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Abstract

In this paper we are concerned with Trudinger’s inequality and continuity
for Riesz potentials of functions in Musielak-Orlicz-Morrey spaces on metric
measure spaces.

1 Introduction

A famous Trudinger inequality ([42]) insists that Sobolev functions in W 1,N(G)
satisfy finite exponential integrability, where G is an open bounded set in RN (see
also [2], [5], [36], [43]). For 0 < α < N , we define the Riesz potential of order α for
a locally integrable function f on RN by

Uαf(x) =

∫
RN

|x− y|α−Nf(y) dy.

Great progress on Trudinger type inequalities has been made for Riesz potentials
of order α in the limiting case αp = N (see e.g. [8], [9], [10], [11], [41]). Trudinger
type exponential integrability was studied on Orlicz spaces in [3], [28] and [32], on
generalized Morrey spaces L1,φ in [23] and [24], and on Orlicz-Morrey spaces in
[33] and [38]. For Morrey spaces, which were introduced to estimate solutions of
partial differential equations, we refer to [35] and [40].

Variable exponent Lebesgue spaces and Sobolev spaces were introduced to dis-
cuss nonlinear partial differential equations with non-standard growth condition.
For a survey, see [6] and [7]. Trudinger type exponential integrability was inves-
tigated on variable exponent Lebesgue spaces Lp(·) in [12], [13] and [14] and on
two variable exponents spaces Lp(·)(logL)q(·) in [27]. See also [26] for two variable
exponents spaces Lp(·)(logL)q(·).

2000 Mathematics Subject Classification : Primary 46E35; Secondary 46E30.
Key words and phrases : Musielak-Orlicz space, Morrey space, Trudinger’s inequality, vari-

able exponent, continuity, metric measure space

1



For x ∈ RN and r > 0, we denote by B(x, r) the open ball centered at x
with radius r and dΩ = sup{d(x, y) : x, y ∈ Ω} for a set Ω ⊂ RN . For bounded
measurable functions ν(·) : RN → (0, N ] and β(·) : RN → R, let Lp(·),q(·),ν(·),β(·)(G)
be the set of all measurable functions f on G such that ∥f∥Lp(·),q(·),ν(·),β(·)(G) < ∞,
where

∥f∥Lp(·),q(·),ν(·),β(·)(G) = inf

{
λ > 0 : sup

x∈G,0<r≤dG

rν(x)(log(e + 1/r))β(x)

|B(x, r)|

×
∫
B(x,r)

(
|f(y)|
λ

)p(y)(
log

(
e +

|f(y)|
λ

))q(y)

dy ≤ 1

}
;

we set f = 0 outside G. As an extension of Trudinger [42] and [24, Corollaries 4.6
and 4.8], Mizuta, Nakai and the authors [25] proved Trudinger type exponential
integrability for two variable exponent Morrey spaces Lp(·),q(·),ν(·),β(·)(G) when p(·)
and q(·) are variable exponents satisfying the log-Hölder and loglog-Hölder condi-
tions on G, respectively. The result is an improvement of [31, Theorems 4.4 and
4.5]. In fact we proved the following:

Theorem A. Suppose infx∈RN ν(x) > 0 and infx∈RN (α − ν(x)/p(x)) ≥ 0 hold.
Let ε be a constant such that

inf
x∈Rn

(ν(x)/p(x) − ε) > 0 and 0 < ε < α.

Then there exist constants C1, C2 > 0 such that

(1) in case supx∈RN (q(x) + β(x))/p(x) < 1,

rν/p(z)−ε

|B(z, r)|

∫
B(z,r)

exp

(
|Uαf(x)|p(x)/(p(x)−q(x)−β(x))

C1

)
dx ≤ C2;

(2) in case infx∈RN (q(x) + β(x))/p(x) ≥ 1,

rν/p(z)−ε

|B(z, r)|

∫
B(z,r)

exp

(
exp

(
|Uαf(x)|

C1

))
dx ≤ C2

for all z ∈ G, 0 < r < dG and f satisfying ∥f∥Lp(·),q(·),ν(·),β(·)(G) ≤ 1.

Recently, Theorem A was extended to Musielak-Orlicz-Morrey spaces in [20].
Our main aim in this paper is to give a general version of Trudinger type exponen-
tial integrability for Riesz potentials Iαf of functions in Musielak-Orlicz-Morrey
spaces LΦ,κ(X) on metric measure spaces X (e.g., Corollary 4.6) as an extension
of the above results (see Section 2 for the definitions of Φ and κ and Section 3 for
the definition of Iαf). Since we discuss the Morrey version, our strategy is to find
an estimate of Riesz potentials by use of Riesz potentials of order ε, which plays
a role of the maximal functions (see Section 3). What is new about this paper is
that we can pass our results to the metric measure setting; the technique in [20]
still works.

Beginning with Sobolev’s embedding theorem (see e.g. [1], [2]), continuity
properties of Riesz potentials or Sobolev functions have been studied by many
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authors. Continuity of Riesz potentials of functions in Orlicz spaces was studied in
[11], [21], [22], [29] and [32] (cf. also [30]). Then such continuity was investigated
on generalized Morrey spaces L1,φ in [23] and [24], on Orlicz-Morrey spaces in
[34], on variable exponent Lebesgue spaces in [12], [13] and [16] and on variable
exponent Morrey spaces in [34]. In [25], Mizuta, Nakai and the authors also proved
continuity for Riesz potentials of functions in two variable exponent Morrey spaces
Lp(·),q(·),ν(·),β(·)(G).

In [20], these results have been extended to Musielak-Orlicz-Morrey spaces.
Our second aim in this paper is to give a general version of continuity for Riesz
potentials Iαf of functions in Musielak-Orlicz-Morrey spaces LΦ,κ(X) on metric
measure spaces (e.g., Corollary 5.6) as an extension of the above results.

In [39], we established Trudinger type exponential integrability for Musielak-
Orlicz spaces in the Euclidean setting by use of the maximal functions, which
are a crucial tool as in Hedberg [18]. Our third aim in this paper is to give a
general version of Trudinger type exponential integrability for Riesz potentials
Iαf of functions in Musielak-Orlicz spaces LΦ(X) on metric measure spaces (e.g.,
Corollary 7.2) as an extension of [13], [17] and [39]. To obtain our results, we need
the boundedness of maximal operator on LΦ(X) (see Lemma 6.1).

In the final section, we show the continuity for Riesz potentials Iαf of functions
in Musielak-Orlicz spaces LΦ(X) on metric measure spaces (see Corollary 8.2).

2 Preliminaries

Throughout this paper, let C denote various constants independent of the variables
in question.

We denote by (X, d, µ) a metric measure space, where X is a set, d is a metric
on X and µ is a nonnegative complete Borel regular outer measure on X which is
finite in every bounded set. For simplicity, we often write X instead of (X, d, µ).
For x ∈ X and r > 0, we denote by B(x, r) the open ball centered at x with radius
r and dΩ = sup{d(x, y) : x, y ∈ Ω} for a set Ω ⊂ X.

We say that the measure µ is a doubling measure if there exists a constant
c0 > 0 such that µ(B(x, 2r)) ≤ c0µ(B(x, r)) for every x ∈ X and 0 < r < dX . We
say that X is a doubling space if µ is a doubling measure.

In this paper, we assume that X is a bounded set and a doubling space, that
is dX < ∞. This implies that µ(X) < ∞.

We consider a function

Φ(x, t) = tϕ(x, t) : X × [0,∞) → [0,∞)

satisfying the following conditions (Φ1) – (Φ4):

(Φ1) ϕ( · , t) is measurable on X for each t ≥ 0 and ϕ(x, · ) is continuous on [0,∞)
for each x ∈ X;

(Φ2) there exists a constant A1 ≥ 1 such that

A−1
1 ≤ ϕ(x, 1) ≤ A1 for all x ∈ X;
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(Φ3) ϕ(x, ·) is uniformly almost increasing, namely there exists a constant A2 ≥ 1
such that

ϕ(x, t) ≤ A2ϕ(x, s) for all x ∈ X whenever 0 ≤ t < s;

(Φ4) there exists a constant A3 ≥ 1 such that

ϕ(x, 2t) ≤ A3ϕ(x, t) for all x ∈ X and t > 0.

Note that (Φ2), (Φ3) and (Φ4) imply

0 < inf
x∈X

ϕ(x, t) ≤ sup
x∈X

ϕ(x, t) < ∞

for each t > 0.
If Φ(x, ·) is convex for each x ∈ X, then (Φ3) holds with A2 = 1; namely ϕ(x, ·)

is non-decreasing for each x ∈ X.

Let ϕ̄(x, t) = sup0≤s≤t ϕ(x, s) and

Φ(x, t) =

∫ t

0

ϕ̄(x, r) dr (2.1)

for x ∈ X and t ≥ 0. Then Φ(x, ·) is convex and

1

2A3

Φ(x, t) ≤ Φ(x, t) ≤ A2Φ(x, t) (2.2)

for all x ∈ X and t ≥ 0.
We shall also consider the following condition:

(Φ5) for every γ1, γ2 > 0, there exists a constant Bγ1,γ2 ≥ 1 such that

ϕ(x, t) ≤ Bγ1,γ2ϕ(y, t)

whenever d(x, y) ≤ γ1t
−1/γ2 and t ≥ 1.

Example 2.1. Let p(·) and qj(·), j = 1, . . . , k, be measurable functions on X such
that

(P1) 1 < p− := infx∈X p(x) ≤ supx∈X p(x) =: p+ < ∞

and

(Q1) −∞ < q−j := infx∈X qj(x) ≤ supx∈X qj(x) =: q+j < ∞

for all j = 1, . . . , k.
Set Lc(t) = log(c+t) for c ≥ e and t ≥ 0, L

(1)
c (t) = Lc(t), L

(j+1)
c (t) = Lc(L

(j)
c (t))

and

Φ(x, t) = tp(x)
k∏

j=1

(L(j)
c (t))qj(x).

Then, Φ(x, t) satisfies (Φ1), (Φ2), (Φ3) and (Φ4).
Moreover, we see that Φ(x, t) satisfies (Φ5) if
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(P2) p(·) is log-Hölder continuous, namely

|p(x) − p(y)| ≤ Cp

Le(1/d(x, y))

with a constant Cp ≥ 0 and

(Q2) qj(·) is j + 1-log-Hölder continuous, namely

|qj(x) − qj(y)| ≤
Cqj

L
(j+1)
e (1/d(x, y))

with constants Cqj ≥ 0, j = 1, . . . k.

Example 2.2. Let p(·) be a measurable function on X satisfying (P1) and (P2).
Let q1(·) be a measurable function on X satisfying (Q1) and (Q2) and let q2(·) be
a measurable function on X satisfying (Q1). Then

Φ(x, t) = tp(x)(log(e + t))q1(x)(log(e + 1/t))q2(x)

satisfies (Φ1), (Φ2), (Φ3), (Φ4) and (Φ5).

In view of (2.2), given Φ(x, t) as above, the associated Musielak-Orlicz space

LΦ(X) =

{
f ∈ L1

loc(X) ;

∫
X

Φ
(
y, |f(y)|

)
dµ(y) < ∞

}
is a Banach space with respect to the norm

∥f∥LΦ(X) = inf

{
λ > 0 ;

∫
X

Φ
(
y, |f(y)|/λ

)
dµ(y) ≤ 1

}
(cf. [37]).

We also consider a function κ(x, r) : X × (0, dX ] → (0,∞) satisfying the fol-
lowing conditions:

(κ1) κ(x, ·) is measurable for each x ∈ X;

(κ2) κ(x, ·) is uniformly almost increasing on (0, dX ], namely there exists a con-
stant Q1 ≥ 1 such that

κ(x, r) ≤ Q1κ(x, s)

for all x ∈ X whenever 0 < r < s ≤ dX ;

(κ3) there are constants Q > 0 and Q2 ≥ 1 such that

Q−1
2 min(1, rQ) ≤ κ(x, r) ≤ Q2

for all x ∈ X and 0 < r ≤ dX .
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Example 2.3. For Q > 0, let ν(·) and βj(·), j = 1, . . . k be measurable functions
on X such that infx∈X ν(x) > 0, supx∈X ν(x) ≤ Q and −c(Q − ν(x)) ≤ βj(x) ≤ c
for all x ∈ X, j = 1, . . . , k and some constant c > 0. Then

κ(x, r) = rν(x)
k∏

j=1

(L(j)
e (1/r))βj(x)

satisfies (κ1), (κ2) and (κ3).

For a locally integrable function f on X, define the LΦ,κ norm

∥f∥LΦ,κ(X) = inf

{
λ > 0 : sup

x∈X,0<r≤dX

κ(x, r)

µ(B(x, r))

∫
X∩B(x,r)

Φ(y, |f(y)|/λ) dµ(y) ≤ 1

}
.

See (2.1) for the definition of Φ. Let LΦ,κ(X) denote the set of all functions f such
that ∥f∥LΦ,κ(X) < ∞ (cf. [38]), which we call a Musielak-Orlicz-Morrey space. Note
that LΦ,κ(X) = LΦ(X) if µ(B(x, r)) ∼ κ(x, r) for all x ∈ X and 0 < r ≤ dX . (Here
h1(x, s) ∼ h2(x, s) means that C−1h2(x, s) ≤ h1(x, s) ≤ Ch2(x, s) for a constant
C > 0.)

3 Lemmas for Musielak-Orlicz-Morrey spaces

Set
Φ−1(x, s) = sup{t > 0 ; Φ(x, t) < s}

for x ∈ X and s > 0.

Lemma 3.1 ([19, Lemma 5.1]). Φ−1(x, ·) is non-decreasing;

Φ−1(x, λs) ≤ A2λΦ−1(x, s) (3.1)

for all x ∈ X, s > 0 and λ ≥ 1 and

min

{
1,

s

A1A2

}
≤ Φ−1(x, s) ≤ max{1, A1A2s} (3.2)

for all x ∈ X and s > 0, where A1 and A2 are the constants appearing in (Φ2) and
(Φ3).

Lemma 3.2. There exists a constant C > 0 such that

C−1 ≤ Φ−1(x, κ(x, r)−1) ≤ Cr−Q (3.3)

for all x ∈ X and 0 < r ≤ dX .

Proof. By (κ3),
Q−1

2 ≤ κ(x, r)−1 ≤ Q2 max(1, r−Q)

for x ∈ X and 0 < r ≤ dX . Hence, by (3.2), we obtain (3.3).

As in [19, Lemma 5.3], we can prove the following result.
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Lemma 3.3 (cf. [19, Lemma 5.3] ). Assume that Φ(x, t) satisfies (Φ5). Then there
exists a constant C > 0 such that∫

X∩B(x,r)

f(y) dµ(y) ≤ Cµ(B(x, r))Φ−1(x, κ(x, r)−1)

for all x ∈ X, 0 < r ≤ dX and f ≥ 0 satisfying ∥f∥LΦ,κ(X) ≤ 1.

For α > 0, we define the Riesz potential of order α for a locally integrable
function f on X by

Iαf(x) =

∫
X

d(x, y)αf(y)

µ(B(x, d(x, y)))
dµ(y)

(e.g. see [15]).
Set

Γ(x, s) =

∫ dX

1/s

ραΦ−1
(
x, κ(x, ρ)−1

) dρ
ρ

for s ≥ 2/dX and x ∈ X. For 0 ≤ s < 2/dX and x ∈ X, we set Γ(x, s) =
Γ(x, 2/dX)(dX/2)s. Then note that Γ(x, ·) is strictly increasing and continuous for
each x ∈ X.

Lemma 3.4 (cf. [20, Lemma 3.5] ). There exists a positive constant C ′ such that
Γ(x, 2/dX) ≥ C ′ > 0 for all x ∈ X.

Lemma 3.5. Assume that Φ(x, t) satisfies (Φ5). Then there exists a constant C > 0
such that ∫

X\B(x,δ)

d(x, y)αf(y)

µ(B(x, d(x, y)))
dµ(y) ≤ CΓ

(
x,

1

δ

)
for all x ∈ X, 0 < δ ≤ dX/2 and nonnegative f ∈ LΦ,κ(X) with ∥f∥LΦ,κ(X) ≤ 1.

Proof. Let j0 be the smallest positive integer such that 2j0δ ≥ dX . By Lemma 3.3,
we have ∫

X\B(x,δ)

d(x, y)αf(y)

µ(B(x, d(x, y)))
dµ(y)

=

j0∑
j=1

∫
X∩(B(x,2jδ)\B(x,2j−1δ))

d(x, y)αf(y)

µ(B(x, d(x, y)))
dµ(y)

≤
j0∑
j=1

(2jδ)α
1

µ(B(x, 2j−1δ))

∫
X∩B(x,2jδ)

f(y) dµ(y)

≤ c0

j0∑
j=1

(2jδ)α
1

µ(B(x, 2jδ))

∫
X∩B(x,2jδ)

f(y) dµ(y)

≤ C

(
j0−1∑
j=1

(2jδ)αΦ−1(x, κ(x, 2jδ)−1) + dαXΦ−1(x, κ(x, dX)−1)

)
.
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By (κ2) and (3.1), we have∫ 2jδ

2j−1δ

tαΦ−1(x, κ(x, t)−1)
dt

t
≥ (2j−1δ)αΦ−1(x,Q−1

1 κ(x, 2jδ)−1) log 2

≥ (2jδ)α log 2

2αA2Q1

Φ−1(x, κ(x, 2jδ)−1) = C(2jδ)αΦ−1(x, κ(x, 2jδ)−1)

and ∫ dX

dX/2

tαΦ−1(x, κ(x, t)−1)
dt

t
≥ dαX log 2

2αA2Q1

Φ−1(x, κ(x, dX)−1)

= CdαXΦ−1(x, κ(x, dX)−1).

Hence, we obtain∫
X\B(x,δ)

d(x, y)αf(y)

µ(B(x, d(x, y)))
dµ(y)

≤ C

(
j0−1∑
j=1

∫ 2jδ

2j−1δ

tαΦ−1(x, κ(x, t)−1)
dt

t
+

∫ dX

dX/2

tαΦ−1(x, κ(x, t)−1)
dt

t

)

≤ CΓ

(
x,

1

δ

)
,

as required

Lemma 3.6. Assume that Φ(x, t) satisfies (Φ5). Let ε > 0 and define

λε(z, r) =
1

1 +

∫ dX

r

ρεΦ−1(z, κ(z, ρ)−1)
dρ

ρ

for z ∈ X. Then there exists a constant CI,ε > 0 such that

λε(z, r)

µ(B(z, r))

∫
X∩B(z,r)

Iεf(x) dµ(x) ≤ CI,ε

for all z ∈ X, 0 < r ≤ dX and f ≥ 0 satisfying ∥f∥LΦ,κ(X) ≤ 1.

Proof. Let z ∈ X. Write

Iεf(x) =

∫
X∩B(z,2r)

d(x, y)εf(y)

µ(B(x, d(x, y)))
dµ(y) +

∫
X\B(z,2r)

d(x, y)εf(y)

µ(B(x, d(x, y)))
dµ(y)

= I1(x) + I2(x)
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for x ∈ X. By Fubini’s theorem,∫
X∩B(z,r)

I1(x) dµ(x)

=

∫
X∩B(z,2r)

(∫
X∩B(z,r)

d(x, y)ε

µ(B(x, d(x, y)))
dµ(x)

)
f(y) dµ(y)

≤
∫
X∩B(z,2r)

(∫
X∩B(y,3r)

d(x, y)ε

µ(B(x, d(x, y)))
dµ(x)

)
f(y) dµ(y)

≤
∫
X∩B(z,2r)

(
∞∑
j=0

∫
X∩(B(y,2−j+2r)\B(y,2−j+1r))

d(x, y)ε

µ(B(x, d(x, y)))
dµ(x)

)
f(y) dµ(y)

≤
∫
X∩B(z,2r)

(
∞∑
j=0

∫
X∩(B(y,2−j+2r)\B(y,2−j+1r))

(2−j+2r)ε

µ(B(x, 2−j+1r))
dµ(x)

)
f(y) dµ(y).

Since µ is a doubling measure, we have∫
X∩B(z,r)

I1(x) dµ(x)

≤ c20

∫
X∩B(z,2r)

(
∞∑
j=0

∫
X∩(B(y,2−j+2r)\B(y,2−j+1r))

(2−j+2r)ε

µ(B(x, 2−j+3r))
dµ(x)

)
f(y) dµ(y)

≤ c20

∫
X∩B(z,2r)

(
∞∑
j=0

∫
X∩(B(y,2−j+2r)\B(y,2−j+1r))

(2−j+2r)ε

µ(B(y, 2−j+2r))
dµ(x)

)
f(y) dµ(y)

≤ c20

∫
X∩B(z,2r)

(
∞∑
j=0

(2−j+2r)ε

)
f(y) dµ(y)

≤ C8ε

∫
X∩B(z,2r)

(
∞∑
j=0

∫ 2−jr

2−j−1r

tε
dt

t

)
f(y) dµ(y)

≤ C

∫
X∩B(z,2r)

(∫ r

0

tε
dt

t

)
f(y) dµ(y)

=
C

ε
rε
∫
X∩B(z,2r)

f(y) dµ(y).

Now, by Lemma 3.3, (κ2) and (3.1), we have

rε
∫
X∩B(z,2r)

f(y) dy ≤ Crεµ(B(z, 2r))Φ−1(z, κ(z, 2r)−1)

≤ Cµ(B(z, 2r))

∫ 2r

r

ρεΦ−1(z, κ(z, ρ)−1)
dρ

ρ

if 0 < r ≤ dX/2 and, by Lemma 3.3 and (3.3), we have

rε
∫
X∩B(z,2r)

f(y) dy = rε
∫
B(z,dX)

f(y) dy

≤ CdX
εµ(B(z, dX))Φ−1(z, κ(z, dX)−1) ≤ Cµ(B(z, r))
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if dX/2 < r ≤ dX . Therefore∫
X∩B(z,r)

I1(x) dµ(x) ≤ C

ε

µ(B(z, r))

λε(z, r)

for all 0 < r ≤ dX .
For I2, first note that I2(x) = 0 if x ∈ X and r ≥ dX/2. Let 0 < r < dX/2. Let

j0 be the smallest positive integer such that 2j0r ≥ dX . Since

I2(x) ≤ C

∫
X\B(z,2r)

d(z, y)εf(y)

µ(B(z, d(z, y)))
dµ(y) for x ∈ X ∩B(z, r),

by Lemma 3.3, we have

I2(x) ≤ C

j0−1∑
j=1

∫
B(z,2j+1r)\B(z,2jr)

d(z, y)ε

µ(B(z, d(z, y)))
f(y) dµ(y)

≤ C

j0−1∑
j=1

(2j+1r)ε
1

µ(B(z, 2jr))

∫
X∩B(z,2j+1r)

f(y) dµ(y)

≤ C

j0−1∑
j=1

(2j+1r)ε
1

µ(B(z, 2j+1r))

∫
X∩B(z,2j+1r)

f(y) dµ(y)

≤ C

(
j0−2∑
j=1

(2j+1r)εΦ−1(x, κ(x, 2j+1r)−1) + dεXΦ−1(x, κ(x, dX)−1)

)
.

As in the proof of Lemma 3.5, we obtain

I2(x) ≤ C

(
j0−2∑
j=1

∫ 2j+1r

2jr

ρεΦ−1(x, κ(x, ρ)−1)
dρ

ρ
+

∫ dX

dX/2

ρεΦ−1(x, κ(x, ρ)−1)
dρ

ρ

)

≤ C

∫ dX

r

ρεΦ−1(z, κ(z, ρ)−1)
dρ

ρ

≤ C

λε(z, r)

for all x ∈ X ∩B(z, r). Hence∫
X∩B(z,r)

I2(x) dµ(x) ≤ C
µ(B(z, r))

λε(z, r)
.

Thus this lemma is proved.

4 Trudinger’s inequality for Musielak-Orlicz-Morrey

spaces

In this section, we deal with the case Γ(x, t) satisfies the uniform log-type condition:

(Γlog) there exists a constant cΓ > 0 such that

Γ(x, t2) ≤ cΓΓ(x, t)

for all x ∈ X and t ≥ 1.
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Example 4.1. Let Φ and κ be as in Examples 2.1 and 2.3, respectively. Then

Γ(x, t) ∼
∫ dX

1/t

ρα−ν(x)/p(x)

k∏
j=1

[
L(j)

e (1/ρ)
]−(qj(x)+βj(x))/p(x)dρ

ρ
(t ≥ 2/dX),

so that it satisfies (Γlog) if and only if

αp(x) ≥ ν(x) for all x ∈ X.

By (Γlog), together with Lemma 3.4, we see that Γ(x, t) satisfies the uniform
doubling condition in t:

Lemma 4.2 (cf. [20, Lemma 4.2] ). Suppose Γ(x, t) satisfies (Γlog). For every
a > 1, there exists b > 0 such that Γ(x, at) ≤ bΓ(x, t) for all x ∈ X and t > 0.

Theorem 4.3. Assume that Φ(x, t) satisfies (Φ5), Γ(x, t) satisfies (Γlog). For each
x ∈ X, let γ(x) = sups>0 Γ(x, s). Suppose Ψ(x, t) : X × [0,∞) → [0,∞] satisfies
the following conditions:

(Ψ1) Ψ(·, t) is measurable on X for each t ∈ [0,∞); Ψ(x, ·) is continuous on [0,∞)
for each x ∈ X;

(Ψ2) there is a constant A′
1 ≥ 1 such that Ψ(x, t) ≤ Ψ(x,A′

1s) for all x ∈ X
whenever 0 < t < s;

(Ψ3) Ψ(x,Γ(x, t)/A′
2) ≤ A′

3t for all x ∈ X and t > 0 with constants A′
2, A′

3 ≥ 1
independent of x.

Then, for 0 < ε < α, there exists a constant C∗ > 0 such that Iαf(x)/C∗ < γ(x)
for a.e. x ∈ X and

λε(z, r)

µ(B(z, r))

∫
X∩B(z,r)

Ψ

(
x,

Iαf(x)

C∗

)
dµ(x) ≤ 1

for all z ∈ X, 0 < r ≤ dX and f ≥ 0 satisfying ∥f∥LΦ,κ(X) ≤ 1.

Proof. Let f ≥ 0 and ∥f∥LΦ,κ(X) ≤ 1. Fix x ∈ X. For 0 < δ ≤ dX/2, Lemma 3.5
implies

Iαf(x) ≤
∫
X∩B(x,δ)

d(x, y)αf(y)

µ(B(x, d(x, y)))
dµ(y) + CΓ

(
x,

1

δ

)
=

∫
X∩B(x,δ)

d(x, y)α−ε d(x, y)εf(y)

µ(B(x, d(x, y)))
dµ(y) + CΓ

(
x,

1

δ

)
≤ C

{
δα−εIεf(x) + Γ

(
x,

1

δ

)}
with constants C > 0 independent of x.

If Iεf(x) ≤ 2/dX , then we take δ = dX/2. Then, by Lemma 3.4

Iαf(x) ≤ CΓ

(
x,

2

dX

)
.
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By Lemma 4.2, there exists C∗
1 > 0 independent of x such that

Iαf(x) ≤ C∗
1Γ

(
x,

1

2A′
3

)
if Iεf(x) ≤ 2/dX . (4.1)

Next, suppose 2/dX < Iεf(x) < ∞. Let m = sups≥2/dX ,x∈X Γ(x, s)/s. By
(Γlog), m < ∞. Define δ by

δα−ε =
(dX/2)α−ε

m
Γ(x, Iεf(x))(Iεf(x))−1.

Since Γ(x, Iεf(x))(Iεf(x))−1 ≤ m, 0 < δ ≤ dX/2. Then by Lemma 3.4

1

δ
≤ CΓ(x, Iεf(x))−1/(α−ε)(Iεf(x))1/(α−ε)

≤ CΓ(x, 2/dX)−1/(α−ε)(Iεf(x))1/(α−ε) ≤ C(Iεf(x))1/(α−ε).

Hence, using (Γlog) and Lemma 4.2, we obtain

Γ

(
x,

1

δ

)
≤ Γ

(
x,C(Iεf(x))1/(α−ε)

)
≤ CΓ(x, Iεf(x)).

By Lemma 4.2 again, we see that there exists a constant C∗
2 > 0 independent of x

such that

Iαf(x) ≤ C∗
2Γ

(
x,

1

2CI,εA′
3

Iεf(x)

)
if 2/dX < Iεf(x) < ∞, (4.2)

where CI,ε is the constant given in Lemma 3.6.
Now, let C∗ = A′

1A
′
2 max(C∗

1 , C
∗
2). Then, by (4.1) and (4.2),

Iαf(x)

C∗ ≤ 1

A′
1A

′
2

max

{
Γ

(
x,

1

2A′
3

)
, Γ

(
x,

1

2CI,εA′
3

Iεf(x)

)}
whenever Iεf(x) < ∞. Since Iεf(x) < ∞ for a.e. x ∈ X by Lemma 3.6, Iαf(x)/C∗ <
γ(x) a.e. x ∈ X, and by (Ψ2) and (Ψ3), we have

Ψ

(
x,

Iαf(x)

C∗

)
≤ max

{
Ψ

(
x,Γ

(
x,

1

2A′
3

)
/A′

2

)
, Ψ

(
x,Γ

(
x,

1

2CI,εA′
3

Iεf(x)

)
/A′

2

)}
≤ 1

2
+

1

2CI,ε

Iεf(x)

for a.e. x ∈ X. Thus, noting that λε(z, r) ≤ 1 and using Lemma 3.6, we have

λε(z, r)

µ(B(z, r))

∫
X∩B(z,r)

Ψ

(
x,

Iαf(x)

C∗

)
dµ(x)

≤ 1

2
λε(z, r) +

1

2CI,ε

λε(z, r)

µ(B(z, r))

∫
X∩B(z,r)

Iεf(x) dµ(x)

≤ 1

2
+

1

2
= 1

for all z ∈ X and 0 < r ≤ dX .
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Remark 4.4. If Γ(x, s) is bounded, that is,

sup
x∈X

∫ dX

0

ραΦ−1
(
x, κ(x, ρ)−1

)
dρ < ∞,

then by Lemma 3.5 we see that Iα|f | is bounded for every f ∈ LΦ,κ(X).

Remark 4.5. We can not take ε = α in Theorem 4.3. For details, see [23, Remark
2.8].

As in the proof of [20, Corollary 4.6], we obtain the following corollary applying
Theorem 4.3 to special Φ and κ given in Examples 2.1 and 2.3.

Corollary 4.6. Let Φ and κ be as in Examples 2.1 and 2.3.
Assume that

α− ν(x)/p(x) = 0 for all x ∈ X.

(1) Suppose there exists an integer 1 ≤ j0 ≤ k such that

inf
x∈X

(p(x) − qj0(x) − βj0(x)) > 0

and
sup
x∈X

(p(x) − qj(x) − βj(x)) ≤ 0

for all j ≤ j0 − 1 in case j0 ≥ 2. Then for 0 < ε < α there exist constants C∗ > 0
and C∗∗ > 0 such that

rν(z)/p(z)−ε

|B(z, r)|

∫
X∩B(z,r)

E
(j0)
+

((
Iαf(x)

C∗

)p(x)/(p(x)−qj0 (x)−βj0
(x))

×
k−j0∏
j=1

(
L(j)
e

(
Iαf(x)

C∗

))(qj0+j(x)+βj0+j(x))/(p(x)−qj0 (x)−βj0
(x))
)
dµ(x) ≤ C∗∗

for all z ∈ X, 0 < r ≤ dX and f ≥ 0 satisfying ∥f∥LΦ,κ(X) ≤ 1, where E(1)(t) =

et − e, E(j+1)(t) = exp(Ej(t)) − e and E
(j)
+ (t) = max(E(j)(t), 0).

(2) If
sup
x∈X

(p(x) − qj(x) − βj(x)) ≤ 0

for all j = 1, . . . , k, then for 0 < ε < α there exist constants C∗ > 0 and C∗∗ > 0
such that

rν(z)/p(z)−ε

|B(z, r)|

∫
X∩B(z,r)

E(k+1)

(
Iαf(x)

C∗

)
dµ(x) ≤ C∗∗

for all z ∈ X, 0 < r ≤ dX and f ≥ 0 satisfying ∥f∥LΦ,κ(X) ≤ 1.
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5 Continuity for Musielak-Orlicz-Morrey spaces

In this section, we discuss the continuity of Riesz potentials Iαf of functions in
Musielak-Orlicz-Morrey spaces under the condition: there are constants θ > 0 and
C0 > 0 such that∣∣∣∣ d(x, y)α

µ(B(x, d(x, y)))
− d(z, y)α

µ(B(z, d(z, y)))

∣∣∣∣ ≤ C0

(
d(x, z)

d(x, y)

)θ
d(x, y)α

µ(B(x, d(x, y)))
(5.1)

whenever d(x, z) ≤ d(x, y)/2.
We consider the functions

ω(x, r) =

∫ r

0

ραΦ−1
(
x, κ(x, ρ)−1

) dρ
ρ

and

ωθ(x, r) = rθ
∫ dX

r

ρα−θΦ−1
(
x, κ(x, ρ)−1

) dρ
ρ

for θ > 0 and 0 < r ≤ dX .

Lemma 5.1 (cf. [20, Lemma 5.1] ). Let E ⊂ X. If ω(x, r) → 0 as r → 0+
uniformly in x ∈ E, then ωθ(x, r) → 0 as r → 0+ uniformly in x ∈ E.

Lemma 5.2 (cf. [20, Lemma 5.2] ). There exists a constant C > 0 such that

ω(x, 2r) ≤ Cω(x, r)

for all x ∈ X and 0 < r ≤ dX/2.

Theorem 5.3. Assume that Φ(x, t) satisfies (Φ5). Then there exists a constant
C > 0 such that

|Iαf(x) − Iαf(z)| ≤ C{ω(x, d(x, z)) + ω(z, d(x, z)) + ωθ(x, d(x, z))}

for all x, z ∈ X with d(x, z) ≤ dX/4 and nonnegative f ∈ LΦ,κ(X) with ∥f∥LΦ,κ(X) ≤
1.

Before giving a proof of Theorem 5.3, we prepare two more lemmas.

Lemma 5.4. Assume that Φ(x, t) satisfies (Φ5). Let f be a nonnegative function
on X such that ∥f∥LΦ,κ(X) ≤ 1. Then there exists a constant C > 0 such that∫

X∩B(x,δ)

d(x, y)αf(y)

µ(B(x, d(x, y)))
dµ(y) ≤ Cω(x, δ)

for all x ∈ X and 0 < δ ≤ dX .
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Proof. Let f be a nonnegative µ-measurable function on X with ∥f∥LΦ,κ(X) ≤ 1.
As usual we start by decomposing B(x, δ) dyadically:∫

X∩B(x,δ)

d(x, y)αf(y)

µ(B(x, d(x, y)))
dµ(y)

=
∞∑
j=1

∫
X∩(B(x,2−j+1δ)\B(x,2−jδ))

d(x, y)αf(y)

µ(B(x, d(x, y)))
dµ(y)

≤
∞∑
j=1

(2−j+1δ)α
1

µ(B(x, 2−jδ))

∫
B(x,2−j+1δ)

f(y) dµ(y)

≤ c0

∞∑
j=1

(2−j+1δ)α
1

µ(B(x, 2−j+1δ))

∫
B(x,2−j+1δ)

f(y) dµ(y).

By Lemma 3.3, we have∫
X∩B(x,δ)

d(x, y)αf(y)

µ(B(x, d(x, y)))
dµ(y) ≤ C

∞∑
j=1

(2−j+1δ)αΦ−1(x, κ(x, 2−j+1δ)−1)

≤ C

∫ δ

0

ραΦ−1
(
x, κ(x, ρ)−1)

) dρ
ρ

= Cω(x, δ).

The following lemma can be proved on the same manner as Lemma 3.5.

Lemma 5.5. Assume that Φ(x, t) satisfies (Φ5). Let θ ∈ R. Let f be a nonnegative
function on X such that ∥f∥LΦ,κ(X) ≤ 1. Then there exists a constant C > 0 such
that ∫

X\B(x,δ)

d(x, y)α−θf(y)

µ(B(x, d(x, y)))
dµ(y) ≤ Cδ−θωθ(x, δ)

for all x ∈ X and 0 < δ ≤ dX/2.

Proof of Theorem 5.3. Let f be a nonnegative µ-measurable function on X with
∥f∥LΦ,κ(X) ≤ 1 and x, z ∈ X with d(x, z) ≤ dX/4. Write

Iαf(x) − Iαf(z)

=

∫
X∩B(x,2d(x,z))

d(x, y)αf(y)

µ(B(x, d(x, y)))
dµ(y) −

∫
X∩B(x,2d(x,z))

d(z, y)αf(y)

µ(B(z, d(z, y)))
dµ(y)

+

∫
X\B(x,2d(x,z))

(
d(x, y)α

µ(B(x, d(x, y)))
− d(z, y)α

µ(B(z, d(z, y)))

)
f(y) dµ(y).

Using Lemmas 5.2 and 5.4, we have∫
X∩B(x,2d(x,z))

d(x, y)αf(y)

µ(B(x, d(x, y)))
dµ(y) ≤ Cω(x, 2d(x, z)) ≤ Cω(x, d(x, z))
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and∫
X∩B(x,2d(x,z))

d(z, y)αf(y)

µ(B(z, d(z, y)))
dµ(y) ≤

∫
X∩B(z,3d(x,z))

d(z, y)αf(y)

µ(B(z, d(z, y)))
dµ(y)

≤ Cω(z, 3d(x, z)) ≤ Cω(z, d(x, z)).

On the other hand, by (5.1) and Lemma 5.5, we have∫
X\B(x,2d(x,z))

∣∣∣∣ d(x, y)α

µ(B(x, d(x, y)))
− d(z, y)α

µ(B(z, d(z, y)))

∣∣∣∣ f(y) dµ(y)

≤ Cd(x, z)θ
∫
X\B(x,2d(x,z))

d(x, y)α−θf(y)

µ(B(x, d(x, y)))
dµ(y)

≤ Cωθ(x, 2d(x, z)) ≤ Cωθ(x, d(x, z)).

Then we have the conclusion.

In view of Lemma 5.1, we obtain the following corollary.

Corollary 5.6. Assume that Φ(x, t) satisfies (Φ5).

(a) Let x0 ∈ X and suppose ω(x, r) → 0 as r → 0+ uniformly in x ∈ X∩B(x0, δ)
for some δ > 0. Then Iαf is continuous at x0 for every f ∈ LΦ,κ(X).

(b) Suppose ω(x, r) → 0 as r → 0+ uniformly in x ∈ X. Then Iαf is uniformly
continuous on X for every f ∈ LΦ,κ(X).

6 Lemmas for Musielak-Orlicz spaces

For a measurable function Q(·) satisfying

0 < Q− := inf
x∈X

Q(x) ≤ sup
x∈X

Q(x) =: Q+ < ∞, (6.1)

we say that a measure µ is lower Ahlfors Q(x)-regular if there exists a constant
c1 > 0 such that

µ(B(x, r)) ≥ c1r
Q(x)

for all x ∈ X and 0 < r < dX . Recall that we say that the measure µ is a doubling
measure if there exists a constant c0 > 0 such that µ(B(x, 2r)) ≤ c0µ(B(x, r)) for
every x ∈ X and 0 < r < dX . Here note that if µ is a doubling measure and
dX < ∞, then µ is lower Ahlfors log2 c0-regular since

µ(B(x, r))

µ(B(x, dX))
≥ c−2

0

(
r

dX

)log2 c0

for all x ∈ X and 0 < r < dX (see e.g. [4, Lemma 3.3]).
For a locally integrable function f on X, the Hardy-Littlewood maximal func-

tion Mf is defined by

Mf(x) = sup
r>0

1

µ(B(x, r))

∫
B(x,r)∩X

|f(y)| dµ(y).

As in the proof of [19, Theorem 4.1], we can show the following boundedness
of maximal operator on LΦ(X).
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Lemma 6.1 (c.f. [19, Theorem 4.1]). Suppose that Φ(x, t) satisfies (Φ5) and further
assume:

(Φ3∗) t 7→ t−ε0ϕ(x, t) is uniformly almost increasing on (0,∞) for some ε0 > 0.

Then the maximal operator M is bounded from LΦ(X) into itself, namely, there
is a constant C > 0 such that

∥Mf∥LΦ(X) ≤ C∥f∥LΦ(X)

for all f ∈ LΦ(X).

We consider the function

γ(x, t) : X × (0, dX) → (0,∞)

satisfying the following conditions:

(γ1) γ( · , t) is measurable on X for each 0 < t < dX and γ(x, · ) is continuous on
(0, dX) for each x ∈ X;

(γ2) there exist constants γ0 > 0 and B0 ≥ 1 such that

B−1
0 ≤ γ(x, t) ≤ B0t

−γ0 for all x ∈ X whenever 0 < t < dX .

(γ3) there exists a constant B1 ≥ 1 such that

B−1
1 γ(x, s) ≤ γ(x, t) ≤ B1γ(x, s) for all x ∈ X and 1 ≤ t/s ≤ 2.

Further we consider the function

Γ̃(x, t) : X × [0,∞) → [0,∞)

satisfying the following conditions (Γ1), (Γ2) and (Γ3):

(Γ1) Γ̃( · , t) is measurable on X for each t ≥ 0 and Γ̃(x, · ) is continuous on [0,∞)
for each x ∈ X;

(Γ2) Γ̃(x, ·) is uniformly almost increasing, namely there exists a constant B2 ≥ 1
such that

Γ̃(x, t) ≤ B2Γ̃(x, s) for all x ∈ X whenever 0 ≤ t < s;

(Γ3) For a measurable function Q(·) satisfying (6.1), there exist constants α0 >
0, B3 ≥ 1 and B4 ≥ 1 such that

tα−Q(x)ϕ(x, γ(x, t))−1 ≤ B3Γ̃(x, 1/t)

for all x ∈ X and α ≥ α0 whenever 0 < t < dX and∫ dX

t

ραγ(x, ρ)
dρ

ρ
≤ B4Γ̃(x, 1/t)

for all x ∈ X, 0 < t ≤ dX/2 and α ≥ α0.
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Example 6.2. Let Φ be as in Example 2.1.

(1) Suppose there exists an integer 1 ≤ j0 ≤ k such that

inf
x∈X

(p(x) − qj0(x) − 1) > 0

and
sup
x∈X

(p(x) − qj(x) − 1) ≤ 0

for all j ≤ j0 − 1 in case j0 ≥ 2. set

γ(x, t) = t−Q(x)/p(x)

(
j0−1∏
j=1

[L(j)
e (1/t)]−1

)
[L(j0)

e (1/t)]−(qj0 (x)+1)/p(x)

(
k∏

j=j0+1

[L(j)
e (1/t)]−qj(x)/p(x)

)

and

Γ̃(x, t) = [L(j0)
e (t)](p(x)−qj0 (x)−1)/p(x)

(
k∏

j=j0+1

[L(j)
e (t)]−qj(x)/p(x)

)
.

Then γ(x, t) satisfies (γ1), (γ2) and (γ3) and Γ̃(x, t) satisfies (Γ1), (Γ2) and (Γ3)
for all α ≥ Q+/p−.

(2) Suppose that
sup
x∈X

(p(x) − qj(x) − 1) ≤ 0

for all j = 1, . . . , k. set

γ(x, t) = t−Q(x)/p(x)

(
k∏

j=1

[L(j)
e (1/t)]−1

)
[L(k+1)

e (1/t)]−1/p(x)

and
Γ̃(x, t) = [L(k+1)

e (1/t)]1−1/p(x).

Then γ(x, t) satisfies (γ1), (γ2) and (γ3) and Γ̃(x, t) satisfies (Γ1), (Γ2) and (Γ3)
for all α ≥ Q+/p−.

In fact, see the proof of [39, Corollary 4.2].

Lemma 6.3. Assume that µ is lower Ahlfors Q(x)-regular. Suppose that Φ(x, t)
satisfies (Φ5). Let α ≥ α0. Then there exists a constant C > 0 such that∫

X\B(x,δ)

d(x, y)αf(y)

µ(B(x, d(x, y)))
dµ(y) ≤ CΓ̃

(
x,

1

δ

)
for all x ∈ X, 0 < δ ≤ dX/2 and nonnegative f ∈ LΦ(X) with ∥f∥LΦ(X) ≤ 1.

Proof. Let f be a nonnegative µ-measurable function on X with ∥f∥LΦ(X) ≤ 1.
Let j0 be the smallest integer j0 such that 2j0δ ≥ dX . Since

B−1
0 ≤ γ(x, d(x, y)) ≤ B0d(x, y)−γ0
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in view of (γ2), we have

d(x, y) ≤ B
2/γ0
0 (B0γ(x, d(x, y)))−1/γ0 .

Hence, by (Φ3), (Φ4) and (Φ5), we obtain

ϕ(y, γ(x, d(x, y)))−1 ≤ B′ϕ(x, γ(x, d(x, y)))−1

with some constant B′ > 0. By (γ3), (Φ3), (Γ2) and (Γ3), we have∫
X\B(x,δ)

d(x, y)αf(y)

µ(B(x, d(x, y)))
dµ(y)

≤
∫
X\B(x,δ)

d(x, y)αγ(x, d(x, y))

µ(B(x, d(x, y)))
dµ(y)

+A2

∫
X\B(x,δ)

d(x, y)αf(y)

µ(B(x, d(x, y)))

ϕ(y, f(y))

ϕ(y, γ(x, d(x, y)))
dµ(y)

≤
j0∑
j=1

∫
B(x,2jδ)\B(x,2j−1δ)

d(x, y)αγ(x, d(x, y))

µ(B(x, d(x, y)))
dµ(y)

+c−1
0 A2B

′
∫
X\B(x,δ)

d(x, y)α−Q(x)ϕ(x, γ(x, d(x, y)))−1Φ(y, f(y)) dµ(y)

≤ 2αB1

j0∑
j=1

(2j−1δ)αγ(x, 2j−1δ)

∫
B(x,2jδ)\B(x,2j−1δ)

1

µ(B(x, 2j−1δ))
dµ(y)

+c−1
0 A2B2B3B

′Γ̃(x, 1/δ)

∫
X\B(x,δ)

Φ(y, f(y)) dµ(y)

≤ 2αc2B1

j0∑
j=1

(2j−1δ)αγ(x, 2j−1δ) + c−1
0 A2B2B3B

′Γ̃(x, 1/δ).

Since∫ dX

δ

ραγ(x, ρ)
dρ

ρ
≥

j0−1∑
j=1

∫ 2jδ

2j−1δ

ραγ(x, ρ)
dρ

ρ
≥ log 2

B1

j0−1∑
j=1

(2j−1δ)αγ(x, 2j−1δ)

and ∫ dX

δ

ραγ(x, ρ)
dρ

ρ
≥
∫ dX

dX/2

ραγ(x, ρ)
dρ

ρ
≥ log 2

2αB1

(2j0−1δ)αγ(x, 2j0−1δ),

we have
j0∑
j=1

(2j−1δ)αγ(x, 2j−1δ) ≤ B1

log 2
(2α + 1)

∫ dX

δ

ραγ(x, ρ)
dρ

ρ
.

Hence, we obtain∫
X\B(x,δ)

d(x, y)αf(y)

µ(B(x, d(x, y)))
dµ(y)

≤ (log 2)−12α(2α + 1)c2B
2
1

∫ dX

δ

ραγ(x, ρ)
dρ

ρ
+ c−1

0 A2B2B3B
′Γ̃(x, 1/δ)

≤ (log 2)−12α(2α + 1)c2B
2
1B4Γ̃(x, 1/δ) + c−1

0 A2B2B3B
′Γ̃(x, 1/δ)

= ((log 2)−12α(2α + 1)c2B
2
1B4 + c−1

0 A2B2B3B
′)Γ̃(x, 1/δ),
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as required.

Lemma 6.4 (cf. [39, Lemma 3.3]). Let α ≥ α0. Then there exists a constant

C ′ > 0 such that Γ̃(x, 2/dX) ≥ C ′ for all x ∈ X.

Lemma 6.5 (cf. [39, Lemma 3.4]). Suppose Γ̃(x, t) satisfies the uniform log-type
condition:

(Γ̃log) there exists a constant cΓ > 0 such that

c−1
Γ Γ̃(x, t) ≤ Γ̃(x, t2) ≤ cΓΓ̃(x, t)

for all x ∈ X and t > 0.

Then, for every a > 1, there exists b > 0 such that Γ̃(x, at) ≤ bΓ̃(x, t) for all x ∈ X
and t > 0.

7 Trudinger’s inequality for Musielak-Orlicz spaces

Theorem 7.1. Suppose that µ is lower Ahlfors Q(x)-regular. Assume that Φ(x, t)

satisfies (Φ5) and (Φ3∗). Further, assume that Γ̃(x, t) satisfies (Γ̃log). For each

x ∈ X, let γ̃(x) = sups>0 Γ̃(x, s). Suppose Ψ̃(x, t) : X × [0,∞) → [0,∞] satisfies
the following conditions:

(Ψ̃1) Ψ̃(·, t) is measurable on X for each t ∈ [0,∞) and Ψ̃(x, ·) is continuous on
[0,∞) for each x ∈ X;

(Ψ̃2) there is a constant B5 ≥ 1 such that Ψ̃(x, t) ≤ Ψ̃(x,B5s) for all x ∈ X
whenever 0 < t < s;

(Ψ̃3) there are constants B6, B7 ≥ 1 and t0 > 0 such that Ψ̃(x, Γ̃(x, t)/B6) ≤ B7t
for all x ∈ X and t ≥ t0.

Then there exist constants c1, c2 > 0 such that Iαf(x)/c1 ≤ γ̃(x) for µ-a.e. x ∈ X
and ∫

X

Ψ̃

(
x,

Iαf(x)

c1

)
dµ(x) ≤ c2

for all α ≥ α0 and nonnegative functions f ∈ LΦ(X) satisfying ∥f∥LΦ(X) ≤ 1.

Proof. Let f be a nonnegative µ-measurable function on X with ∥f∥LΦ(X) ≤ 1.
Note from Lemma 6.1 that∫

X

Mf(x) dµ(x) ≤ µ(X) + A1A2

∫
X

Φ(x,Mf(x)) dµ(x) ≤ CM . (7.1)

Fix x ∈ X. For 0 < δ ≤ dX/2, Lemma 6.3 implies

Iαf(x) =

∫
B(x,δ)

d(x, y)αf(y)

µ(B(x, d(x, y)))
dµ(y) +

∫
X\B(x,δ)

d(x, y)αf(y)

µ(B(x, d(x, y)))
dµ(y)

≤ C

{
δαMf(x) + Γ̃

(
x,

1

δ

)}
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with a constant C > 0 independent of x.
If Mf(x) ≤ 2/dX , then we take δ = dX/2. Then, by Lemma 6.4

Iαf(x) ≤ CΓ̃

(
x,

2

dX

)
.

By Lemma 6.5 and (Γ2), there exists C∗
1 > 0 independent of x such that

Iαf(x) ≤ C∗
1 Γ̃ (x, t0) if Mf(x) ≤ 2/dX . (7.2)

Next, suppose 2/dX < Mf(x) < ∞. Let m = sups≥2/dX ,x∈X Γ̃(x, s)/s. By

(Γ̃log), m < ∞. Define δ by

δα =
(dX/2)α

m
Γ̃(x,Mf(x))(Mf(x))−1.

Since Γ̃(x,Mf(x))(Mf(x))−1 ≤ m, 0 < δ ≤ dX/2. Then by Lemma 6.4 and (Γ2)

1

δ
=

m1/α

dX/2
Γ̃(x,Mf(x))−1/α(Mf(x))1/α

≤ m1/α

dX/2
B

1/α
2 Γ̃(x, 2/dX)−1/α(Mf(x))1/α ≤ C(Mf(x))1/α.

Hence, using (Γ2), (Γ̃log) and Lemma 6.5, we obtain

Γ̃

(
x,

1

δ

)
≤ B2Γ̃

(
x,C(Mf(x))1/α

)
≤ CΓ̃(x,Mf(x)).

By Lemma 6.5 again, we see from (Γ2) that there exists a constant C∗
2 > 0 inde-

pendent of x such that

Iαf(x) ≤ C∗
2 Γ̃

(
x,

t0dX
2

Mf(x)

)
if 2/dX < Mf(x) < ∞. (7.3)

Now, let c1 = B5B6 max(C∗
1 , C

∗
2). Then, by (7.2) and (7.3),

Iαf(x)

c1
≤ 1

B5B6

max

{
Γ̃ (x, t0) , Γ̃

(
x,

t0dX
2

Mf(x)

)}
whenever Mf(x) < ∞. Since Mf(x) < ∞ for µ-a.e. x ∈ X by Lemma 6.1,

Iαf(x)/c1 ≤ γ̃(x) µ-a.e. x ∈ X, and by (Ψ̃2) and (Ψ̃3), we have

Ψ̃

(
x,

Iαf(x)

c1

)
≤ max

{
Ψ̃
(
x, Γ̃ (x, t0) /B6

)
, Ψ̃

(
x, Γ̃

(
x,

t0dX
2

Mf(x)

)
/B6

)}
≤ B7t0 +

B7t0dX
2

Mf(x)
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for µ-a.e. x ∈ X. Thus, we have by (7.1)∫
X

Ψ̃

(
x,

Iαf(x)

c1

)
dµ(x) ≤ B7t0µ(X) +

B7t0dX
2

∫
X

Mf(x) dµ(x)

≤ B7t0µ(X) +
B7t0dXCM

2
= c2.

We obtain the following corollary applying Theorem 7.1 to special Φ given in
Example 2.1,

Corollary 7.2. Let Φ be as in Example 2.1. Asuume that µ is lower Ahlfors
Q(x)-regular.

(1) Suppose there exists an integer 1 ≤ j0 ≤ k such that

inf
x∈X

(p(x) − qj0(x) − 1) > 0 (7.4)

and
sup
x∈X

(p(x) − qj(x) − 1) ≤ 0 (7.5)

for all j ≤ j0 − 1 in case j0 ≥ 2. Then there exist constants c1, c2 > 0 such that∫
X

E
(j0)
+

((
Iαf(x)

c1

)p(x)/(p(x)−qj0 (x)−1)

×
k−j0∏
j=1

(
L(j)
e

(
Iαf(x)

c1

))qj0+j(x)/(p(x)−qj0(x)−1)
)

dµ(x) ≤ c2

for all α ≥ Q+/p− and nonnegative functions f ∈ LΦ(X) satisfying ∥f∥LΦ(X) ≤ 1.

(2) If
sup
x∈X

(p(x) − qj(x) − 1) ≤ 0

for all j = 1, . . . , k, then there exist constants c1, c2 > 0 such that∫
X

E(k+1)

((
Iαf(x)

c1

)p(x)/(p(x)−1)
)

dµ(x) ≤ c2

for all α ≥ Q+/p− and nonnegative functions f ∈ LΦ(X) satisfying ∥f∥LΦ(X) ≤ 1.

8 Continuity for Musielak-Orlicz spaces

For a measurable function Q(·) satsfying (6.1), we consider the functions

ω̃(x, r) =

∫ r

0

ραΦ−1
(
x, ρ−Q(x)

) dρ
ρ
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and

ω̃θ(x, r) = rθ
∫ dX

r

ρα−θΦ−1
(
x, ρ−Q(x)

) dρ
ρ

for θ > 0 and 0 < r ≤ dX .
As in the proof of Theorem 5.3, we can obtain the continuity of Riesz potentials

Iαf of functions in Musielak-Orlicz spaces under the condition (5.1).

Theorem 8.1. Asuume that µ is lower Ahlfors Q(x)-regular. Suppose that Φ(x, t)
satisfies (Φ5). Suppose that (5.1) holds. Then there exists a constant C > 0 such
that

|Iαf(x) − Iαf(z)| ≤ C{ω̃(x, d(x, z)) + ω̃(z, d(x, z)) + ω̃θ(x, d(x, z))}

for all x, z ∈ X with 0 < d(x, z) ≤ dX/2 whenever f ∈ LΦ(X) is a nonnegative
function on X satisfying ∥f∥LΦ(X) ≤ 1.

Corollary 8.2. Asuume that µ is lower Ahlfors Q(x)-regular. Suppose that
Φ(x, t) satisfies (Φ5). Suppose that (5.1) holds.

(a) Let x0 ∈ X and suppose ω̃(x, r) → 0 as r → 0+ uniformly in x ∈ B(x0, δ)∩X
for some δ > 0. Then Iαf is continuous at x0 for every f ∈ LΦ(X).

(b) Suppose ω̃(x, r) → 0 as r → 0+ uniformly in x ∈ X. Then Iαf is uniformly
continuous on X for every f ∈ LΦ(X).
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