} h_{2}(x, s) \leq h_{1}(x, s) \leq C h_{2}(x, s)$ for a constant $C>0$.)

3 Lemmas for Musielak-Orlicz-Morrey spaces

Set

$$
\Phi^{-1}(x, s)=\sup \{t>0 ; \Phi(x, t)<s\}
$$

for $x \in X$ and $s>0$.
Lemma 3.1 ([19, Lemma 5.1]). $\Phi^{-1}(x, \cdot)$ is non-decreasing;

$$
\begin{equation*}
\Phi^{-1}(x, \lambda s) \leq A_{2} \lambda \Phi^{-1}(x, s) \tag{3.1}
\end{equation*}
$$

for all $x \in X, s>0$ and $\lambda \geq 1$ and

$$
\begin{equation*}
\min \left\{1, \frac{s}{A_{1} A_{2}}\right\} \leq \Phi^{-1}(x, s) \leq \max \left\{1, A_{1} A_{2} s\right\} \tag{3.2}
\end{equation*}
$$

for all $x \in X$ and $s>0$, where A_{1} and A_{2} are the constants appearing in ($\Phi 2$) and (Ф3).

Lemma 3.2. There exists a constant $C>0$ such that

$$
\begin{equation*}
C^{-1} \leq \Phi^{-1}\left(x, \kappa(x, r)^{-1}\right) \leq C r^{-Q} \tag{3.3}
\end{equation*}
$$

for all $x \in X$ and $0<r \leq d_{X}$.
Proof. By ($\kappa 3)$,

$$
Q_{2}^{-1} \leq \kappa(x, r)^{-1} \leq Q_{2} \max \left(1, r^{-Q}\right)
$$

for $x \in X$ and $0<r \leq d_{X}$. Hence, by (3.2), we obtain (3.3).
As in [19, Lemma 5.3], we can prove the following result.

Lemma 3.3 (cf. [19, Lemma 5.3]). Assume that $\Phi(x, t)$ satisfies ($\Phi 5$). Then there exists a constant $C>0$ such that

$$
\int_{X \cap B(x, r)} f(y) d \mu(y) \leq C \mu(B(x, r)) \Phi^{-1}\left(x, \kappa(x, r)^{-1}\right)
$$

for all $x \in X, 0<r \leq d_{X}$ and $f \geq 0$ satisfying $\|f\|_{L^{\Phi, \kappa}(X)} \leq 1$.
For $\alpha>0$, we define the Riesz potential of order α for a locally integrable function f on X by

$$
I_{\alpha} f(x)=\int_{X} \frac{d(x, y)^{\alpha} f(y)}{\mu(B(x, d(x, y)))} d \mu(y)
$$

(e.g. see [15]).

Set

$$
\Gamma(x, s)=\int_{1 / s}^{d_{X}} \rho^{\alpha} \Phi^{-1}\left(x, \kappa(x, \rho)^{-1}\right) \frac{d \rho}{\rho}
$$

for $s \geq 2 / d_{X}$ and $x \in X$. For $0 \leq s<2 / d_{X}$ and $x \in X$, we set $\Gamma(x, s)=$ $\Gamma\left(x, 2 / d_{X}\right)\left(d_{X} / 2\right) s$. Then note that $\Gamma(x, \cdot)$ is strictly increasing and continuous for each $x \in X$.

Lemma 3.4 (cf. [20, Lemma 3.5]). There exists a positive constant C^{\prime} such that $\Gamma\left(x, 2 / d_{X}\right) \geq C^{\prime}>0$ for all $x \in X$.

Lemma 3.5. Assume that $\Phi(x, t)$ satisfies ($\Phi 5$). Then there exists a constant $C>0$ such that

$$
\int_{X \backslash B(x, \delta)} \frac{d(x, y)^{\alpha} f(y)}{\mu(B(x, d(x, y)))} d \mu(y) \leq C \Gamma\left(x, \frac{1}{\delta}\right)
$$

for all $x \in X, 0<\delta \leq d_{X} / 2$ and nonnegative $f \in L^{\Phi, \kappa}(X)$ with $\|f\|_{L^{\Phi, \kappa}(X)} \leq 1$.
Proof. Let j_{0} be the smallest positive integer such that $2^{j_{0}} \delta \geq d_{X}$. By Lemma 3.3, we have

$$
\begin{aligned}
& \int_{X \backslash B(x, \delta)} \frac{d(x, y)^{\alpha} f(y)}{\mu(B(x, d(x, y)))} d \mu(y) \\
= & \sum_{j=1}^{j_{0}} \int_{X \cap\left(B\left(x, 2^{j} \delta\right) \backslash B\left(x, 2^{j-1} \delta\right)\right)} \frac{d(x, y)^{\alpha} f(y)}{\mu(B(x, d(x, y)))} d \mu(y) \\
\leq & \sum_{j=1}^{j_{0}}\left(2^{j} \delta\right)^{\alpha} \frac{1}{\mu\left(B\left(x, 2^{j-1} \delta\right)\right)} \int_{X \cap B\left(x, 2^{j} \delta\right)} f(y) d \mu(y) \\
\leq & c_{0} \sum_{j=1}^{j_{0}}\left(2^{j} \delta\right)^{\alpha} \frac{1}{\mu\left(B\left(x, 2^{j} \delta\right)\right)} \int_{X \cap B\left(x, 2^{j} \delta\right)} f(y) d \mu(y) \\
\leq & C\left(\sum_{j=1}^{j_{0}-1}\left(2^{j} \delta\right)^{\alpha} \Phi^{-1}\left(x, \kappa\left(x, 2^{j} \delta\right)^{-1}\right)+d_{X}^{\alpha} \Phi^{-1}\left(x, \kappa\left(x, d_{X}\right)^{-1}\right)\right) .
\end{aligned}
$$

By ($\kappa 2$) and (3.1), we have

$$
\begin{aligned}
& \int_{2^{j-1} \delta}^{2^{j} \delta} t^{\alpha} \Phi^{-1}\left(x, \kappa(x, t)^{-1}\right) \frac{d t}{t} \geq\left(2^{j-1} \delta\right)^{\alpha} \Phi^{-1}\left(x, Q_{1}^{-1} \kappa\left(x, 2^{j} \delta\right)^{-1}\right) \log 2 \\
\geq & \frac{\left(2^{j} \delta\right)^{\alpha} \log 2}{2^{\alpha} A_{2} Q_{1}} \Phi^{-1}\left(x, \kappa\left(x, 2^{j} \delta\right)^{-1}\right)=C\left(2^{j} \delta\right)^{\alpha} \Phi^{-1}\left(x, \kappa\left(x, 2^{j} \delta\right)^{-1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{d_{X} / 2}^{d_{X}} t^{\alpha} \Phi^{-1}\left(x, \kappa(x, t)^{-1}\right) \frac{d t}{t} & \geq \frac{d_{X}^{\alpha} \log 2}{2^{\alpha} A_{2} Q_{1}} \Phi^{-1}\left(x, \kappa\left(x, d_{X}\right)^{-1}\right) \\
& =C d_{X}^{\alpha} \Phi^{-1}\left(x, \kappa\left(x, d_{X}\right)^{-1}\right)
\end{aligned}
$$

Hence, we obtain

$$
\begin{aligned}
& \int_{X \backslash B(x, \delta)} \frac{d(x, y)^{\alpha} f(y)}{\mu(B(x, d(x, y)))} d \mu(y) \\
\leq & C\left(\sum_{j=1}^{j_{0}-1} \int_{2^{j-1} \delta}^{2^{j} \delta} t^{\alpha} \Phi^{-1}\left(x, \kappa(x, t)^{-1}\right) \frac{d t}{t}+\int_{d_{X} / 2}^{d_{X}} t^{\alpha} \Phi^{-1}\left(x, \kappa(x, t)^{-1}\right) \frac{d t}{t}\right) \\
\leq & C \Gamma\left(x, \frac{1}{\delta}\right)
\end{aligned}
$$

as required
Lemma 3.6. Assume that $\Phi(x, t)$ satisfies ($\Phi 5$). Let $\varepsilon>0$ and define

$$
\lambda_{\varepsilon}(z, r)=\frac{1}{1+\int_{r}^{d_{X}} \rho^{\varepsilon} \Phi^{-1}\left(z, \kappa(z, \rho)^{-1}\right) \frac{d \rho}{\rho}}
$$

for $z \in X$. Then there exists a constant $C_{I, \varepsilon}>0$ such that

$$
\frac{\lambda_{\varepsilon}(z, r)}{\mu(B(z, r))} \int_{X \cap B(z, r)} I_{\varepsilon} f(x) d \mu(x) \leq C_{I, \varepsilon}
$$

for all $z \in X, 0<r \leq d_{X}$ and $f \geq 0$ satisfying $\|f\|_{L^{\Phi, \kappa}(X)} \leq 1$.
Proof. Let $z \in X$. Write

$$
\begin{aligned}
I_{\varepsilon} f(x) & =\int_{X \cap B(z, 2 r)} \frac{d(x, y)^{\varepsilon} f(y)}{\mu(B(x, d(x, y)))} d \mu(y)+\int_{X \backslash B(z, 2 r)} \frac{d(x, y)^{\varepsilon} f(y)}{\mu(B(x, d(x, y)))} d \mu(y) \\
& =I_{1}(x)+I_{2}(x)
\end{aligned}
$$

for $x \in X$. By Fubini's theorem,

$$
\begin{aligned}
& \int_{X \cap B(z, r)} I_{1}(x) d \mu(x) \\
= & \int_{X \cap B(z, 2 r)}\left(\int_{X \cap B(z, r)} \frac{d(x, y)^{\varepsilon}}{\mu(B(x, d(x, y)))} d \mu(x)\right) f(y) d \mu(y) \\
\leq & \int_{X \cap B(z, 2 r)}\left(\int_{X \cap B(y, 3 r)} \frac{d(x, y)^{\varepsilon}}{\mu(B(x, d(x, y)))} d \mu(x)\right) f(y) d \mu(y) \\
\leq & \int_{X \cap B(z, 2 r)}\left(\sum_{j=0}^{\infty} \int_{X \cap\left(B \left(y, 2^{\left.-j+2 r) \backslash B\left(y, 2^{-j+1} r\right)\right)}\right.\right.} \frac{d(x, y)^{\varepsilon}}{\mu(B(x, d(x, y)))} d \mu(x)\right) f(y) d \mu(y) \\
\leq & \int_{X \cap B(z, 2 r)}\left(\sum_{j=0}^{\infty} \int_{X \cap\left(B\left(y, 2^{-j+2} r\right) \backslash B\left(y, 2^{-j+1} r\right)\right)} \frac{\left(2^{-j+2} r\right)^{\varepsilon}}{\mu\left(B\left(x, 2^{-j+1} r\right)\right)} d \mu(x)\right) f(y) d \mu(y) .
\end{aligned}
$$

Since μ is a doubling measure, we have

$$
\begin{aligned}
& \int_{X \cap B(z, r)} I_{1}(x) d \mu(x) \\
\leq & c_{0}^{2} \int_{X \cap B(z, 2 r)}\left(\sum_{j=0}^{\infty} \int_{X \cap\left(B\left(y, 2^{-j+2 r}\right) \backslash B\left(y, 2^{-j+1} r\right)\right)} \frac{\left(2^{-j+2} r\right)^{\varepsilon}}{\mu\left(B\left(x, 2^{-j+3} r\right)\right)} d \mu(x)\right) f(y) d \mu(y) \\
\leq & c_{0}^{2} \int_{X \cap B(z, 2 r)}\left(\sum_{j=0}^{\infty} \int_{X \cap\left(B\left(y, 2^{-j+2 r}\right) \backslash B\left(y, 2^{-j+1} r\right)\right)} \frac{\left(2^{-j+2} r\right)^{\varepsilon}}{\mu\left(B\left(y, 2^{-j+2} r\right)\right)} d \mu(x)\right) f(y) d \mu(y) \\
\leq & c_{0}^{2} \int_{X \cap B(z, 2 r)}\left(\sum_{j=0}^{\infty}\left(2^{-j+2} r\right)^{\varepsilon}\right) f(y) d \mu(y) \\
\leq & C 8^{\varepsilon} \int_{X \cap B(z, 2 r)}\left(\sum_{j=0}^{\infty} \int_{2^{-j-1} r}^{2^{-j} r} t^{\varepsilon} \frac{d t}{t}\right) f(y) d \mu(y) \\
\leq & C \int_{X \cap B(z, 2 r)}\left(\int_{0}^{r} t^{\varepsilon} \frac{d t}{t}\right) f(y) d \mu(y) \\
= & \frac{C}{\varepsilon} r^{\varepsilon} \int_{X \cap B(z, 2 r)} f(y) d \mu(y) .
\end{aligned}
$$

Now, by Lemma 3.3, ($\kappa 2$) and (3.1), we have

$$
\begin{aligned}
r^{\varepsilon} \int_{X \cap B(z, 2 r)} f(y) d y & \leq C r^{\varepsilon} \mu(B(z, 2 r)) \Phi^{-1}\left(z, \kappa(z, 2 r)^{-1}\right) \\
& \leq C \mu(B(z, 2 r)) \int_{r}^{2 r} \rho^{\varepsilon} \Phi^{-1}\left(z, \kappa(z, \rho)^{-1}\right) \frac{d \rho}{\rho}
\end{aligned}
$$

if $0<r \leq d_{X} / 2$ and, by Lemma 3.3 and (3.3), we have

$$
\begin{aligned}
r^{\varepsilon} \int_{X \cap B(z, 2 r)} f(y) d y & =r^{\varepsilon} \int_{B\left(z, d_{X}\right)} f(y) d y \\
& \leq C d_{X}{ }^{\varepsilon} \mu\left(B\left(z, d_{X}\right)\right) \Phi^{-1}\left(z, \kappa\left(z, d_{X}\right)^{-1}\right) \leq C \mu(B(z, r))
\end{aligned}
$$

if $d_{X} / 2<r \leq d_{X}$. Therefore

$$
\int_{X \cap B(z, r)} I_{1}(x) d \mu(x) \leq \frac{C}{\varepsilon} \frac{\mu(B(z, r))}{\lambda_{\varepsilon}(z, r)}
$$

for all $0<r \leq d_{X}$.
For I_{2}, first note that $I_{2}(x)=0$ if $x \in X$ and $r \geq d_{X} / 2$. Let $0<r<d_{X} / 2$. Let j_{0} be the smallest positive integer such that $2^{j_{0}} r \geq d_{X}$. Since

$$
I_{2}(x) \leq C \int_{X \backslash B(z, 2 r)} \frac{d(z, y)^{\varepsilon} f(y)}{\mu(B(z, d(z, y)))} d \mu(y) \quad \text { for } \quad x \in X \cap B(z, r)
$$

by Lemma 3.3, we have

$$
\begin{aligned}
I_{2}(x) & \leq C \sum_{j=1}^{j_{0}-1} \int_{B\left(z, 2^{j+1} r\right) \backslash B\left(z, 2^{j r} r\right)} \frac{d(z, y)^{\varepsilon}}{\mu(B(z, d(z, y)))} f(y) d \mu(y) \\
& \leq C \sum_{j=1}^{j_{0}-1}\left(2^{j+1} r\right)^{\varepsilon} \frac{1}{\mu\left(B\left(z, 2^{j} r\right)\right)} \int_{X \cap B\left(z, 2^{j+1} r\right)} f(y) d \mu(y) \\
& \leq C \sum_{j=1}^{j_{0}-1}\left(2^{j+1} r\right)^{\varepsilon} \frac{1}{\mu\left(B\left(z, 2^{j+1} r\right)\right)} \int_{X \cap B\left(z, 2^{j+1} r\right)} f(y) d \mu(y) \\
& \leq C\left(\sum_{j=1}^{j_{0}-2}\left(2^{j+1} r\right)^{\varepsilon} \Phi^{-1}\left(x, \kappa\left(x, 2^{j+1} r\right)^{-1}\right)+d_{X}^{\varepsilon} \Phi^{-1}\left(x, \kappa\left(x, d_{X}\right)^{-1}\right)\right) .
\end{aligned}
$$

As in the proof of Lemma 3.5, we obtain

$$
\begin{aligned}
I_{2}(x) & \leq C\left(\sum_{j=1}^{j_{0}-2} \int_{2^{j_{r}}}^{2^{j+1} r} \rho^{\varepsilon} \Phi^{-1}\left(x, \kappa(x, \rho)^{-1}\right) \frac{d \rho}{\rho}+\int_{d_{X} / 2}^{d_{X}} \rho^{\varepsilon} \Phi^{-1}\left(x, \kappa(x, \rho)^{-1}\right) \frac{d \rho}{\rho}\right) \\
& \leq C \int_{r}^{d_{X}} \rho^{\varepsilon} \Phi^{-1}\left(z, \kappa(z, \rho)^{-1}\right) \frac{d \rho}{\rho} \\
& \leq \frac{C}{\lambda_{\varepsilon}(z, r)}
\end{aligned}
$$

for all $x \in X \cap B(z, r)$. Hence

$$
\int_{X \cap B(z, r)} I_{2}(x) d \mu(x) \leq C \frac{\mu(B(z, r))}{\lambda_{\varepsilon}(z, r)} .
$$

Thus this lemma is proved.

4 Trudinger's inequality for Musielak-Orlicz-Morrey spaces

In this section, we deal with the case $\Gamma(x, t)$ satisfies the uniform log-type condition: $\left(\Gamma_{\log }\right)$ there exists a constant $c_{\Gamma}>0$ such that

$$
\Gamma\left(x, t^{2}\right) \leq c_{\Gamma} \Gamma(x, t)
$$

for all $x \in X$ and $t \geq 1$.

Example 4.1. Let Φ and κ be as in Examples 2.1 and 2.3, respectively. Then

$$
\Gamma(x, t) \sim \int_{1 / t}^{d_{X}} \rho^{\alpha-\nu(x) / p(x)} \prod_{j=1}^{k}\left[L_{e}^{(j)}(1 / \rho)\right]^{-\left(q_{j}(x)+\beta_{j}(x)\right) / p(x)} \frac{d \rho}{\rho} \quad\left(t \geq 2 / d_{X}\right)
$$

so that it satisfies $\left(\Gamma_{\log }\right)$ if and only if

$$
\alpha p(x) \geq \nu(x) \quad \text { for all } x \in X .
$$

By $\left(\Gamma_{\log }\right)$, together with Lemma 3.4, we see that $\Gamma(x, t)$ satisfies the uniform doubling condition in t :

Lemma 4.2 (cf. [20, Lemma 4.2]). Suppose $\Gamma(x, t)$ satisfies ($\Gamma_{\text {log }}$). For every $a>1$, there exists $b>0$ such that $\Gamma(x, a t) \leq b \Gamma(x, t)$ for all $x \in X$ and $t>0$.

Theorem 4.3. Assume that $\Phi(x, t)$ satisfies ($\Phi 5$), $\Gamma(x, t)$ satisfies ($\Gamma_{\text {log }}$). For each $x \in X$, let $\gamma(x)=\sup _{s>0} \Gamma(x, s)$. Suppose $\Psi(x, t): X \times[0, \infty) \rightarrow[0, \infty]$ satisfies the following conditions:
($\Psi 1) \Psi(\cdot, t)$ is measurable on X for each $t \in[0, \infty) ; \Psi(x, \cdot)$ is continuous on $[0, \infty)$ for each $x \in X$;
($\Psi 2$) there is a constant $A_{1}^{\prime} \geq 1$ such that $\Psi(x, t) \leq \Psi\left(x, A_{1}^{\prime} s\right)$ for all $x \in X$ whenever $0<t<s$;
($\Psi 3) \Psi\left(x, \Gamma(x, t) / A_{2}^{\prime}\right) \leq A_{3}^{\prime} t$ for all $x \in X$ and $t>0$ with constants $A_{2}^{\prime}, A_{3}^{\prime} \geq 1$ independent of x.

Then, for $0<\varepsilon<\alpha$, there exists a constant $C^{*}>0$ such that $I_{\alpha} f(x) / C^{*}<\gamma(x)$ for a.e. $x \in X$ and

$$
\frac{\lambda_{\varepsilon}(z, r)}{\mu(B(z, r))} \int_{X \cap B(z, r)} \Psi\left(x, \frac{I_{\alpha} f(x)}{C^{*}}\right) d \mu(x) \leq 1
$$

for all $z \in X, 0<r \leq d_{X}$ and $f \geq 0$ satisfying $\|f\|_{L^{\Phi, \kappa}(X)} \leq 1$.
Proof. Let $f \geq 0$ and $\|f\|_{L^{\Phi, \kappa}(X)} \leq 1$. Fix $x \in X$. For $0<\delta \leq d_{X} / 2$, Lemma 3.5 implies

$$
\begin{aligned}
I_{\alpha} f(x) & \leq \int_{X \cap B(x, \delta)} \frac{d(x, y)^{\alpha} f(y)}{\mu(B(x, d(x, y)))} d \mu(y)+C \Gamma\left(x, \frac{1}{\delta}\right) \\
& =\int_{X \cap B(x, \delta)} d(x, y)^{\alpha-\varepsilon} \frac{d(x, y)^{\varepsilon} f(y)}{\mu(B(x, d(x, y)))} d \mu(y)+C \Gamma\left(x, \frac{1}{\delta}\right) \\
& \leq C\left\{\delta^{\alpha-\varepsilon} I_{\varepsilon} f(x)+\Gamma\left(x, \frac{1}{\delta}\right)\right\}
\end{aligned}
$$

with constants $C>0$ independent of x.
If $I_{\varepsilon} f(x) \leq 2 / d_{X}$, then we take $\delta=d_{X} / 2$. Then, by Lemma 3.4

$$
I_{\alpha} f(x) \leq C \Gamma\left(x, \frac{2}{d_{X}}\right)
$$

By Lemma 4.2, there exists $C_{1}^{*}>0$ independent of x such that

$$
\begin{equation*}
I_{\alpha} f(x) \leq C_{1}^{*} \Gamma\left(x, \frac{1}{2 A_{3}^{\prime}}\right) \quad \text { if } I_{\varepsilon} f(x) \leq 2 / d_{X} \tag{4.1}
\end{equation*}
$$

Next, suppose $2 / d_{X}<I_{\varepsilon} f(x)<\infty$. Let $m=\sup _{s \geq 2 / d_{X}, x \in X} \Gamma(x, s) / s$. By $\left(\Gamma_{\log }\right), m<\infty$. Define δ by

$$
\delta^{\alpha-\varepsilon}=\frac{\left(d_{X} / 2\right)^{\alpha-\varepsilon}}{m} \Gamma\left(x, I_{\varepsilon} f(x)\right)\left(I_{\varepsilon} f(x)\right)^{-1} .
$$

Since $\Gamma\left(x, I_{\varepsilon} f(x)\right)\left(I_{\varepsilon} f(x)\right)^{-1} \leq m, 0<\delta \leq d_{X} / 2$. Then by Lemma 3.4

$$
\begin{aligned}
\frac{1}{\delta} & \leq C \Gamma\left(x, I_{\varepsilon} f(x)\right)^{-1 /(\alpha-\varepsilon)}\left(I_{\varepsilon} f(x)\right)^{1 /(\alpha-\varepsilon)} \\
& \leq C \Gamma\left(x, 2 / d_{X}\right)^{-1 /(\alpha-\varepsilon)}\left(I_{\varepsilon} f(x)\right)^{1 /(\alpha-\varepsilon)} \leq C\left(I_{\varepsilon} f(x)\right)^{1 /(\alpha-\varepsilon)}
\end{aligned}
$$

Hence, using ($\Gamma_{\log }$) and Lemma 4.2, we obtain

$$
\Gamma\left(x, \frac{1}{\delta}\right) \leq \Gamma\left(x, C\left(I_{\varepsilon} f(x)\right)^{1 /(\alpha-\varepsilon)}\right) \leq C \Gamma\left(x, I_{\varepsilon} f(x)\right)
$$

By Lemma 4.2 again, we see that there exists a constant $C_{2}^{*}>0$ independent of x such that

$$
\begin{equation*}
I_{\alpha} f(x) \leq C_{2}^{*} \Gamma\left(x, \frac{1}{2 C_{I, \varepsilon} A_{3}^{\prime}} I_{\varepsilon} f(x)\right) \quad \text { if } 2 / d_{X}<I_{\varepsilon} f(x)<\infty \tag{4.2}
\end{equation*}
$$

where $C_{I, \varepsilon}$ is the constant given in Lemma 3.6.
Now, let $C^{*}=A_{1}^{\prime} A_{2}^{\prime} \max \left(C_{1}^{*}, C_{2}^{*}\right)$. Then, by (4.1) and (4.2),

$$
\frac{I_{\alpha} f(x)}{C^{*}} \leq \frac{1}{A_{1}^{\prime} A_{2}^{\prime}} \max \left\{\Gamma\left(x, \frac{1}{2 A_{3}^{\prime}}\right), \Gamma\left(x, \frac{1}{2 C_{I, \varepsilon} A_{3}^{\prime}} I_{\varepsilon} f(x)\right)\right\}
$$

whenever $I_{\varepsilon} f(x)<\infty$. Since $I_{\varepsilon} f(x)<\infty$ for a.e. $x \in X$ by Lemma 3.6, $I_{\alpha} f(x) / C^{*}<$ $\gamma(x)$ a.e. $x \in X$, and by ($\Psi 2$) and ($\Psi 3$), we have

$$
\begin{aligned}
& \Psi\left(x, \frac{I_{\alpha} f(x)}{C^{*}}\right) \\
& \quad \leq \max \left\{\Psi\left(x, \Gamma\left(x, \frac{1}{2 A_{3}^{\prime}}\right) / A_{2}^{\prime}\right), \Psi\left(x, \Gamma\left(x, \frac{1}{2 C_{I, \varepsilon} A_{3}^{\prime}} I_{\varepsilon} f(x)\right) / A_{2}^{\prime}\right)\right\} \\
& \quad \leq \frac{1}{2}+\frac{1}{2 C_{I, \varepsilon}} I_{\varepsilon} f(x)
\end{aligned}
$$

for a.e. $x \in X$. Thus, noting that $\lambda_{\varepsilon}(z, r) \leq 1$ and using Lemma 3.6, we have

$$
\begin{aligned}
& \frac{\lambda_{\varepsilon}(z, r)}{\mu(B(z, r))} \int_{X \cap B(z, r)} \Psi\left(x, \frac{I_{\alpha} f(x)}{C^{*}}\right) d \mu(x) \\
& \quad \leq \frac{1}{2} \lambda_{\varepsilon}(z, r)+\frac{1}{2 C_{I, \varepsilon}} \frac{\lambda_{\varepsilon}(z, r)}{\mu(B(z, r))} \int_{X \cap B(z, r)} I_{\varepsilon} f(x) d \mu(x) \\
& \quad \leq \frac{1}{2}+\frac{1}{2}=1
\end{aligned}
$$

for all $z \in X$ and $0<r \leq d_{X}$.

Remark 4.4. If $\Gamma(x, s)$ is bounded, that is,

$$
\sup _{x \in X} \int_{0}^{d_{X}} \rho^{\alpha} \Phi^{-1}\left(x, \kappa(x, \rho)^{-1}\right) d \rho<\infty
$$

then by Lemma 3.5 we see that $I_{\alpha}|f|$ is bounded for every $f \in L^{\Phi, \kappa}(X)$.
Remark 4.5. We can not take $\varepsilon=\alpha$ in Theorem 4.3. For details, see [23, Remark 2.8].

As in the proof of [20, Corollary 4.6], we obtain the following corollary applying Theorem 4.3 to special Φ and κ given in Examples 2.1 and 2.3.

Corollary 4.6. Let Φ and κ be as in Examples 2.1 and 2.3.
Assume that

$$
\alpha-\nu(x) / p(x)=0 \quad \text { for all } x \in X
$$

(1) Suppose there exists an integer $1 \leq j_{0} \leq k$ such that

$$
\inf _{x \in X}\left(p(x)-q_{j_{0}}(x)-\beta_{j_{0}}(x)\right)>0
$$

and

$$
\sup _{x \in X}\left(p(x)-q_{j}(x)-\beta_{j}(x)\right) \leq 0
$$

for all $j \leq j_{0}-1$ in case $j_{0} \geq 2$. Then for $0<\varepsilon<\alpha$ there exist constants $C^{*}>0$ and $C^{* *}>0$ such that

$$
\begin{aligned}
& \frac{r^{\nu(z) / p(z)-\varepsilon}}{|B(z, r)|} \int_{X \cap B(z, r)} E_{+}^{\left(j_{0}\right)}\left(\left(\frac{I_{\alpha} f(x)}{C^{*}}\right)^{p(x) /\left(p(x)-q_{j_{0}}(x)-\beta_{j_{0}}(x)\right)}\right. \\
& \left.\quad \times \prod_{j=1}^{k-j_{0}}\left(L_{e}^{(j)}\left(\frac{I_{\alpha} f(x)}{C^{*}}\right)\right)^{\left(q_{j_{0}+j}(x)+\beta_{j_{0}+j}(x)\right) /\left(p(x)-q_{j_{0}}(x)-\beta_{j_{0}}(x)\right)}\right) d \mu(x) \leq C^{* *}
\end{aligned}
$$

for all $z \in X, 0<r \leq d_{X}$ and $f \geq 0$ satisfying $\|f\|_{L^{\Phi, \kappa}(X)} \leq 1$, where $E^{(1)}(t)=$ $e^{t}-e, E^{(j+1)}(t)=\exp \left(E^{j}(t)\right)-e$ and $E_{+}^{(j)}(t)=\max \left(E^{(j)}(t), 0\right)$.
(2) If

$$
\sup _{x \in X}\left(p(x)-q_{j}(x)-\beta_{j}(x)\right) \leq 0
$$

for all $j=1, \ldots, k$, then for $0<\varepsilon<\alpha$ there exist constants $C^{*}>0$ and $C^{* *}>0$ such that

$$
\frac{r^{\nu(z) / p(z)-\varepsilon}}{|B(z, r)|} \int_{X \cap B(z, r)} E^{(k+1)}\left(\frac{I_{\alpha} f(x)}{C^{*}}\right) d \mu(x) \leq C^{* *}
$$

for all $z \in X, 0<r \leq d_{X}$ and $f \geq 0$ satisfying $\|f\|_{L^{\Phi, \kappa}(X)} \leq 1$.

5 Continuity for Musielak-Orlicz-Morrey spaces

In this section, we discuss the continuity of Riesz potentials $I_{\alpha} f$ of functions in Musielak-Orlicz-Morrey spaces under the condition: there are constants $\theta>0$ and $C_{0}>0$ such that

$$
\begin{equation*}
\left|\frac{d(x, y)^{\alpha}}{\mu(B(x, d(x, y)))}-\frac{d(z, y)^{\alpha}}{\mu(B(z, d(z, y)))}\right| \leq C_{0}\left(\frac{d(x, z)}{d(x, y)}\right)^{\theta} \frac{d(x, y)^{\alpha}}{\mu(B(x, d(x, y)))} \tag{5.1}
\end{equation*}
$$

whenever $d(x, z) \leq d(x, y) / 2$.
We consider the functions

$$
\omega(x, r)=\int_{0}^{r} \rho^{\alpha} \Phi^{-1}\left(x, \kappa(x, \rho)^{-1}\right) \frac{d \rho}{\rho}
$$

and

$$
\omega_{\theta}(x, r)=r^{\theta} \int_{r}^{d_{X}} \rho^{\alpha-\theta} \Phi^{-1}\left(x, \kappa(x, \rho)^{-1}\right) \frac{d \rho}{\rho}
$$

for $\theta>0$ and $0<r \leq d_{X}$.
Lemma 5.1 (cf. [20, Lemma 5.1]). Let $E \subset X$. If $\omega(x, r) \rightarrow 0$ as $r \rightarrow 0+$ uniformly in $x \in E$, then $\omega_{\theta}(x, r) \rightarrow 0$ as $r \rightarrow 0+$ uniformly in $x \in E$.

Lemma 5.2 (cf. [20, Lemma 5.2]). There exists a constant $C>0$ such that

$$
\omega(x, 2 r) \leq C \omega(x, r)
$$

for all $x \in X$ and $0<r \leq d_{X} / 2$.
Theorem 5.3. Assume that $\Phi(x, t)$ satisfies ($\Phi 5$). Then there exists a constant $C>0$ such that

$$
\left|I_{\alpha} f(x)-I_{\alpha} f(z)\right| \leq C\left\{\omega(x, d(x, z))+\omega(z, d(x, z))+\omega_{\theta}(x, d(x, z))\right\}
$$

for all $x, z \in X$ with $d(x, z) \leq d_{X} / 4$ and nonnegative $f \in L^{\Phi, \kappa}(X)$ with $\|f\|_{L^{\Phi, \kappa}(X)} \leq$ 1.

Before giving a proof of Theorem 5.3, we prepare two more lemmas.
Lemma 5.4. Assume that $\Phi(x, t)$ satisfies ($\Phi 5$). Let f be a nonnegative function on X such that $\|f\|_{L^{\Phi, \kappa}(X)} \leq 1$. Then there exists a constant $C>0$ such that

$$
\int_{X \cap B(x, \delta)} \frac{d(x, y)^{\alpha} f(y)}{\mu(B(x, d(x, y)))} d \mu(y) \leq C \omega(x, \delta)
$$

for all $x \in X$ and $0<\delta \leq d_{X}$.

Proof. Let f be a nonnegative μ-measurable function on X with $\|f\|_{L^{\Phi, \kappa}(X)} \leq 1$. As usual we start by decomposing $B(x, \delta)$ dyadically:

$$
\begin{aligned}
& \int_{X \cap B(x, \delta)} \frac{d(x, y)^{\alpha} f(y)}{\mu(B(x, d(x, y)))} d \mu(y) \\
= & \sum_{j=1}^{\infty} \int_{X \cap\left(B (x , 2 ^ { - j + 1 } \delta) \backslash B \left(x, 2^{-j \delta))}\right.\right.} \frac{d(x, y)^{\alpha} f(y)}{\mu(B(x, d(x, y)))} d \mu(y) \\
\leq & \sum_{j=1}^{\infty}\left(2^{-j+1} \delta\right)^{\alpha} \frac{1}{\mu\left(B\left(x, 2^{-j} \delta\right)\right)} \int_{B\left(x, 2^{-j+1} \delta\right)} f(y) d \mu(y) \\
\leq & c_{0} \sum_{j=1}^{\infty}\left(2^{-j+1} \delta\right)^{\alpha} \frac{1}{\mu\left(B\left(x, 2^{-j+1} \delta\right)\right)} \int_{B\left(x, 2^{-j+1} \delta\right)} f(y) d \mu(y) .
\end{aligned}
$$

By Lemma 3.3, we have

$$
\begin{aligned}
\int_{X \cap B(x, \delta)} \frac{d(x, y)^{\alpha} f(y)}{\mu(B(x, d(x, y)))} d \mu(y) & \leq C \sum_{j=1}^{\infty}\left(2^{-j+1} \delta\right)^{\alpha} \Phi^{-1}\left(x, \kappa\left(x, 2^{-j+1} \delta\right)^{-1}\right) \\
& \left.\leq C \int_{0}^{\delta} \rho^{\alpha} \Phi^{-1}\left(x, \kappa(x, \rho)^{-1}\right)\right) \frac{d \rho}{\rho} \\
& =C \omega(x, \delta)
\end{aligned}
$$

The following lemma can be proved on the same manner as Lemma 3.5.
Lemma 5.5. Assume that $\Phi(x, t)$ satisfies ($\Phi 5$). Let $\theta \in \mathbf{R}$. Let f be a nonnegative function on X such that $\|f\|_{L^{\Phi, k}(X)} \leq 1$. Then there exists a constant $C>0$ such that

$$
\int_{X \backslash B(x, \delta)} \frac{d(x, y)^{\alpha-\theta} f(y)}{\mu(B(x, d(x, y)))} d \mu(y) \leq C \delta^{-\theta} \omega_{\theta}(x, \delta)
$$

for all $x \in X$ and $0<\delta \leq d_{X} / 2$.
Proof of Theorem 5.3. Let f be a nonnegative μ-measurable function on X with $\|f\|_{L^{\Phi, \kappa}(X)} \leq 1$ and $x, z \in X$ with $d(x, z) \leq d_{X} / 4$. Write

$$
\begin{aligned}
& I_{\alpha} f(x)-I_{\alpha} f(z) \\
= & \int_{X \cap B(x, 2 d(x, z))} \frac{d(x, y)^{\alpha} f(y)}{\mu(B(x, d(x, y)))} d \mu(y)-\int_{X \cap B(x, 2 d(x, z))} \frac{d(z, y)^{\alpha} f(y)}{\mu(B(z, d(z, y)))} d \mu(y) \\
& +\int_{X \backslash B(x, 2 d(x, z))}\left(\frac{d(x, y)^{\alpha}}{\mu(B(x, d(x, y)))}-\frac{d(z, y)^{\alpha}}{\mu(B(z, d(z, y)))}\right) f(y) d \mu(y) .
\end{aligned}
$$

Using Lemmas 5.2 and 5.4, we have

$$
\int_{X \cap B(x, 2 d(x, z))} \frac{d(x, y)^{\alpha} f(y)}{\mu(B(x, d(x, y)))} d \mu(y) \leq C \omega(x, 2 d(x, z)) \leq C \omega(x, d(x, z))
$$

and

$$
\begin{aligned}
\int_{X \cap B(x, 2 d(x, z))} \frac{d(z, y)^{\alpha} f(y)}{\mu(B(z, d(z, y)))} d \mu(y) & \leq \int_{X \cap B(z, 3 d(x, z))} \frac{d(z, y)^{\alpha} f(y)}{\mu(B(z, d(z, y)))} d \mu(y) \\
& \leq C \omega(z, 3 d(x, z)) \leq C \omega(z, d(x, z))
\end{aligned}
$$

On the other hand, by (5.1) and Lemma 5.5, we have

$$
\begin{aligned}
& \int_{X \backslash B(x, 2 d(x, z))}\left|\frac{d(x, y)^{\alpha}}{\mu(B(x, d(x, y)))}-\frac{d(z, y)^{\alpha}}{\mu(B(z, d(z, y)))}\right| f(y) d \mu(y) \\
\leq & C d(x, z)^{\theta} \int_{X \backslash B(x, 2 d(x, z))} \frac{d(x, y)^{\alpha-\theta} f(y)}{\mu(B(x, d(x, y)))} d \mu(y) \\
\leq & C \omega_{\theta}(x, 2 d(x, z)) \leq C \omega_{\theta}(x, d(x, z)) .
\end{aligned}
$$

Then we have the conclusion.
In view of Lemma 5.1, we obtain the following corollary.
Corollary 5.6. Assume that $\Phi(x, t)$ satisfies ($\Phi 5$).
(a) Let $x_{0} \in X$ and suppose $\omega(x, r) \rightarrow 0$ as $r \rightarrow 0+$ uniformly in $x \in X \cap B\left(x_{0}, \delta\right)$ for some $\delta>0$. Then $I_{\alpha} f$ is continuous at x_{0} for every $f \in L^{\Phi, \kappa}(X)$.
(b) Suppose $\omega(x, r) \rightarrow 0$ as $r \rightarrow 0+$ uniformly in $x \in X$. Then $I_{\alpha} f$ is uniformly continuous on X for every $f \in L^{\Phi, \kappa}(X)$.

6 Lemmas for Musielak-Orlicz spaces

For a measurable function $Q(\cdot)$ satisfying

$$
\begin{equation*}
0<Q^{-}:=\inf _{x \in X} Q(x) \leq \sup _{x \in X} Q(x)=: Q^{+}<\infty \tag{6.1}
\end{equation*}
$$

we say that a measure μ is lower Ahlfors $Q(x)$-regular if there exists a constant $c_{1}>0$ such that

$$
\mu(B(x, r)) \geq c_{1} r^{Q(x)}
$$

for all $x \in X$ and $0<r<d_{X}$. Recall that we say that the measure μ is a doubling measure if there exists a constant $c_{0}>0$ such that $\mu(B(x, 2 r)) \leq c_{0} \mu(B(x, r))$ for every $x \in X$ and $0<r<d_{X}$. Here note that if μ is a doubling measure and $d_{X}<\infty$, then μ is lower Ahlfors $\log _{2} c_{0}$-regular since

$$
\frac{\mu(B(x, r))}{\mu\left(B\left(x, d_{X}\right)\right)} \geq c_{0}^{-2}\left(\frac{r}{d_{X}}\right)^{\log _{2} c_{0}}
$$

for all $x \in X$ and $0<r<d_{X}$ (see e.g. [4, Lemma 3.3]).
For a locally integrable function f on X, the Hardy-Littlewood maximal function $M f$ is defined by

$$
M f(x)=\sup _{r>0} \frac{1}{\mu(B(x, r))} \int_{B(x, r) \cap X}|f(y)| d \mu(y) .
$$

As in the proof of [19, Theorem 4.1], we can show the following boundedness of maximal operator on $L^{\Phi}(X)$.

Lemma 6.1 (c.f. [19, Theorem 4.1]). Suppose that $\Phi(x, t)$ satisfies ($\Phi 5$) and further assume:
$\left(\Phi 3^{*}\right) t \mapsto t^{-\varepsilon_{0}} \phi(x, t)$ is uniformly almost increasing on $(0, \infty)$ for some $\varepsilon_{0}>0$.
Then the maximal operator M is bounded from $L^{\Phi}(X)$ into itself, namely, there is a constant $C>0$ such that

$$
\|M f\|_{L^{\Phi}(X)} \leq C\|f\|_{L^{\Phi}(X)}
$$

for all $f \in L^{\Phi}(X)$.
We consider the function

$$
\gamma(x, t): X \times\left(0, d_{X}\right) \rightarrow(0, \infty)
$$

satisfying the following conditions:
$(\gamma 1) \quad \gamma(\cdot, t)$ is measurable on X for each $0<t<d_{X}$ and $\gamma(x, \cdot)$ is continuous on $\left(0, d_{X}\right)$ for each $x \in X$;
$(\gamma 2)$ there exist constants $\gamma_{0}>0$ and $B_{0} \geq 1$ such that

$$
B_{0}^{-1} \leq \gamma(x, t) \leq B_{0} t^{-\gamma_{0}} \quad \text { for all } x \in X \quad \text { whenever } 0<t<d_{X} .
$$

$(\gamma 3)$ there exists a constant $B_{1} \geq 1$ such that

$$
B_{1}^{-1} \gamma(x, s) \leq \gamma(x, t) \leq B_{1} \gamma(x, s) \quad \text { for all } x \in X \text { and } 1 \leq t / s \leq 2 .
$$

Further we consider the function

$$
\widetilde{\Gamma}(x, t): X \times[0, \infty) \rightarrow[0, \infty)
$$

satisfying the following conditions ($\Gamma 1$), ($\Gamma 2$) and ($\Gamma 3$):
(Г1) $\widetilde{\Gamma}(\cdot, t)$ is measurable on X for each $t \geq 0$ and $\widetilde{\Gamma}(x, \cdot)$ is continuous on $[0, \infty)$ for each $x \in X$;
(Г2) $\widetilde{\Gamma}(x, \cdot)$ is uniformly almost increasing, namely there exists a constant $B_{2} \geq 1$ such that

$$
\widetilde{\Gamma}(x, t) \leq B_{2} \widetilde{\Gamma}(x, s) \quad \text { for all } x \in X \quad \text { whenever } 0 \leq t<s ;
$$

(Г3) For a measurable function $Q(\cdot)$ satisfying (6.1), there exist constants $\alpha_{0}>$ $0, B_{3} \geq 1$ and $B_{4} \geq 1$ such that

$$
t^{\alpha-Q(x)} \phi(x, \gamma(x, t))^{-1} \leq B_{3} \widetilde{\Gamma}(x, 1 / t)
$$

for all $x \in X$ and $\alpha \geq \alpha_{0}$ whenever $0<t<d_{X}$ and

$$
\int_{t}^{d_{X}} \rho^{\alpha} \gamma(x, \rho) \frac{d \rho}{\rho} \leq B_{4} \widetilde{\Gamma}(x, 1 / t)
$$

for all $x \in X, 0<t \leq d_{X} / 2$ and $\alpha \geq \alpha_{0}$.

Example 6.2. Let Φ be as in Example 2.1.
(1) Suppose there exists an integer $1 \leq j_{0} \leq k$ such that

$$
\inf _{x \in X}\left(p(x)-q_{j_{0}}(x)-1\right)>0
$$

and

$$
\sup _{x \in X}\left(p(x)-q_{j}(x)-1\right) \leq 0
$$

for all $j \leq j_{0}-1$ in case $j_{0} \geq 2$. set
$\gamma(x, t)=t^{-Q(x) / p(x)}\left(\prod_{j=1}^{j_{0}-1}\left[L_{e}^{(j)}(1 / t)\right]^{-1}\right)\left[L_{e}^{\left(j_{0}\right)}(1 / t)\right]^{-\left(q_{j_{0}}(x)+1\right) / p(x)}\left(\prod_{j=j_{0}+1}^{k}\left[L_{e}^{(j)}(1 / t)\right]^{-q_{j}(x) / p(x)}\right)$
and

$$
\widetilde{\Gamma}(x, t)=\left[L_{e}^{\left(j_{0}\right)}(t)\right]^{\left(p(x)-q_{j 0}(x)-1\right) / p(x)}\left(\prod_{j=j_{0}+1}^{k}\left[L_{e}^{(j)}(t)\right]^{-q_{j}(x) / p(x)}\right) .
$$

Then $\gamma(x, t)$ satisfies $(\gamma 1),(\gamma 2)$ and $(\gamma 3)$ and $\widetilde{\Gamma}(x, t)$ satisfies $(\Gamma 1),(\Gamma 2)$ and $(\Gamma 3)$ for all $\alpha \geq Q^{+} / p^{-}$.
(2) Suppose that

$$
\sup _{x \in X}\left(p(x)-q_{j}(x)-1\right) \leq 0
$$

for all $j=1, \ldots, k$. set

$$
\gamma(x, t)=t^{-Q(x) / p(x)}\left(\prod_{j=1}^{k}\left[L_{e}^{(j)}(1 / t)\right]^{-1}\right)\left[L_{e}^{(k+1)}(1 / t)\right]^{-1 / p(x)}
$$

and

$$
\widetilde{\Gamma}(x, t)=\left[L_{e}^{(k+1)}(1 / t)\right]^{1-1 / p(x)} .
$$

Then $\gamma(x, t)$ satisfies $(\gamma 1),(\gamma 2)$ and $(\gamma 3)$ and $\widetilde{\Gamma}(x, t)$ satisfies $(\Gamma 1),(\Gamma 2)$ and $(\Gamma 3)$ for all $\alpha \geq Q^{+} / p^{-}$.

In fact, see the proof of [39, Corollary 4.2].
Lemma 6.3. Assume that μ is lower Ahlfors $Q(x)$-regular. Suppose that $\Phi(x, t)$ satisfies ($\Phi 5$). Let $\alpha \geq \alpha_{0}$. Then there exists a constant $C>0$ such that

$$
\int_{X \backslash B(x, \delta)} \frac{d(x, y)^{\alpha} f(y)}{\mu(B(x, d(x, y)))} d \mu(y) \leq C \widetilde{\Gamma}\left(x, \frac{1}{\delta}\right)
$$

for all $x \in X, 0<\delta \leq d_{X} / 2$ and nonnegative $f \in L^{\Phi}(X)$ with $\|f\|_{L^{\Phi}(X)} \leq 1$.
Proof. Let f be a nonnegative μ-measurable function on X with $\|f\|_{L^{\Phi}(X)} \leq 1$. Let j_{0} be the smallest integer j_{0} such that $2^{j_{0}} \delta \geq d_{X}$. Since

$$
B_{0}^{-1} \leq \gamma(x, d(x, y)) \leq B_{0} d(x, y)^{-\gamma_{0}}
$$

in view of $(\gamma 2)$, we have

$$
d(x, y) \leq B_{0}^{2 / \gamma_{0}}\left(B_{0} \gamma(x, d(x, y))\right)^{-1 / \gamma_{0}} .
$$

Hence, by $(\Phi 3),(\Phi 4)$ and ($\Phi 5$), we obtain

$$
\phi(y, \gamma(x, d(x, y)))^{-1} \leq B^{\prime} \phi(x, \gamma(x, d(x, y)))^{-1}
$$

with some constant $B^{\prime}>0$. $\operatorname{By}(\gamma 3),(\Phi 3),(\Gamma 2)$ and $(\Gamma 3)$, we have

$$
\begin{aligned}
& \int_{X \backslash B(x, \delta)} \frac{d(x, y)^{\alpha} f(y)}{\mu(B(x, d(x, y)))} d \mu(y) \\
\leq & \int_{X \backslash B(x, \delta)} \frac{d(x, y)^{\alpha} \gamma(x, d(x, y))}{\mu(B(x, d(x, y)))} d \mu(y) \\
& +A_{2} \int_{X \backslash B(x, \delta)} \frac{d(x, y)^{\alpha} f(y)}{\mu(B(x, d(x, y)))} \frac{\phi(y, f(y))}{\phi(y, \gamma(x, d(x, y)))} d \mu(y) \\
\leq & \sum_{j=1}^{j_{0}} \int_{B\left(x, 2^{j} \delta\right) \backslash B\left(x, 2^{j-1} \delta\right)} \frac{d(x, y)^{\alpha} \gamma(x, d(x, y))}{\mu(B(x, d(x, y)))} d \mu(y) \\
& +c_{0}^{-1} A_{2} B^{\prime} \int_{X \backslash B(x, \delta)} d(x, y)^{\alpha-Q(x)} \phi(x, \gamma(x, d(x, y)))^{-1} \Phi(y, f(y)) d \mu(y) \\
\leq & 2^{\alpha} B_{1} \sum_{j=1}^{j_{0}}\left(2^{j-1} \delta\right)^{\alpha} \gamma\left(x, 2^{j-1} \delta\right) \int_{B\left(x, 2^{j} \delta\right) \backslash B\left(x, 2^{j-1} \delta\right)} \frac{1}{\mu\left(B\left(x, 2^{j-1} \delta\right)\right)} d \mu(y) \\
& +c_{0}^{-1} A_{2} B_{2} B_{3} B^{\prime} \widetilde{\Gamma}(x, 1 / \delta) \int_{X \backslash B(x, \delta)} \Phi(y, f(y)) d \mu(y) \\
\leq & 2^{\alpha} c_{2} B_{1} \sum_{j=1}^{j_{0}}\left(2^{j-1} \delta\right)^{\alpha} \gamma\left(x, 2^{j-1} \delta\right)+c_{0}^{-1} A_{2} B_{2} B_{3} B^{\prime} \widetilde{\Gamma}(x, 1 / \delta) .
\end{aligned}
$$

Since

$$
\int_{\delta}^{d_{X}} \rho^{\alpha} \gamma(x, \rho) \frac{d \rho}{\rho} \geq \sum_{j=1}^{j_{0}-1} \int_{2^{j-1} \delta}^{2^{j} \delta} \rho^{\alpha} \gamma(x, \rho) \frac{d \rho}{\rho} \geq \frac{\log 2}{B_{1}} \sum_{j=1}^{j_{0}-1}\left(2^{j-1} \delta\right)^{\alpha} \gamma\left(x, 2^{j-1} \delta\right)
$$

and

$$
\int_{\delta}^{d_{X}} \rho^{\alpha} \gamma(x, \rho) \frac{d \rho}{\rho} \geq \int_{d_{X} / 2}^{d_{X}} \rho^{\alpha} \gamma(x, \rho) \frac{d \rho}{\rho} \geq \frac{\log 2}{2^{\alpha} B_{1}}\left(2^{j_{0}-1} \delta\right)^{\alpha} \gamma\left(x, 2^{j_{0}-1} \delta\right),
$$

we have

$$
\sum_{j=1}^{j_{0}}\left(2^{j-1} \delta\right)^{\alpha} \gamma\left(x, 2^{j-1} \delta\right) \leq \frac{B_{1}}{\log 2}\left(2^{\alpha}+1\right) \int_{\delta}^{d_{X}} \rho^{\alpha} \gamma(x, \rho) \frac{d \rho}{\rho}
$$

Hence, we obtain

$$
\begin{aligned}
& \int_{X \backslash B(x, \delta)} \frac{d(x, y)^{\alpha} f(y)}{\mu(B(x, d(x, y)))} d \mu(y) \\
\leq & (\log 2)^{-1} 2^{\alpha}\left(2^{\alpha}+1\right) c_{2} B_{1}^{2} \int_{\delta}^{d_{X}} \rho^{\alpha} \gamma(x, \rho) \frac{d \rho}{\rho}+c_{0}^{-1} A_{2} B_{2} B_{3} B^{\prime} \widetilde{\Gamma}(x, 1 / \delta) \\
\leq & (\log 2)^{-1} 2^{\alpha}\left(2^{\alpha}+1\right) c_{2} B_{1}^{2} B_{4} \widetilde{\Gamma}(x, 1 / \delta)+c_{0}^{-1} A_{2} B_{2} B_{3} B^{\prime} \widetilde{\Gamma}(x, 1 / \delta) \\
= & \left((\log 2)^{-1} 2^{\alpha}\left(2^{\alpha}+1\right) c_{2} B_{1}^{2} B_{4}+c_{0}^{-1} A_{2} B_{2} B_{3} B^{\prime}\right) \widetilde{\Gamma}(x, 1 / \delta),
\end{aligned}
$$

as required.
Lemma 6.4 (cf. [39, Lemma 3.3]). Let $\alpha \geq \alpha_{0}$. Then there exists a constant $C^{\prime}>0$ such that $\widetilde{\Gamma}\left(x, 2 / d_{X}\right) \geq C^{\prime}$ for all $x \in X$.
Lemma 6.5 (cf. [39, Lemma 3.4]). Suppose $\widetilde{\Gamma}(x, t)$ satisfies the uniform log-type condition:
($\left.\widetilde{\Gamma}_{\text {log }}\right)$ there exists a constant $c_{\Gamma}>0$ such that

$$
c_{\Gamma}^{-1} \widetilde{\Gamma}(x, t) \leq \widetilde{\Gamma}\left(x, t^{2}\right) \leq c_{\Gamma} \widetilde{\Gamma}(x, t)
$$

for all $x \in X$ and $t>0$.
Then, for every $a>1$, there exists $b>0$ such that $\widetilde{\Gamma}(x, a t) \leq b \widetilde{\Gamma}(x, t)$ for all $x \in X$ and $t>0$.

7 Trudinger's inequality for Musielak-Orlicz spaces

Theorem 7.1. Suppose that μ is lower Ahlfors $Q(x)$-regular. Assume that $\Phi(x, t)$ satisfies ($\Phi 5$) and $\left(\Phi 3^{*}\right)$. Further, assume that $\widetilde{\Gamma}(x, t)$ satisfies $\left(\widetilde{\Gamma}_{\text {log }}\right)$. For each $x \in X$, let $\widetilde{\gamma}(x)=\sup _{s>0} \widetilde{\Gamma}(x, s)$. Suppose $\widetilde{\Psi}(x, t): X \times[0, \infty) \rightarrow[0, \infty]$ satisfies the following conditions:
$(\widetilde{\Psi} 1) \widetilde{\Psi}(\cdot, t)$ is measurable on X for each $t \in[0, \infty)$ and $\widetilde{\Psi}(x, \cdot)$ is continuous on $[0, \infty)$ for each $x \in X$;
$(\widetilde{\Psi} 2)$ there is a constant $B_{5} \geq 1$ such that $\widetilde{\Psi}(x, t) \leq \widetilde{\Psi}\left(x, B_{5} s\right)$ for all $x \in X$ whenever $0<t<s$;
($\widetilde{\Psi} 3)$ there are constants $B_{6}, B_{7} \geq 1$ and $t_{0}>0$ such that $\widetilde{\Psi}\left(x, \widetilde{\Gamma}(x, t) / B_{6}\right) \leq B_{7} t$ for all $x \in X$ and $t \geq t_{0}$.

Then there exist constants $c_{1}, c_{2}>0$ such that $I_{\alpha} f(x) / c_{1} \leq \widetilde{\gamma}(x)$ for μ-a.e. $x \in X$ and

$$
\int_{X} \widetilde{\Psi}\left(x, \frac{I_{\alpha} f(x)}{c_{1}}\right) d \mu(x) \leq c_{2}
$$

for all $\alpha \geq \alpha_{0}$ and nonnegative functions $f \in L^{\Phi}(X)$ satisfying $\|f\|_{L^{\Phi}(X)} \leq 1$.
Proof. Let f be a nonnegative μ-measurable function on X with $\|f\|_{L^{\Phi}(X)} \leq 1$. Note from Lemma 6.1 that

$$
\begin{equation*}
\int_{X} M f(x) d \mu(x) \leq \mu(X)+A_{1} A_{2} \int_{X} \Phi(x, M f(x)) d \mu(x) \leq C_{M} \tag{7.1}
\end{equation*}
$$

Fix $x \in X$. For $0<\delta \leq d_{X} / 2$, Lemma 6.3 implies

$$
\begin{aligned}
I_{\alpha} f(x) & =\int_{B(x, \delta)} \frac{d(x, y)^{\alpha} f(y)}{\mu(B(x, d(x, y)))} d \mu(y)+\int_{X \backslash B(x, \delta)} \frac{d(x, y)^{\alpha} f(y)}{\mu(B(x, d(x, y)))} d \mu(y) \\
& \leq C\left\{\delta^{\alpha} M f(x)+\widetilde{\Gamma}\left(x, \frac{1}{\delta}\right)\right\}
\end{aligned}
$$

with a constant $C>0$ independent of x.
If $M f(x) \leq 2 / d_{X}$, then we take $\delta=d_{X} / 2$. Then, by Lemma 6.4

$$
I_{\alpha} f(x) \leq C \widetilde{\Gamma}\left(x, \frac{2}{d_{X}}\right)
$$

By Lemma 6.5 and $(\Gamma 2)$, there exists $C_{1}^{*}>0$ independent of x such that

$$
\begin{equation*}
I_{\alpha} f(x) \leq C_{1}^{*} \widetilde{\Gamma}\left(x, t_{0}\right) \quad \text { if } M f(x) \leq 2 / d_{X} \tag{7.2}
\end{equation*}
$$

Next, suppose $2 / d_{X}<M f(x)<\infty$. Let $m=\sup _{s \geq 2 / d_{X}, x \in X} \widetilde{\Gamma}(x, s) / s$. By $\left(\widetilde{\Gamma}_{\text {log }}\right), m<\infty$. Define δ by

$$
\delta^{\alpha}=\frac{\left(d_{X} / 2\right)^{\alpha}}{m} \widetilde{\Gamma}(x, M f(x))(M f(x))^{-1}
$$

Since $\widetilde{\Gamma}(x, M f(x))(M f(x))^{-1} \leq m, 0<\delta \leq d_{X} / 2$. Then by Lemma 6.4 and ($\left.\Gamma 2\right)$

$$
\begin{aligned}
\frac{1}{\delta} & =\frac{m^{1 / \alpha}}{d_{X} / 2} \widetilde{\Gamma}(x, M f(x))^{-1 / \alpha}(M f(x))^{1 / \alpha} \\
& \leq \frac{m^{1 / \alpha}}{d_{X} / 2} B_{2}^{1 / \alpha} \widetilde{\Gamma}\left(x, 2 / d_{X}\right)^{-1 / \alpha}(M f(x))^{1 / \alpha} \leq C(M f(x))^{1 / \alpha}
\end{aligned}
$$

Hence, using ($\Gamma 2$), ($\widetilde{\Gamma}_{\text {log }}$) and Lemma 6.5, we obtain

$$
\widetilde{\Gamma}\left(x, \frac{1}{\delta}\right) \leq B_{2} \widetilde{\Gamma}\left(x, C(M f(x))^{1 / \alpha}\right) \leq C \widetilde{\Gamma}(x, M f(x))
$$

By Lemma 6.5 again, we see from (Г2) that there exists a constant $C_{2}^{*}>0$ independent of x such that

$$
\begin{equation*}
I_{\alpha} f(x) \leq C_{2}^{*} \widetilde{\Gamma}\left(x, \frac{t_{0} d_{X}}{2} M f(x)\right) \quad \text { if } 2 / d_{X}<M f(x)<\infty \tag{7.3}
\end{equation*}
$$

Now, let $c_{1}=B_{5} B_{6} \max \left(C_{1}^{*}, C_{2}^{*}\right)$. Then, by (7.2) and (7.3),

$$
\frac{I_{\alpha} f(x)}{c_{1}} \leq \frac{1}{B_{5} B_{6}} \max \left\{\widetilde{\Gamma}\left(x, t_{0}\right), \widetilde{\Gamma}\left(x, \frac{t_{0} d_{X}}{2} M f(x)\right)\right\}
$$

whenever $M f(x)<\infty$. Since $M f(x)<\infty$ for μ-a.e. $x \in X$ by Lemma 6.1, $I_{\alpha} f(x) / c_{1} \leq \widetilde{\gamma}(x) \mu$-a.e. $x \in X$, and by ($\left.\widetilde{\Psi} 2\right)$ and ($\widetilde{\Psi} 3$), we have

$$
\begin{aligned}
& \widetilde{\Psi}\left(x, \frac{I_{\alpha} f(x)}{c_{1}}\right) \\
& \quad \leq \max \left\{\widetilde{\Psi}\left(x, \widetilde{\Gamma}\left(x, t_{0}\right) / B_{6}\right), \widetilde{\Psi}\left(x, \widetilde{\Gamma}\left(x, \frac{t_{0} d_{X}}{2} M f(x)\right) / B_{6}\right)\right\} \\
& \quad \leq B_{7} t_{0}+\frac{B_{7} t_{0} d_{X}}{2} M f(x)
\end{aligned}
$$

for μ-a.e. $x \in X$. Thus, we have by (7.1)

$$
\begin{aligned}
\int_{X} \widetilde{\Psi}\left(x, \frac{I_{\alpha} f(x)}{c_{1}}\right) d \mu(x) & \leq B_{7} t_{0} \mu(X)+\frac{B_{7} t_{0} d_{X}}{2} \int_{X} M f(x) d \mu(x) \\
& \leq B_{7} t_{0} \mu(X)+\frac{B_{7} t_{0} d_{X} C_{M}}{2}=c_{2}
\end{aligned}
$$

We obtain the following corollary applying Theorem 7.1 to special Φ given in Example 2.1,

Corollary 7.2. Let Φ be as in Example 2.1. Asuume that μ is lower Ahlfors $Q(x)$-regular.
(1) Suppose there exists an integer $1 \leq j_{0} \leq k$ such that

$$
\begin{equation*}
\inf _{x \in X}\left(p(x)-q_{j 0}(x)-1\right)>0 \tag{7.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{x \in X}\left(p(x)-q_{j}(x)-1\right) \leq 0 \tag{7.5}
\end{equation*}
$$

for all $j \leq j_{0}-1$ in case $j_{0} \geq 2$. Then there exist constants $c_{1}, c_{2}>0$ such that

$$
\begin{aligned}
& \int_{X} E_{+}^{\left(j_{0}\right)}\left(\left(\frac{I_{\alpha} f(x)}{c_{1}}\right)^{p(x) /\left(p(x)-q_{j_{0}}(x)-1\right)}\right. \\
& \left.\quad \times \prod_{j=1}^{k-j_{0}}\left(L_{e}^{(j)}\left(\frac{I_{\alpha} f(x)}{c_{1}}\right)\right)^{q_{j_{0}+j}(x) /\left(p(x)-q_{j_{0}}(x)-1\right)}\right) d \mu(x) \leq c_{2}
\end{aligned}
$$

for all $\alpha \geq Q^{+} / p^{-}$and nonnegative functions $f \in L^{\Phi}(X)$ satisfying $\|f\|_{L^{\Phi}(X)} \leq 1$. (2) If

$$
\sup _{x \in X}\left(p(x)-q_{j}(x)-1\right) \leq 0
$$

for all $j=1, \ldots, k$, then there exist constants $c_{1}, c_{2}>0$ such that

$$
\int_{X} E^{(k+1)}\left(\left(\frac{I_{\alpha} f(x)}{c_{1}}\right)^{p(x) /(p(x)-1)}\right) d \mu(x) \leq c_{2}
$$

for all $\alpha \geq Q^{+} / p^{-}$and nonnegative functions $f \in L^{\Phi}(X)$ satisfying $\|f\|_{L^{\Phi}(X)} \leq 1$.

8 Continuity for Musielak-Orlicz spaces

For a measurable function $Q(\cdot)$ satsfying (6.1), we consider the functions

$$
\widetilde{\omega}(x, r)=\int_{0}^{r} \rho^{\alpha} \Phi^{-1}\left(x, \rho^{-Q(x)}\right) \frac{d \rho}{\rho}
$$

and

$$
\widetilde{\omega}_{\theta}(x, r)=r^{\theta} \int_{r}^{d_{X}} \rho^{\alpha-\theta} \Phi^{-1}\left(x, \rho^{-Q(x)}\right) \frac{d \rho}{\rho}
$$

for $\theta>0$ and $0<r \leq d_{X}$.
As in the proof of Theorem 5.3, we can obtain the continuity of Riesz potentials $I_{\alpha} f$ of functions in Musielak-Orlicz spaces under the condition (5.1).

Theorem 8.1. Asuume that μ is lower Ahlfors $Q(x)$-regular. Suppose that $\Phi(x, t)$ satisfies ($\Phi 5$). Suppose that (5.1) holds. Then there exists a constant $C>0$ such that

$$
\left|I_{\alpha} f(x)-I_{\alpha} f(z)\right| \leq C\left\{\widetilde{\omega}(x, d(x, z))+\widetilde{\omega}(z, d(x, z))+\widetilde{\omega}_{\theta}(x, d(x, z))\right\}
$$

for all $x, z \in X$ with $0<d(x, z) \leq d_{X} / 2$ whenever $f \in L^{\Phi}(X)$ is a nonnegative function on X satisfying $\|f\|_{L^{\Phi}(X)} \leq 1$.

Corollary 8.2. Asuume that μ is lower Ahlfors $Q(x)$-regular. Suppose that $\Phi(x, t)$ satisfies ($\Phi 5$). Suppose that (5.1) holds.
(a) Let $x_{0} \in X$ and suppose $\widetilde{\omega}(x, r) \rightarrow 0$ as $r \rightarrow 0+$ uniformly in $x \in B\left(x_{0}, \delta\right) \cap X$ for some $\delta>0$. Then $I_{\alpha} f$ is continuous at x_{0} for every $f \in L^{\Phi}(X)$.
(b) Suppose $\widetilde{\omega}(x, r) \rightarrow 0$ as $r \rightarrow 0+$ uniformly in $x \in X$. Then $I_{\alpha} f$ is uniformly continuous on X for every $f \in L^{\Phi}(X)$.

Acknowledgements We would like to express our thanks to the referees for their kind comments and suggestions.

References

[1] R. A. Adams, Sobolev spaces, Academic Press, 1975.
[2] D. R. Adams and L. I. Hedberg, Function spaces and potential theory, Springer-Verlag, Berlin, Heidelberg, 1996.
[3] A. Alberico and A. Cianchi, Differentiability properties of Orlicz-Sobolev functions, Ark. Mat. 43 (2005), 1-28.
[4] A. Björn and J. Björn, Nonlinear potential theory on metric spaces. EMS Tracts in Mathematics, 17. European Mathematical Society (EMS), Zurich, 2011.
[5] H. Brézis and S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Diff. Equations 5 (1980), 773-789.
[6] D. Cruz-Uribe and A. Fiorenza, Variable Lebesgue spaces. Foundations and harmonic analysis. Applied and Numerical Harmonic Analysis. Birkhauser/Springer, Heidelberg, 2013.
[7] L. Diening, P. Harjulehto, P. Hästö and M. Ružiččka, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, 2017, Springer, Heidelberg, 2011.
[8] D. E. Edmunds, P. Gurka and B. Opic, Double exponential integrability, Bessel potentials and embedding theorems, Studia Math. 115 (1995), 151-181.
[9] D. E. Edmunds, P. Gurka and B. Opic, Sharpness of embeddings in logarithmic Bessel-potential spaces, Proc. Royal Soc. Edinburgh. 126 (1996), 995-1009.
[10] D. E. Edmunds and R. Hurri-Syrjänen, Sobolev inequalities of exponential type, Israel. J. Math. 123 (2001), 61-92.
[11] D. E. Edmunds and M. Krbec, Two limiting cases of Sobolev imbeddings, Houston J. Math. 21 (1995), 119-128.
[12] T. Futamura and Y. Mizuta, Continuity properties of Riesz potentials for functions in $L^{p(\cdot)}$ of variable exponent, Math. Inequal. Appl. 8(4) (2005), 619631.
[13] T. Futamura, Y. Mizuta and T. Shimomura, Sobolev embedding for variable exponent Riesz potentials on metric spaces, Ann. Acad. Sci. Fenn. Math. 31 (2006), 495-522.
[14] T. Futamura, Y. Mizuta and T. Shimomura, Integrability of maximal functions and Riesz potentials in Orlicz spaces of variable exponent, J. Math. Anal. Appl. 366 (2010), 391-417.
[15] P. Hajłasz and P. Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000), no. 688.
[16] P. Harjulehto and P. Hästö, A capacity approach to the Poincaré inequality and Sobolev imbeddings in variable exponent Sobolev spaces, Rev. Mat.Complut. 17 (2004), 129-146.
[17] P. Harjulehto, P. Hästö and V. Latvala, Sobolev embeddings in metric measure spaces with variable dimension, Math. Z. 254 (2006), no. 3, 591-609.
[18] L. I. Hedberg, On certain convolution inequalities, Proc. Amer. Math. Soc. 36 (1972), 505-510.
[19] F. - Y. Maeda, Y. Mizuta, T. Ohno and T. Shimomura, Boundedness of maximal operators and Sobolev's inequality on Musielak-Orlicz-Morrey spaces, Bull. Sci. Math. 137, (2013), 76-96.
[20] F. - Y. Maeda, Y. Mizuta, T. Ohno and T. Shimomura, Trudinger's inequality and continuity of potentials on Musielak-Orlicz-Morrey spaces, Potential Anal. 38 (2013), 515-535.
[21] Y. Mizuta, Potential theory in Euclidean spaces, Gakkōtosho, Tokyo, 1996.
[22] Y. Mizuta, Continuity properties of Riesz potentials and boundary limits of Beppo Levi functions, Math. Scand. 63 (1988), 238-260.
[23] Y. Mizuta, E. Nakai, T. Ohno and T. Shimomura, An elementary proof of Sobolev embeddings for Riesz potentials of functions in Morrey spaces $L^{1, \nu, \beta}(G)$, Hiroshima Math. J. 38 (2008), 425-436.
[24] Y. Mizuta, E. Nakai, T. Ohno and T. Shimomura, Boundedness of fractional integral operators on Morrey spaces and Sobolev embeddings for generalized Riesz potentials, J. Math. Soc. Japan 62 (2010), 707-744.
[25] Y. Mizuta, E. Nakai, T. Ohno and T. Shimomura, Riesz potentials and Sobolev embeddings on Morrey spaces of variable exponent, Complex Var. Elliptic Equ. 56, (2011), 671-695.
[26] Y. Mizuta, T. Ohno and T. Shimomura, Sobolev's inequalities and vanishing integrability for Riesz potentials of functions in the generalized Lebesgue space $L^{p(\cdot)}(\log L)^{q(\cdot)}$, J. Math. Anal. Appl. 345 (2008), 70-85.
[27] Y. Mizuta, T. Ohno and T. Shimomura, Sobolev embeddings for Riesz potential spaces of variable exponents near 1 and Sobolev's exponent, Bull. Sci. Math. 134 (2010), 12-36.
[28] Y. Mizuta and T. Shimomura, Exponential integrability for Riesz potentials of functions in Orlicz classes, Hiroshima Math. J. 28 (1998), 355-371.
[29] Y. Mizuta and T. Shimomura, Differentiability and Hölder continuity of Riesz potentials of Orlicz functions, Analysis 20 (2000), 201-223.
[30] Y. Mizuta and T. Shimomura, Continuity and differentiability for weighted Sobolev spaces, Proc. Amer. Math. Soc. 130 (2002), 2985-2994.
[31] Y. Mizuta and T. Shimomura, Sobolev embeddings for Riesz potentials of functions in Morrey spaces of variable exponent, J. Math. Soc. Japan 60 (2008), 583-602.
[32] Y. Mizuta and T. Shimomura, Continuity properties of Riesz potentials of Orlicz functions, Tohoku Math. J. 61 (2009), 225-240.
[33] Y. Mizuta and T. Shimomura, Sobolev's inequality for Riesz potentials of functions in Morrey spaces of integral form, Math. Nachr. 283 (2010), no.9, 1336-1352.
[34] Y. Mizuta and T. Shimomura, Continuity properties for Riesz potentials of functions in Morrey spaces of variable exponent, Math. Inequal. Appl. 13 (2010), no. 1, 99-122.
[35] C. B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43 (1938), 126-166.
[36] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1971), 1077-1092.
[37] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math. 1034, Springer-Verlag, 1983.
[38] E. Nakai, Generalized fractional integrals on Orlicz-Morrey spaces, Banach and function spaces, 323-333, Yokohama Publ., Yokohama, 2004.
[39] T. Ohno and T. Shimomura, Trudinger's inequality for Riesz potentials of functions in Musielak-Orlicz spaces, Bull. Sci. Math. 138 (2014), 225-235.
[40] J. Peetre, On the theory of $L_{p, \lambda}$ spaces, J. Funct. Anal. 4 (1969), 71-87.
[41] J. Serrin, A remark on Morrey potential, Contemp. Math. 426 (2007), 307315.
[42] N. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473-483.
[43] W. P. Ziemer, Weakly differentiable functions, Springer-Verlag, New York, 1989.

Faculty of Education and Welfare Science Oita University
Dannoharu Oita-city 870-1192, Japan E-mail: t-ohno@oita-u.ac.jp and Department of Mathematics Graduate School of Education Hiroshima University Higashi-Hiroshima 739-8524, Japan
E-mail: tshimo@hiroshima-u.ac.jp

[^0]: 2000 Mathematics Subject Classification : Primary 46E35; Secondary 46E30.
 Key words and phrases : Musielak-Orlicz space, Morrey space, Trudinger's inequality, variable exponent, continuity, metric measure space

