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Abstract

In this paper we are concerned with Trudinger’s inequality and continuity
for general potentials of functions in Musielak-Orlicz-Morrey spaces.

1 Introduction

A famous Trudinger inequality ([34]) insists that Sobolev functions in W 1,N(G)
satisfy finite exponential integrability, where G is an open bounded set in RN (see
also [2], [4], [28], [35]). Great progress on Trudinger type inequalities has been
made for Riesz potentials of order α (0 < α < N) in the limiting case αp = N
(see e.g. [5], [6], [7], [8], [33]). In [3], [20] and [24], Trudinger type exponential
integrability was studied on Orlicz spaces, as extensions of [5], [6] and [8], and also
on generalized Morrey spaces L1,φ in [16] and [17]. For Morrey spaces, which were
introduced to estimate solutions of partial differential equations, we refer to [27]
and [31]. Further, Trudinger type exponential integrability was also studied on
Orlicz-Morrey spaces (see [25] and [30]).

In the mean time, variable exponent Lebesgue spaces and Sobolev spaces were
introduced to discuss nonlinear partial differential equations with non-standard
growth condition. These spaces have attracted more and more attention, in con-
nection with the study of elasticity, fluid mechanics; see [32]. Trudinger type
exponential integrability on variable exponent Lebesgue spaces Lp(·) was investi-
gated in [9], [10] and [11]. For the two variable exponents spaces Lp(·)(logL)q(·),
see [19]. These spaces are special cases of so-called Musielak-Orlicz spaces ([29]).

Trudinger type exponential integrability for variable exponent Morrey spaces
was also studied in [23], and then the result was extended to the two variable
exponents Morrey spaces in [18]. In [18], Riesz kernel of variable order is considered.
All the above spaces are special cases of what we call “Musielak-Orlicz-Morrey
spaces”.

2000 Mathematics Subject Classification : Primary 46E35; Secondary 46E30.
Key words and phrases : Musielak-Orlicz space, Morrey space, Trudinger’s inequality, vari-

able exponent, continuity

1



On the other hand, beginning with Sobolev’s embedding theorem (see e.g. [1],
[2]), continuity properties of Riesz potentials or Sobolev functions have been stud-
ied by many authors. Continuity of Riesz potentials of functions in Orlicz spaces
was studied in [8], [14], [15], [21] and [24] (cf. also [22]). Then such continuity was
investigated on generalized Morrey spaces L1,φ in [16] and [17], on Orlicz-Morrey
spaces in [26], on variable exponent Lebesgue spaces in [9], [10] and [12], on two
variable exponents Lebesgue spaces in [19], on variable exponent Morrey spaces in
[26] and on two variable exponents Morrey spaces in [18].

Our aim in this paper is to give a general version of Trudinger type exponential
integrability and continuity for potentials of functions in Musielak-Orlicz-Morrey
spaces. We consider a general potential kernel of “variable order”. By treating
such general setting, we can obtain new results (e.g., Corollary 4.6 and Corollary
5.6 + Example 5.8) which have not been found in the literature.

2 Preliminaries

We denote by B(x, r) the ball {y ∈ RN : |y − x| < r} with center x and of radius
r > 0 and by |B(x, r)| its Lebesgue measure, i.e. |B(x, r)| = σNr

N , where σN is
the volume of the unit ball in RN .

Throughout this paper, we fix a bounded open set G. Let dG = diam G.
We consider a function

Φ(x, t) = tϕ(x, t) : G× [0,∞) → [0,∞)

satisfying the following conditions (Φ1) – (Φ4):

(Φ1) ϕ( · , t) is measurable on G for each t ≥ 0 and ϕ(x, · ) is continuous on [0,∞)
for each x ∈ G;

(Φ2) there exists a constant A1 ≥ 1 such that

A−1
1 ≤ ϕ(x, 1) ≤ A1 for all x ∈ G;

(Φ3) ϕ(x, ·) is uniformly almost increasing, namely there exists a constant A2 ≥ 1
such that

ϕ(x, t) ≤ A2ϕ(x, s) for all x ∈ G whenever 0 ≤ t < s;

(Φ4) there exists a constant A3 ≥ 1 such that

ϕ(x, 2t) ≤ A3ϕ(x, t) for all x ∈ G and t > 0.

Note that (Φ2), (Φ3) and (Φ4) imply

0 < inf
x∈G

ϕ(x, t) ≤ sup
x∈G

ϕ(x, t) <∞

for each t > 0. Let ϕ̄(x, t) = sup0≤s≤t ϕ(x, s) and

Φ(x, t) =

∫ t

0

ϕ̄(x, r) dr
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for x ∈ G and t ≥ 0. Then Φ(x, ·) is convex and

1

2A3

Φ(x, t) ≤ Φ(x, t) ≤ A2Φ(x, t) (2.1)

for all x ∈ G and t ≥ 0.
By (Φ3), we see that

Φ(x, at) ≥ A−1
2 aΦ(x, t) if a ≥ 1.

We shall also consider the following condition:

(Φ5) for every γ > 0, there exists a constant Bγ ≥ 1 such that

ϕ(x, t) ≤ Bγϕ(y, t)

whenever |x− y| ≤ γt−1/N and t ≥ 1.

Example 2.1. Let p(·) and qj(·), j = 1, . . . , k, be measurable functions on G such
that

(P1) 1 ≤ p− := infx∈G p(x) ≤ supx∈G p(x) =: p+ <∞

and

(Q1) −∞ < q−j := infx∈G qj(x) ≤ supx∈G qj(x) =: q+j <∞

for all j = 1, . . . , k.
Set La(t) = log(a + t) for a ≥ e and t ≥ 0, L

(1)
a (t) = La(t), L

(j+1)
a (t) =

La(L
(j)
a (t)) and

Φ(x, t) = tp(x)
k∏

j=1

(L(j)
a (t))qj(x).

Then, Φ(x, t) satisfies (Φ1), (Φ2) and (Φ4). It satisfies (Φ3) if there is a constant
K ≥ 0 such that K(p(x) − 1) + qj(x) ≥ 0 for all x ∈ G and j = 1, . . . , k; in
particular if p− > 1 or q−j ≥ 0 for all j = 1, . . . , k.

Φ(x, t) satisfies (Φ5) if

(P2) p(·) is log-Hölder continuous, namely

|p(x)− p(y)| ≤ Cp

Le(1/|x− y|)

with a constant Cp ≥ 0 and

(Q2) qj(·) is j-log-Hölder continuous, namely

|qj(x)− qj(y)| ≤
Cqj

L
(j)
e (1/|x− y|)

with constants Cqj ≥ 0, j = 1, . . . k.
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We also consider a function κ(x, r) : G× (0, dG) → (0,∞) satisfying the follow-
ing conditions:

(κ1) κ(x, ·) is measurable for each x ∈ G;

(κ2) κ(x, ·) is uniformly almost increasing on (0, dG), namely there exists a con-
stant Q1 ≥ 1 such that

κ(x, r) ≤ Q1κ(x, s)

for all x ∈ G whenever 0 < r < s < dG;

(κ3) there is a constant Q2 ≥ 1 such that

Q−1
2 min(1, rN) ≤ κ(x, r) ≤ Q2

for all x ∈ G and 0 < r < dG.

Example 2.2. Let ν(·) and βj(·), j = 1, . . . k be measurable functions on G such
that infx∈G ν(x) > 0, supx∈G ν(x) ≤ N and −c1(N − ν(x)) ≤ βj(x) ≤ c2 for all
x ∈ G, j = 1, . . . , k and some constants c1, c2 > 0. Then

κ(x, r) = rν(x)
k∏

j=1

(L(j)
e (1/r))βj(x)

satisfies (κ1), (κ2) and (κ3).

For a locally integrable function f on G, define the LΦ,κ norm

∥f∥LΦ,κ(G) = inf

{
λ > 0 : sup

x∈G,0<r<dG

κ(x, r)

|B(x, r)|

∫
G∩B(x,r)

Φ(y, |f(y)|/λ) dy ≤ 1

}
.

Let LΦ,κ(G) denote the set of all functions f such that ∥f∥LΦ,κ(G) < ∞ (cf. [30]),
which we call a Musielak-Orlicz-Morrey space. Note that LΦ,κ(G) is the Musielak-
Orlicz space LΦ(G) if κ(x, r) = rN (cf. [29]).

3 Lemmas

Throughout this paper, let C denote various constants independent of the variables
in question.

Set
Φ−1(x, s) = sup{t > 0 ; Φ(x, t) < s}

for x ∈ G and s > 0.

Lemma 3.1 ([13, Lemma 5.1]). Φ−1(x, ·) is non-decreasing;

Φ−1(x, λs) ≤ A2λΦ
−1(x, s) (3.1)

for all x ∈ G, s > 0 and λ ≥ 1;

A−1
2 t ≤ Φ−1(x,Φ(x, t)) (3.2)
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for all x ∈ G and t > 0; and

min

{
1,

s

A1A2

}
≤ Φ−1(x, s) ≤ max{1, A1A2s} (3.3)

for all x ∈ G and s > 0.

Lemma 3.2. There exists a constant C > 0 such that

C−1 ≤ Φ−1(x, κ(x, r)−1) ≤ Cr−N (3.4)

for all x ∈ G and 0 < r < dG.

Proof. By (κ3),
Q−1

2 ≤ κ(x, r)−1 ≤ Q2 max(1, r−N)

for x ∈ G and 0 < r < dG. Hence, by (3.3), we obtain (3.4).

Lemma 3.3 (cf. [13, Lemma 5.3] ). Assume that Φ satisfies (Φ5). Then there
exists a constant C > 0 such that∫

G∩B(x,r)

f(y) dy ≤ C|B(x, r)|Φ−1(x, κ(x, r)−1)

for all x ∈ G, 0 < r < dG and f ≥ 0 satisfying ∥f∥LΦ,κ(G) ≤ 1.

Proof. Let f be a nonnegative measurable function satisfying ∥f∥LΦ,κ(G) ≤ 1. Let
f1 = fχ{x:f(x)≥1} and f2 = f − f1. Since

Φ

(
x,

1

|B(x, r)|

∫
G∩B(x,r)

f1(y) dy

)
≤ Cκ(x, r)−1

by [13, Lemma 3.1] and (2.1), we see from (3.1) and (3.2) that∫
G∩B(x,r)

f1(y) dy ≤ C|B(x, r)|Φ−1(x, κ(x, r)−1)

for all x ∈ G and 0 < r < dG.
On the other hand, by the previous lemma, we see that∫

G∩B(x,r)

f2(y) dy ≤ C|B(x, r)|Φ−1(x, κ(x, r)−1)

for all x ∈ G and 0 < r < dG, so that we obtain the required result.

As a potential kernel, we consider a function

J(x, r) : G× (0, dG] → (0,∞)

satisfying the following conditions:

(J1) J(·, r) is measurable on G for each r ∈ (0, dG];
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(J2) J(x, ·) is non-increasing on (0, dG) and J(x, r) < limρ→0+ J(x, ρ) for all r > 0,
for each x ∈ G;

(J3) J(x, r) ≤ CJr
−σ for x ∈ G and 0 < r ≤ dG with constants 0 ≤ σ < N and

CJ > 0.

By (J3),
∫ dG
0

J(x, ρ)ρN−1 dρ ≤ J0 <∞. Set

J(x, r) =
N

rN

∫ r

0

J(x, ρ)ρN−1dρ

for x ∈ G and 0 < r ≤ dG. Then J(x, ·) is strictly decreasing and continuous.
Further, J(x, r) ≤ J(x, r) ≤ C ′

Jr
−σ for all x ∈ G and 0 < r ≤ dG. Note that

d(−J(x, ·))(ρ) ≤ Nρ−1J(x, ρ)dρ (3.5)

as measures.
We also assume:

(J4) there is r0 ∈ (0, dG) such that

inf
x∈G

J(x, r0) > 0 and inf
x∈G

J(x, r0)

J(x, dG)
> 1.

Example 3.4. Let α(·) be a measurable function on G such that

0 < α− := inf
x∈G

α(x) ≤ sup
x∈G

α(x) =: α+ < N.

Then, J(x, r) = rα(x)−N satisfies (J1) – (J4) (with σ = N − α−). In particular, it
satisfies (J4) with any r0 ∈ (0, dG).

We consider the function

Γ(x, s) =


∫ dG

1/s

ρNΦ−1
(
x, κ(x, ρ)−1

)
d(−J(x, ·))(ρ) if s ≥ 1/r0,

Γ(x, 1/r0)r0s if 0 ≤ s ≤ 1/r0

for every x ∈ G, where r0 is the number given in (J4). Γ(x, ·) is strictly increasing
and continuous for each x ∈ G.

Lemma 3.5. There exist positive constants C ′ and C ′′ such that

(a) Γ(x, s) ≤ C ′sσ for all x ∈ G and s ≥ 1/r0 with σ in condition (J3);

(b) Γ(x, 1/r0) ≥ C ′′ > 0 for all x ∈ G.
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Proof. By (3.4) and (J3),

Γ(x, s) ≤ C

∫ dG

1/s

d(−J(x, ·))(ρ) ≤ CJ(x, 1/s) ≤ C ′sσ

for all x ∈ G and s ≥ 1/r0; and

Γ(x, 1/r0) ≥ C−1

∫ dG

r0

ρNd(−J(x, ·))(ρ) ≥ C−1rN0

∫ dG

r0

d(−J(x, ·))(ρ)

= C−1rN0
(
J(x, r0)− J(x, dG)

)
≥ C ′′ > 0,

where we used (J4) to obtain the inequalities in the last line.

Lemma 3.6. There exists a constant C > 0 such that∫
G\B(x,δ)

J(x, |x− y|)f(y) dy ≤ CΓ

(
x,

1

δ

)
for all x ∈ G, 0 < δ ≤ r0 and nonnegative f ∈ LΦ,κ(G) with ∥f∥LΦ,κ(G) ≤ 1.

Proof. By integration by parts, Lemma 3.3, (3.4), (J4) and Lemma 3.5(b), we have∫
G\B(x,δ)

J(x, |x− y|)f(y) dy ≤
∫
G\B(x,δ)

J(x, |x− y|)f(y) dy

≤ C
{
dNGJ(x, dG)Φ

−1
(
x, κ(x, dG)

−1
)

+

∫ dG

δ

ρNΦ−1
(
x, κ(x, ρ)−1

)
d(−J(x, ·))(ρ)

}
≤ C

{
Γ(x, 1/r0) + Γ(x, 1/δ)

}
≤ CΓ(x, 1/δ).

Lemma 3.7. Let 0 < ε < N and define

Iεf(x) =

∫
G

|x− y|ε−Nf(y) dy

for a nonnegative measurable function f on G and

λε(z, r) =
1

1 +

∫ dG

r

ρεΦ−1(z, κ(z, ρ)−1)
dρ

ρ

for z ∈ G. Then there exists a constant CI,ε > 0 such that

λε(z, r)

|B(z, r)|

∫
G∩B(z,r)

Iεf(x)dx ≤ CI,ε

for all z ∈ G, 0 < r < dG and f ≥ 0 satisfying ∥f∥LΦ,κ(G) ≤ 1.
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Proof. Let z ∈ G. Let f(x) = 0 for x ∈ RN \G and write

Iεf(x) =

∫
B(z,2r)

|x− y|ε−Nf(y) dy +

∫
G\B(z,2r)

|x− y|ε−Nf(y) dy

= I1(x) + I2(x)

for x ∈ G. By Fubini’s theorem,∫
G∩B(z,r)

I1(x) dx =

∫
B(z,2r)

(∫
G∩B(z,r)

|x− y|ε−N dx

)
f(y) dy

≤
∫
B(z,2r)

(∫
B(y,3r)

|x− y|ε−N dx

)
f(y) dy

≤ C

∫
B(z,2r)

(∫ 3r

0

tε
dt

t

)
f(y) dy

≤ C

ε
rε
∫
B(z,2r)

f(y)dy.

Now, by Lemma 3.3, (κ2) and (3.1) we have

rε
∫
B(z,2r)

f(y) dy ≤ Crε|B(z, 2r)|Φ−1(z, κ(z, 2r)−1)

≤ C|B(z, r)|
∫ 2r

r

ρεΦ−1(z, κ(z, ρ)−1)
dρ

ρ

if 0 < r < dG/2 and, by Lemma 3.3 and (3.4), we have

rε
∫
B(z,2r)

f(y) dy = rε
∫
B(z,dG)

f(y) dy

≤ CdG
ε|B(z, dG)|Φ−1(z, κ(z, dG)

−1) ≤ C|B(z, r)|

if dG/2 ≤ r < dG. Therefore∫
G∩B(z,r)

I1(x) dx ≤ C

ε

|B(z, r)|
λε(z, r)

for all 0 < r < dG.
For I2, first note that I2(x) = 0 if x ∈ G and r ≥ dG/2. Let 0 < r < dG/2.

Since

I2(x) ≤ C

∫
G\B(z,2r)

|z − y|ε−Nf(y) dy for x ∈ G ∩B(z, r),

by integration by parts and Lemma 3.3, we have

I2(x) ≤ C

{
dG

εΦ−1(z, κ(z, dG)
−1) +

∫ dG

2r

ρεΦ−1(z, κ(z, ρ)−1)
dρ

ρ

}
≤ C

λε(z, r)

for all x ∈ G ∩B(z, r). Hence∫
G∩B(z,r)

I2(x) dx ≤ C
|B(z, r)|
λε(z, r)

.

Thus this lemma is proved.
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4 Trudinger’s inequality

In this section, we deal with the case Γ(x, r) satisfies the uniform log-type condition:

(Γlog) there exists a constant cΓ > 0 such that

Γ(x, s2) ≤ cΓΓ(x, s) (4.1)

for all x ∈ G and s ≥ 1.

Example 4.1. Let Φ, κ and J be as in Examples 2.1, 2.2 and 3.4, respectively.
Then

Γ(x, s) ∼
∫ dG

1/s

ρα(x)−ν(x)/p(x)

k∏
j=1

[
L(j)

e (1/ρ)
]−{qj(x)+βj(x)}/p(x)dρ

ρ
(s ≥ 1/r0),

so that it satisfies (Γlog) if and only if

α(x)p(x) ≥ ν(x) for all x ∈ G.

(Here h1(x, s) ∼ h2(x, s) means that C−1h2(x, s) ≤ h1(x, s) ≤ Ch2(x, s) for a
constant C > 0.)

By (Γlog), together with Lemma 3.5, we see that Γ(x, s) satisfies the uniform
doubling condition in s:

Lemma 4.2. For every a > 1, there exists b > 0 such that Γ(x, as) ≤ bΓ(x, s) for
all x ∈ G and s > 0.

Proof. If 0 < s < a−1r−1
0 , then

Γ(x, as) = Γ(x, 1/r0)r0as = aΓ(x, s).

If a−1r−1
0 ≤ s ≤ a, then by Lemma 3.5 we see that C1 ≤ Γ(x, s) ≤ C2 with positive

constants C1, C2 independent of x. Finally, if s > a, then we see from (Γlog) that

Γ(x, as) ≤ Γ(x, s2) ≤ cΓΓ(x, s).

For a nonnegative measurable function f on G, its J-potential Jf is defined by

Jf(x) =

∫
G

J(x, |x− y|)f(y) dy (x ∈ G).

Now we consider the following condition (Jε):

(Jε) there exists 0 < ε < N − σ such that r 7→ rN−εJ(x, r) is uniformly almost
increasing on (0, dG) for σ in condition (J3).

Example 4.3. Let J be as in Example 3.4. It satisfies (Jε) with 0 < ε < α−.
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Theorem 4.4. Assume that Φ satisfies (Φ5), Γ satisfies (Γlog) and J satisfies (Jε).
For each x ∈ G, let γ(x) = sups>0 Γ(x, s). Suppose Ψ(x, t) : G × [0,∞) → [0,∞]
satisfies the following conditions:

(Ψ1) Ψ(·, t) is measurable on G for each t ∈ [0,∞); Ψ(x, ·) is continuous on [0,∞)
for each x ∈ G;

(Ψ2) there is a constant A′
1 ≥ 1 such that Ψ(x, t) ≤ Ψ(x,A′

1s) for all x ∈ G
whenever 0 < t < s;

(Ψ3) Ψ(x,Γ(x, s)/A′
2) ≤ A′

3s for all x ∈ G and s > 0 with constants A′
2, A

′
3 ≥ 1

independent of x.

Then, for ε given in (Jε), there exists a constant C∗ > 0 such that Jf(x)/C∗ < γ(x)
for a.e. x ∈ G and

λε(z, r)

|B(z, r)|

∫
G∩B(z,r)

Ψ

(
x,
Jf(x)

C∗

)
dx ≤ 1

for all z ∈ G, 0 < r < dG and f ≥ 0 satisfying ∥f∥LΦ,κ(G) ≤ 1.

Proof. Let f ≥ 0 and ∥f∥LΦ,κ(G) ≤ 1. Set f = 0 outside G. Fix x ∈ G. For
0 < δ ≤ r0, Lemma 3.6, (Jε) and (J3) imply

Jf(x) ≤
∫
B(x,δ)

J(x, |x− y|)f(y) dy + CΓ

(
x,

1

δ

)
=

∫
B(x,δ)

|x− y|N−εJ(x, |x− y|)|x− y|ε−Nf(y) dy + CΓ

(
x,

1

δ

)
≤ C

{
δN−εJ(x, δ)Iεf(x) + Γ

(
x,

1

δ

)}
≤ C

{
δN−σ−εIεf(x) + Γ

(
x,

1

δ

)}
with constants C > 0 independent of x.

If Iεf(x) ≤ 1/r0, then we take δ = r0. Then, by Lemma 3.5(b)

Jf(x) ≤ CΓ

(
x,

1

r0

)
.

By Lemma 4.2, there exists C∗
1 > 0 independent of x such that

Jf(x) ≤ C∗
1Γ

(
x,

1

2A′
3

)
if Iεf(x) ≤ 1/r0. (4.2)

Next, suppose 1/r0 < Iεf(x) < ∞. Let m = sups≥1/r0,x∈G Γ(x, s)/s. By (Γlog),
m <∞. Define δ by

δN−σ−ε =
rN−σ−ε
0

m
Γ(x, Iεf(x))(Iεf(x))

−1.
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Since Γ(x, Iεf(x))(Iεf(x))
−1 ≤ m, 0 < δ ≤ r0. Then by Lemma 3.5(b)

1

δ
≤ CΓ(x, Iεf(x))

−1/(N−σ−ε)(Iεf(x))
1/(N−σ−ε)

≤ CΓ(x, 1/r0)
−1/(N−σ−ε)(Iεf(x))

1/(N−σ−ε) ≤ C(Iεf(x))
1/(N−σ−ε).

Hence, using (Γlog) and Lemma 4.2, we obtain

Γ

(
x,

1

δ

)
≤ Γ

(
x,C(Iεf(x))

1/(N−σ−ε)
)
≤ CΓ(x, Iεf(x)).

By Lemma 4.2 again, we see that there exists a constant C∗
2 > 0 independent of x

such that

Jf(x) ≤ C∗
2Γ

(
x,

1

2CI,εA′
3

Iεf(x)

)
if 1/r0 < Iεf(x) <∞, (4.3)

where CI,ε is the constant given in Lemma 3.7.
Now, let C∗ = A′

1A
′
2 max(C∗

1 , C
∗
2). Then, by (4.2) and (4.3),

Jf(x)

C∗ ≤ 1

A′
1A

′
2

max

{
Γ

(
x,

1

2A′
3

)
, Γ

(
x,

1

2CI,εA′
3

Iεf(x)

)}
(4.4)

whenever Iεf(x) <∞. Since Iεf(x) <∞ for a.e. x ∈ G by Lemma 3.7, Jf(x)/C∗ <
γ(x) a.e. x ∈ G, and by (Ψ2) and (Ψ3), we have

Ψ

(
x,
Jf(x)

C∗

)
≤ max

{
Ψ

(
x,Γ

(
x,

1

2A′
3

)
/A′

2

)
, Ψ

(
x,Γ

(
x,

1

2CI,εA′
3

Iεf(x)

)
/A′

2

)}
≤ 1

2
+

1

2CI,ε

Iεf(x)

for a.e. x ∈ G. Thus, noting that λε(z, r) ≤ 1 and using Lemma 3.7, we have

λε(z, r)

|B(z, r)|

∫
G∩B(z,r)

Ψ

(
x,
Jf(x)

C∗

)
dx

≤ 1

2
λε(z, r) +

1

2CI,ε

λε(z, r)

|B(z, r)|

∫
G∩B(z,r)

Iεf(x) dx

≤ 1

2
+

1

2
= 1

for all z ∈ G and 0 < r < dG.

Remark 4.5. If Γ(x, s) is bounded, that is,

sup
x∈G

∫ dG

0

ρNΦ−1
(
x, κ(x, ρ)−1

)
d(−J(x, ·))(ρ) <∞,

then by Lemma 3.6 we see that J |f | is bounded for every f ∈ LΦ,κ(G). In partic-
ular, if λN−σ(x, r)

−1 is bounded, that is,

sup
x∈G

∫ dG

0

ρN−σΦ−1
(
x, κ(x, ρ)−1

) dρ
ρ
<∞,

then Γ(x, s) is bounded by (J3), and hence J |f | is bounded for every f ∈ LΦ,κ(G).
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Applying Theorem 4.4 to special Φ, κ and J given in Examples 2.1, 2.2 and
3.4, we obtain the following corollary, which is an extension of [18, Corollary 5.3].
In fact, [18, Corollary 5.3] is a case k = 1 of Corollary 4.6.

Corollary 4.6. Let Φ and κ be as in Examples 2.1 and 2.2 and let α be as in
Example 3.4.

Set

Iα(·)f(x) =

∫
G

|x− y|α(x)−Nf(y) dy

for a nonnegative locally integrable function f on G.
Assume that

α(x)− ν(x)/p(x) = 0 for all x ∈ G.

(1) Suppose there exists an integer 1 ≤ j0 ≤ k such that

inf
x∈G

(p(x)− qj0(x)− βj0(x)) > 0 (4.5)

and
sup
x∈G

(p(x)− qj(x)− βj(x)) ≤ 0 (4.6)

for all j ≤ j0−1 in case j0 ≥ 2. Then for 0 < ε < α− there exist constants C∗ > 0
and C∗∗ > 0 such that

rν(z)/p(z)−ε

|B(z, r)|

∫
G∩B(z,r)

E
(j0)
+

((
Iα(·)f(x)

C∗

)p(x)/(p(x)−qj0 (x)−βj0
(x))

×
k−j0∏
j=1

(
L(j)
e

(
Iα(·)f(x)

C∗

))(qj0+j(x)+βj0+j(x))/(p(x)−qj0 (x)−βj0
(x))
)
dx ≤ C∗∗

for all z ∈ G, 0 < r < dG and f ≥ 0 satisfying ∥f∥LΦ,κ(G) ≤ 1, where E(1)(t) =

et − e, E(j+1)(t) = exp(Ej(t))− e and E
(j)
+ (t) = max(E(j)(t), 0).

(2) If
sup
x∈G

(p(x)− qj(x)− βj(x)) ≤ 0

for all j = 1, . . . , k, then for 0 < ε < α− there exist constants C∗ > 0 and C∗∗ > 0
such that

rν(z)/p(z)−ε

|B(z, r)|

∫
G∩B(z,r)

E(k+1)

(
Iα(·)f(x)

C∗

)
dx ≤ C∗∗

for all z ∈ G, 0 < r < dG and f ≥ 0 satisfying ∥f∥LΦ,κ(G) ≤ 1.

Remark 4.7. [16, Remark 2.8] shows that we cannot take ε = α− in the above
corollary.

Proof of Corollary 5.6. By Example 4.1,

Γ(x, s) ∼
∫ dG

1/s

k∏
j=1

[
L(j)
e (1/ρ)

]−{qj(x)+βj(x)}/p(x)dρ

ρ

12



for s ≥ 1/r0. We shall show

Γ(x, s) ≤ C1Γ1(x, s) (4.7)

for s ≥ 1/r0, where

Γ1(x, s) =
[
L(j0)
e (s)

]1−{qj0 (x)+βj0
(x)}/p(x)

k∏
j=j0+1

[
L(j)

e (s)
]−{qj(x)+βj(x)}/p(x).

To prove the assertion of (1), assume (4.5) and (4.6). Let ρ > 1/s. By (4.6),[
L
(j)
e (1/ρ)

]−{qj(x)+βj(x)}/p(x) ≤
[
L
(j)
e (1/ρ)

]−1
for 1 ≤ j ≤ j0 − 1. By (4.5), we find

ε0 > 0 such that infx∈G{1− {qj0(x) + βj0(x)}/p(x)} > ε0. Since

t 7→
[
L(j0)
e (t)

]1−{qj0 (x)+βj0
(x)}/p(x)−ε0

k∏
j=j0+1

[
L(j)
e (t)

]−{qj(x)+βj(x)}/p(x)

is uniformly almost increasing,

Γ(x, s) ≤ C

∫ dG

1/s

k∏
j=1

[
L(j)

e (1/ρ)
]−{qj(x)+βj(x)}/p(x)dρ

ρ

≤ C
[
L(j0)
e (s)

]1−{qj0 (x)+βj0
(x)}/p(x)−ε0

k∏
j=j0+1

[
L(j)
e (s)

]−{qj(x)+βj(x)}/p(x)

×
∫ dG

1/s

(
j0−1∏
j=1

[
L(j)
e (1/ρ)

]−1

)[
L(j0)
e (1/ρ)

]−1+ε0 dρ

ρ

≤ C1Γ1(x, s),

which shows (4.7).
Now, set

ψ(x, t) = tp(x)/{p(x)−qj0 (x)−βj0
(x)}

k−j0∏
i=1

[
L(i)

e (t)
]{qj0+i(x)+βj0+i(x)}/{p(x)−qj0 (x)−βj0

(x)}

for x ∈ G and t > 0. Then

ψ(x,Γ1(x, s)) ≤ C2L
(j0)
e (s)

for s ≥ 1/r0.
Since infx∈G p(x)/{p(x) − qj0(x) − βj0(x)} > 0, there are constants 0 < θ ≤ 1

and C3 ≥ 1 such that
ψ(x, at) ≤ C3a

θψ(x, t) (4.8)

for all x ∈ G, t > 0 and 0 < a ≤ 1. Hence, choosing A′ ≥ 1 such that
C2

3C2(C1/A
′)θ ≤ 1, we have

ψ(x,Γ(x, s)/A′) ≤ C3ψ(x, (C1/A
′)Γ1(x, s))

≤ C2
3(C1/A

′)θψ(x,Γ1(x, s)) ≤ C2
3(C1/A

′)θC2L
(j0)
e (s) ≤ L(j0)

e (s)

13



for s ≥ 1/r0. Thus,

E(j0)(ψ(x,Γ(x, s)/A′)) ≤ s for s ≥ 1/r0. (4.9)

Let u0 > 0 be the unique solution of the equation eu − e = u. Then E(u) ≥ u0
if and only if u ≥ u0. Choose t0 > 0 such that ψ(x, t) ≥ u0 for t ≥ t0 and define

Ψ(x, t) =


E(j0)(ψ(x, t)) for t ≥ t0,

Ψ(x, t0)
t

t0
for 0 < t < t0.

Then, Ψ(x, t) satisfies (Ψ1), (Ψ2) (with A′
1 = C

1/θ
3 , say) and (Ψ3), in view of (4.8)

and (4.9).
In the present situation, we see that

λε′(z, r) ∼ rν(z)/p(z)−ε′
k∏

j=1

[
L(j)

e (1/r)
]{qj(z)+βj(z)}/p(z)

for 0 < ε′ < α−, so that
rν(z)/p(z)−ε ≤ C4λε′(z, r)

if 0 < ε < ε′ < α−. Thus, given 0 < ε < α−, Theorem 4.4 implies the existence of
a constant C∗ > 0 such that

rν(z)/p(z)−ε

|B(z, r)|

∫
G∩B(z,r)

Ψ

(
x,
Iα(·)f(x)

C∗

)
dx ≤ C4

for all z ∈ G, 0 < r < dG and f ≥ 0 satisfying ∥f∥LΦ,κ(G) ≤ 1. Let Sf = {x ∈ G :
Iα(·)f(x) ≥ C∗t0}. Then

rν(z)/p(z)−ε

|B(z, r)|

∫
G∩B(z,r)

E
(j0)
+

(
ψ

(
x,
Iα(·)f(x)

C∗

))
dx

≤ C5

|B(z, r)|

∫
B(z,r)\Sf

dx+
rν(z)/p(z)−ε

|B(z, r)|

∫
Sf∩B(z,r)

Ψ

(
x,
Iα(·)f(x)

C∗

)
dx

≤ C5 + C4 = C∗∗

for all z ∈ G, 0 < r < dG and f ≥ 0 satisfying ∥f∥LΦ,κ(G) ≤ 1, which shows the
assertion of (1).

The case (2) can be considered as the case (1) with j0 = k + 1 and qk+1(x) =
βk+1(x) ≡ 0.

5 Continuity

In this section, we discuss the continuity of potentials Jf under the condition

(J5) there are 0 < θ ≤ 1 and C > 0 such that

|J(x, r)− J(z, s)| ≤ C

(
|x− z|
r

)θ

J(x, r) whenever |r− s| ≤ |x− z| ≤ r/2

for x, z ∈ G, 0 < r, s < dG.
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We consider the functions

ω(x, r) =

∫ r

0

ρN−1Φ−1
(
x, κ(x, ρ)−1

)
J(x, ρ)dρ

and

ωθ(x, r) = rθ
∫ dG

r

ρN−1−θΦ−1
(
x, κ(x, ρ)−1

)
J(x, ρ)dρ

for θ > 0 and 0 < r ≤ dG.

Lemma 5.1. Let E ⊂ G. If ω(x, r) → 0 as r → 0+ uniformly in x ∈ E, then
ωθ(x, r) → 0 as r → 0+ uniformly in x ∈ E.

Proof. Suppose ω(x, r) → 0 as r → 0+ uniformly in x ∈ E. Given ε > 0
there is δ > 0 (δ ≤ dG) such that ω(x, δ) < ε/2 for all x ∈ E. Set g(x, ρ) =
ρN−1Φ−1

(
x, κ(x, ρ)−1

)
J(x, ρ). By Lemma 3.2 and (J3),

Cδ := sup
x∈G, δ≤ρ≤dG

g(x, ρ) <∞.

If 0 < r ≤ δ and x ∈ E, then

ωθ(x, r) = rθ
∫ dG

r

ρ−θg(x, ρ)dρ ≤
∫ δ

r

g(x, ρ)dρ+
(r
δ

)θ ∫ dG

δ

g(x, ρ)dρ

≤ ω(x, δ) +
(r
δ

)θ
CδdG <

ε

2
+
(r
δ

)θ
CδdG.

Choosing δ′ > 0 (δ′ ≤ δ) such that (δ′/δ)θCδdG < ε/2, we see that ωθ(x, r) < ε for
all x ∈ E and 0 < r ≤ δ′, which means that ωθ(x, r) → 0 as r → 0+ uniformly in
x ∈ E.

Lemma 5.2. There exists a constant C > 0 such that

ω(x, 2r) ≤ Cω(x, r)

for all x ∈ G and 0 < r ≤ dG/2.

Proof. By (κ2), (3.1) and the fact that J(x, ·) is strictly decreasing, we have

ω(x, 2r) =

∫ 2r

0

ρN−1Φ−1
(
x, κ(x, ρ)−1

)
J(x, ρ)dρ

= C

∫ r

0

ρN−1Φ−1
(
x, κ(x, 2ρ)−1

)
J(x, 2ρ)dρ

≤ C

∫ r

0

ρN−1Φ−1
(
x,Q1κ(x, ρ)

−1
)
J(x, ρ)dρ

≤ C

∫ r

0

ρN−1Φ−1
(
x, κ(x, ρ)−1

)
J(x, ρ)dρ = Cω(x, r),

as required.
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Theorem 5.3. Suppose that J satisfies (J5). Then there exists a constant C > 0
such that

|Jf(x)− Jf(z)| ≤ C{ω(x, |x− z|) + ω(z, |x− z|) + ωθ(x, |x− z|)}

for all x, z ∈ G with |x−z| < dG/4 and nonnegative f ∈ LΦ,κ(G) with ∥f∥LΦ,κ(G) ≤
1.

Before giving a proof of Theorem 5.3, we prepare two more lemmas.

Lemma 5.4. There exists a constant C > 0 such that∫
B(x,r)

J(x, |x− y|)f(y) dy ≤ Cω(x, r)

for all x ∈ G, 0 < r ≤ dG and nonnegative f ∈ LΦ,κ(G) with ∥f∥LΦ,κ(G) ≤ 1.

Proof. By integration by parts, Lemma 3.3 and (3.5), we have∫
B(x,r)

J(x, |x− y|)f(y) dy ≤
∫
B(x,r)

J(x, |x− y|)f(y) dy

≤ C
{
rNJ(x, r)Φ−1

(
x, κ(x, r)−1

)
+

∫ r

0

ρNΦ−1
(
x, κ(x, ρ)−1

)
d(−J(x, ·))(ρ)

}
≤ C

{
rNJ(x, r)Φ−1

(
x, κ(x, r)−1

)
+ ω(x, r)

}
.

In view of (κ2) and (3.1), we have

ω(x, r) ≥ Φ−1
(
x,Q−1

1 κ(x, r)−1
)
J(x, r)

∫ r

0

ρN−1dρ

≥ CrNJ(x, r)Φ−1
(
x, κ(x, r)−1

)
.

Hence we have the required inequality.

Lemma 5.5. Let 0 < θ ≤ 1. Then there exists a constant C > 0 such that∫
G\B(x,r)

|x− y|−θJ(x, |x− y|)f(y) dy ≤ Cr−θωθ(x, r)

for all x ∈ G, 0 < r ≤ dG/2 and nonnegative f ∈ LΦ,κ(G) with ∥f∥LΦ,κ(G) ≤ 1.

Proof. Let J̃(x, r) = r−θJ(x, r). Then, J̃(x, ·) is continuous, strictly decreasing
and by (3.5)

d(−J̃(x, ·))(ρ) = θρ−θ−1J(x, ρ) dρ+ ρ−θd(−J(x, ·)(ρ) ≤ (N + 1)ρ−θ−1J(x, ρ) dρ

as measures. Hence, by integration by parts and Lemma 3.3, we have∫
G\B(x,r)

|x− y|−θJ(x, |x− y|)f(y) dy

≤ C
{
dN−θ
G J(x, dG)Φ

−1
(
x, κ(x, dG)

−1
)

+

∫ dG

r

ρN−θ−1Φ−1
(
x, κ(x, ρ)−1

)
J(x, ρ)dρ

}
.
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In view of (κ2) and (3.1), we have∫ dG

r

ρN−θ−1Φ−1
(
x, κ(x, ρ)−1

)
J(x, ρ)dρ

≥ d−θ
G Φ−1

(
x,Q−1

1 κ(x, dG)
−1
)
J(x, dG)

∫ dG

dG/2

ρN−1dρ

≥ CdN−θ
G J(x, dG)Φ

−1
(
x, κ(x, dG)

−1
)

if r ≤ dG/2. Hence∫
G\B(x,r)

|x− y|−θJ(x, |x− y|)f(y) dy

≤ C

∫ dG

r

ρN−1−θΦ−1
(
x, κ(x, ρ)−1

)
J(x, ρ)dρ = Cr−θωθ(x, r),

as required.

Proof of Theorem 5.3. Let f ∈ LΦ,κ(G) be nonnegative and ∥f∥LΦ,κ(G) ≤ 1. Write

Jf(x)− Jf(z)

=

∫
B(x,2|x−z|)

J(x, |x− y|)f(y) dy −
∫
B(x,2|x−z|)

J(z, |z − y|)f(y) dy

+

∫
G\B(x,2|x−z|)

(J(x, |x− y|)− J(z, |z − y|))f(y) dy

for x, z ∈ G. By Lemma 5.4 and Lemma 5.2, we have∫
B(x,2|x−z|)

J(x, |x− y|)f(y) dy ≤ Cω(x, |x− z|),

and ∫
B(x,2|x−z|)

J(z, |z − y|)f(y) dy ≤
∫
B(z,3|x−z|)

J(z, |z − y|)f(y) dy

≤ Cω(z, |x− z|).

On the other hand, we have by (J5), Lemma 5.5 and Lemma 5.2,∫
G\B(x,2|x−z|)

|J(x, |x− y|)− J(z, |z − y|)|f(y) dy

≤ C|x− z|θ
∫
G\B(x,2|x−z|)

|x− y|−θJ(x, |x− y|)f(y) dy

≤ Cωθ(x, 2|x− z|) ≤ Cωθ(x, |x− z|)

if |x− z| < dG/4.
Thus we have the conclusion of the theorem.

In view of Lemma 5.1, we obtain
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Corollary 5.6. Assume that J satisfies (J5).
(a) Let x0 ∈ G and suppose ω(x, r) → 0 as r → 0+ uniformly in x ∈ B(x0, δ)∩G

for some δ > 0. Then Jf is continuous at x0 for every f ∈ LΦ,κ(G).
(b) Suppose ω(x, r) → 0 as r → 0+ uniformly in x ∈ G. Then Jf is uniformly

continuous on G for every f ∈ LΦ,κ(G).

Remark 5.7. Let E ⊂ G. If there exist δ ∈ (0, dG) and a measurable function
h(r) on (0, δ) such that

Φ−1
(
x, κ(x, r)−1

)
J(x, r) ≤ h(r)

for all x ∈ E and 0 < r < δ and∫ δ

0

ρN−1h(ρ) dρ <∞,

then ω(x, r) → 0 as r → 0+ uniformly in x ∈ E.
In this case, Γ(x, s) is bounded on E × (0,∞).

Applying Theorem 5.3 to special Φ, κ and J given in Examples 2.1, 2.2 and
3.4, we obtain the following Example, which is an extension of [18, section 6]. In
[18, section 6], a case k = 1 is dealt with .

Example 5.8 (cf. [18, section 6] ). Let Φ, κ and J be as in Examples 2.1, 2.2 and
3.4. J satisfies (J5) if α is θ-Hölder continuous. Since

ω(x, r) ∼
∫ r

0

ρα(x)−ν(x)/p(x)

k∏
j=1

[
L(j)

e (1/ρ)
]−{qj(x)+βj(x)}/p(x)dρ

ρ
,

ω(x, r) → 0 as r → 0+ uniformly in x ∈ E (E ⊂ G) if either

inf
x∈E

(
α(x)− ν(x)

p(x)

)
> 0,

or

inf
x∈E

(
α(x)− ν(x)

p(x)

)
= 0, sup

x∈E

qj(x) + βj(x)

p(x)
≤ 1, j = 1, . . . , j0 − 1,

and

inf
x∈E

qj0(x) + βj0(x)

p(x)
> 1

for some 1 ≤ j0 ≤ k.
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