Trudinger's inequality and continuity of potentials on Musielak-Orlicz-Morrey spaces

Fumi-Yuki Maeda, Yoshihiro Mizuta, Takao Ohno and Tetsu Shimomura

March 23, 2012

Abstract

In this paper we are concerned with Trudinger's inequality and continuity for general potentials of functions in Musielak-Orlicz-Morrey spaces.

1 Introduction

A famous Trudinger inequality ([34]) insists that Sobolev functions in $W^{1,N}(G)$ satisfy finite exponential integrability, where G is an open bounded set in \mathbb{R}^N (see also [2], [4], [28], [35]). Great progress on Trudinger type inequalities has been made for Riesz potentials of order α ($0 < \alpha < N$) in the limiting case $\alpha p = N$ (see e.g. [5], [6], [7], [8], [33]). In [3], [20] and [24], Trudinger type exponential integrability was studied on Orlicz spaces, as extensions of [5], [6] and [8], and also on generalized Morrey spaces $L^{1,\varphi}$ in [16] and [17]. For Morrey spaces, which were introduced to estimate solutions of partial differential equations, we refer to [27] and [31]. Further, Trudinger type exponential integrability was also studied on Orlicz-Morrey spaces (see [25] and [30]).

In the mean time, variable exponent Lebesgue spaces and Sobolev spaces were introduced to discuss nonlinear partial differential equations with non-standard growth condition. These spaces have attracted more and more attention, in connection with the study of elasticity, fluid mechanics; see [32]. Trudinger type exponential integrability on variable exponent Lebesgue spaces $L^{p(\cdot)}$ was investigated in [9], [10] and [11]. For the two variable exponents spaces $L^{p(\cdot)}(\log L)^{q(\cdot)}$, see [19]. These spaces are special cases of so-called Musielak-Orlicz spaces ([29]).

Trudinger type exponential integrability for variable exponent Morrey spaces was also studied in [23], and then the result was extended to the two variable exponents Morrey spaces in [18]. In [18], Riesz kernel of variable order is considered. All the above spaces are special cases of what we call "Musielak-Orlicz-Morrey spaces".

²⁰⁰⁰ Mathematics Subject Classification : Primary 46E35; Secondary 46E30.

Key words and phrases : Musielak-Orlicz space, Morrey space, Trudinger's inequality, variable exponent, continuity

On the other hand, beginning with Sobolev's embedding theorem (see e.g. [1], [2]), continuity properties of Riesz potentials or Sobolev functions have been studied by many authors. Continuity of Riesz potentials of functions in Orlicz spaces was studied in [8], [14], [15], [21] and [24] (cf. also [22]). Then such continuity was investigated on generalized Morrey spaces $L^{1,\varphi}$ in [16] and [17], on Orlicz-Morrey spaces in [26], on variable exponent Lebesgue spaces in [9], [10] and [12], on two variable exponents Lebesgue spaces in [19], on variable exponent Morrey spaces in [26] and on two variable exponents Morrey spaces in [18].

Our aim in this paper is to give a general version of Trudinger type exponential integrability and continuity for potentials of functions in Musielak-Orlicz-Morrey spaces. We consider a general potential kernel of "variable order". By treating such general setting, we can obtain new results (e.g., Corollary 4.6 and Corollary 5.6 + Example 5.8) which have not been found in the literature.

2 Preliminaries

We denote by B(x,r) the ball $\{y \in \mathbf{R}^N : |y-x| < r\}$ with center x and of radius r > 0 and by |B(x,r)| its Lebesgue measure, i.e. $|B(x,r)| = \sigma_N r^N$, where σ_N is the volume of the unit ball in \mathbf{R}^N .

Throughout this paper, we fix a bounded open set G. Let $d_G = \text{diam } G$. We consider a function

$$\Phi(x,t) = t\phi(x,t) : G \times [0,\infty) \to [0,\infty)$$

satisfying the following conditions $(\Phi 1) - (\Phi 4)$:

- (Φ 1) $\phi(\cdot, t)$ is measurable on G for each $t \ge 0$ and $\phi(x, \cdot)$ is continuous on $[0, \infty)$ for each $x \in G$;
- ($\Phi 2$) there exists a constant $A_1 \ge 1$ such that

$$A_1^{-1} \le \phi(x, 1) \le A_1 \quad \text{for all } x \in G;$$

(Φ3) $\phi(x, \cdot)$ is uniformly almost increasing, namely there exists a constant $A_2 \ge 1$ such that

$$\phi(x,t) \leq A_2 \phi(x,s)$$
 for all $x \in G$ whenever $0 \leq t < s$;

 $(\Phi 4)$ there exists a constant $A_3 \ge 1$ such that

$$\phi(x, 2t) \le A_3 \phi(x, t)$$
 for all $x \in G$ and $t > 0$.

Note that $(\Phi 2)$, $(\Phi 3)$ and $(\Phi 4)$ imply

$$0 < \inf_{x \in G} \phi(x, t) \le \sup_{x \in G} \phi(x, t) < \infty$$

for each t > 0. Let $\bar{\phi}(x, t) = \sup_{0 \le s \le t} \phi(x, s)$ and

$$\overline{\Phi}(x,t) = \int_0^t \overline{\phi}(x,r) \, dr$$

for $x \in G$ and $t \ge 0$. Then $\overline{\Phi}(x, \cdot)$ is convex and

$$\frac{1}{2A_3}\Phi(x,t) \le \overline{\Phi}(x,t) \le A_2\Phi(x,t) \tag{2.1}$$

for all $x \in G$ and $t \ge 0$.

By $(\Phi 3)$, we see that

$$\Phi(x, at) \ge A_2^{-1} a \Phi(x, t) \quad \text{if } a \ge 1.$$

We shall also consider the following condition:

(Φ 5) for every $\gamma > 0$, there exists a constant $B_{\gamma} \ge 1$ such that

$$\phi(x,t) \le B_{\gamma}\phi(y,t)$$

whenever $|x - y| \le \gamma t^{-1/N}$ and $t \ge 1$.

EXAMPLE 2.1. Let $p(\cdot)$ and $q_j(\cdot)$, $j = 1, \ldots, k$, be measurable functions on G such that

(P1) $1 \le p^- := \inf_{x \in G} p(x) \le \sup_{x \in G} p(x) =: p^+ < \infty$

and

(Q1)
$$-\infty < q_j^- := \inf_{x \in G} q_j(x) \le \sup_{x \in G} q_j(x) =: q_j^+ < \infty$$

for all $j = 1, \ldots, k$.

Set $L_a(t) = \log(a+t)$ for $a \ge e$ and $t \ge 0$, $L_a^{(1)}(t) = L_a(t)$, $L_a^{(j+1)}(t) = L_a(L_a^{(j)}(t))$ and

$$\Phi(x,t) = t^{p(x)} \prod_{j=1}^{k} (L_a^{(j)}(t))^{q_j(x)}.$$

Then, $\Phi(x,t)$ satisfies $(\Phi 1)$, $(\Phi 2)$ and $(\Phi 4)$. It satisfies $(\Phi 3)$ if there is a constant $K \ge 0$ such that $K(p(x) - 1) + q_j(x) \ge 0$ for all $x \in G$ and $j = 1, \ldots, k$; in particular if $p^- > 1$ or $q_j^- \ge 0$ for all $j = 1, \ldots, k$.

 $\Phi(x,t)$ satisfies ($\Phi 5$) if

(P2) $p(\cdot)$ is log-Hölder continuous, namely

$$|p(x) - p(y)| \le \frac{C_p}{L_e(1/|x - y|)}$$

with a constant $C_p \ge 0$ and

(Q2) $q_j(\cdot)$ is *j*-log-Hölder continuous, namely

$$|q_j(x) - q_j(y)| \le \frac{C_{q_j}}{L_e^{(j)}(1/|x - y|)}$$

with constants $C_{q_j} \ge 0, j = 1, \dots k$.

We also consider a function $\kappa(x, r) : G \times (0, d_G) \to (0, \infty)$ satisfying the following conditions:

- ($\kappa 1$) $\kappa(x, \cdot)$ is measurable for each $x \in G$;
- ($\kappa 2$) $\kappa(x, \cdot)$ is uniformly almost increasing on $(0, d_G)$, namely there exists a constant $Q_1 \ge 1$ such that

$$\kappa(x,r) \le Q_1\kappa(x,s)$$

for all $x \in G$ whenever $0 < r < s < d_G$;

 $(\kappa 3)$ there is a constant $Q_2 \ge 1$ such that

$$Q_2^{-1}\min(1, r^N) \le \kappa(x, r) \le Q_2$$

for all $x \in G$ and $0 < r < d_G$.

EXAMPLE 2.2. Let $\nu(\cdot)$ and $\beta_j(\cdot)$, $j = 1, \ldots k$ be measurable functions on G such that $\inf_{x \in G} \nu(x) > 0$, $\sup_{x \in G} \nu(x) \le N$ and $-c_1(N - \nu(x)) \le \beta_j(x) \le c_2$ for all $x \in G$, $j = 1, \ldots, k$ and some constants $c_1, c_2 > 0$. Then

$$\kappa(x,r) = r^{\nu(x)} \prod_{j=1}^{k} (L_e^{(j)}(1/r))^{\beta_j(x)}$$

satisfies $(\kappa 1)$, $(\kappa 2)$ and $(\kappa 3)$.

For a locally integrable function f on G, define the $L^{\Phi,\kappa}$ norm

$$\|f\|_{L^{\Phi,\kappa}(G)} = \inf\left\{\lambda > 0: \sup_{x \in G, 0 < r < d_G} \frac{\kappa(x,r)}{|B(x,r)|} \int_{G \cap B(x,r)} \overline{\Phi}(y,|f(y)|/\lambda) \, dy \le 1\right\}.$$

Let $L^{\Phi,\kappa}(G)$ denote the set of all functions f such that $||f||_{L^{\Phi,\kappa}(G)} < \infty$ (cf. [30]), which we call a Musielak-Orlicz-Morrey space. Note that $L^{\Phi,\kappa}(G)$ is the Musielak-Orlicz space $L^{\Phi}(G)$ if $\kappa(x,r) = r^{N}$ (cf. [29]).

3 Lemmas

Throughout this paper, let C denote various constants independent of the variables in question.

Set

$$\Phi^{-1}(x,s) = \sup\{t > 0 \, ; \, \Phi(x,t) < s\}$$

for $x \in G$ and s > 0.

LEMMA 3.1 ([13, Lemma 5.1]). $\Phi^{-1}(x, \cdot)$ is non-decreasing;

$$\Phi^{-1}(x,\lambda s) \le A_2 \lambda \Phi^{-1}(x,s) \tag{3.1}$$

for all $x \in G$, s > 0 and $\lambda \ge 1$;

$$A_2^{-1}t \le \Phi^{-1}(x, \Phi(x, t)) \tag{3.2}$$

for all $x \in G$ and t > 0; and

$$\min\left\{1, \frac{s}{A_1 A_2}\right\} \le \Phi^{-1}(x, s) \le \max\{1, A_1 A_2 s\}$$
(3.3)

for all $x \in G$ and s > 0.

LEMMA 3.2. There exists a constant C > 0 such that

$$C^{-1} \le \Phi^{-1}(x,\kappa(x,r)^{-1}) \le Cr^{-N}$$
 (3.4)

for all $x \in G$ and $0 < r < d_G$.

Proof. By $(\kappa 3)$,

$$Q_2^{-1} \le \kappa(x, r)^{-1} \le Q_2 \max(1, r^{-N})$$

for $x \in G$ and $0 < r < d_G$. Hence, by (3.3), we obtain (3.4).

LEMMA 3.3 (cf. [13, Lemma 5.3]). Assume that Φ satisfies (Φ 5). Then there exists a constant C > 0 such that

$$\int_{G \cap B(x,r)} f(y) \, dy \le C |B(x,r)| \Phi^{-1}(x,\kappa(x,r)^{-1})$$

for all $x \in G$, $0 < r < d_G$ and $f \ge 0$ satisfying $||f||_{L^{\Phi,\kappa}(G)} \le 1$.

Proof. Let f be a nonnegative measurable function satisfying $||f||_{L^{\Phi,\kappa}(G)} \leq 1$. Let $f_1 = f\chi_{\{x:f(x)\geq 1\}}$ and $f_2 = f - f_1$. Since

$$\Phi\left(x, \frac{1}{|B(x,r)|} \int_{G \cap B(x,r)} f_1(y) \, dy\right) \le C\kappa(x,r)^{-1}$$

by [13, Lemma 3.1] and (2.1), we see from (3.1) and (3.2) that

$$\int_{G \cap B(x,r)} f_1(y) \, dy \le C |B(x,r)| \Phi^{-1}(x,\kappa(x,r)^{-1})$$

for all $x \in G$ and $0 < r < d_G$.

On the other hand, by the previous lemma, we see that

$$\int_{G \cap B(x,r)} f_2(y) \, dy \le C |B(x,r)| \Phi^{-1}(x,\kappa(x,r)^{-1})$$

for all $x \in G$ and $0 < r < d_G$, so that we obtain the required result.

As a potential kernel, we consider a function

$$J(x,r): G \times (0,d_G] \to (0,\infty)$$

satisfying the following conditions:

(J1) $J(\cdot, r)$ is measurable on G for each $r \in (0, d_G]$;

- (J2) $J(x, \cdot)$ is non-increasing on $(0, d_G)$ and $J(x, r) < \lim_{\rho \to 0^+} J(x, \rho)$ for all r > 0, for each $x \in G$;
- (J3) $J(x,r) \leq C_J r^{-\sigma}$ for $x \in G$ and $0 < r \leq d_G$ with constants $0 \leq \sigma < N$ and $C_J > 0$.
 - By (J3), $\int_0^{d_G} J(x,\rho)\rho^{N-1} d\rho \leq J_0 < \infty$. Set

$$\overline{J}(x,r) = \frac{N}{r^N} \int_0^r J(x,\rho) \rho^{N-1} d\rho$$

for $x \in G$ and $0 < r \leq d_G$. Then $\overline{J}(x, \cdot)$ is strictly decreasing and continuous. Further, $J(x, r) \leq \overline{J}(x, r) \leq C'_J r^{-\sigma}$ for all $x \in G$ and $0 < r \leq d_G$. Note that

$$d(-\overline{J}(x,\cdot))(\rho) \le N\rho^{-1}\overline{J}(x,\rho)d\rho \tag{3.5}$$

as measures.

We also assume:

(J4) there is $r_0 \in (0, d_G)$ such that

$$\inf_{x \in G} J(x, r_0) > 0 \quad \text{and} \quad \inf_{x \in G} \frac{J(x, r_0)}{\overline{J}(x, d_G)} > 1.$$

EXAMPLE 3.4. Let $\alpha(\cdot)$ be a measurable function on G such that

$$0 < \alpha^- := \inf_{x \in G} \alpha(x) \le \sup_{x \in G} \alpha(x) =: \alpha^+ < N.$$

Then, $J(x,r) = r^{\alpha(x)-N}$ satisfies (J1) – (J4) (with $\sigma = N - \alpha^{-}$). In particular, it satisfies (J4) with any $r_0 \in (0, d_G)$.

We consider the function

$$\Gamma(x,s) = \begin{cases} \int_{1/s}^{d_G} \rho^N \Phi^{-1}(x,\kappa(x,\rho)^{-1}) d(-\overline{J}(x,\cdot))(\rho) & \text{if } s \ge 1/r_0, \\ \\ \Gamma(x,1/r_0)r_0s & \text{if } 0 \le s \le 1/r_0 \end{cases}$$

for every $x \in G$, where r_0 is the number given in (J4). $\Gamma(x, \cdot)$ is strictly increasing and continuous for each $x \in G$.

LEMMA 3.5. There exist positive constants C' and C'' such that

- (a) $\Gamma(x,s) \leq C's^{\sigma}$ for all $x \in G$ and $s \geq 1/r_0$ with σ in condition (J3);
- (b) $\Gamma(x, 1/r_0) \ge C'' > 0$ for all $x \in G$.

Proof. By (3.4) and (J3),

$$\Gamma(x,s) \le C \int_{1/s}^{d_G} d(-\overline{J}(x,\cdot))(\rho) \le C\overline{J}(x,1/s) \le C's^{\sigma}$$

for all $x \in G$ and $s \ge 1/r_0$; and

$$\Gamma(x, 1/r_0) \ge C^{-1} \int_{r_0}^{d_G} \rho^N d(-\overline{J}(x, \cdot))(\rho) \ge C^{-1} r_0^N \int_{r_0}^{d_G} d(-\overline{J}(x, \cdot))(\rho)$$

= $C^{-1} r_0^N (\overline{J}(x, r_0) - \overline{J}(x, d_G)) \ge C'' > 0,$

where we used (J4) to obtain the inequalities in the last line.

LEMMA 3.6. There exists a constant C > 0 such that

$$\int_{G \setminus B(x,\delta)} J(x, |x-y|) f(y) \, dy \le C\Gamma\left(x, \frac{1}{\delta}\right)$$

for all $x \in G$, $0 < \delta \le r_0$ and nonnegative $f \in L^{\Phi,\kappa}(G)$ with $||f||_{L^{\Phi,\kappa}(G)} \le 1$.

Proof. By integration by parts, Lemma 3.3, (3.4), (J4) and Lemma 3.5(b), we have

$$\begin{split} \int_{G \setminus B(x,\delta)} J(x,|x-y|)f(y) \, dy &\leq \int_{G \setminus B(x,\delta)} \overline{J}(x,|x-y|)f(y) \, dy \\ &\leq C \Big\{ d_G^N \overline{J}(x,d_G) \Phi^{-1} \big(x,\kappa(x,d_G)^{-1} \big) \\ &\quad + \int_{\delta}^{d_G} \rho^N \Phi^{-1} \big(x,\kappa(x,\rho)^{-1} \big) d(-\overline{J}(x,\cdot))(\rho) \Big\} \\ &\leq C \big\{ \Gamma(x,1/r_0) + \Gamma(x,1/\delta) \big\} \leq C \Gamma(x,1/\delta). \end{split}$$

	T
	T

LEMMA 3.7. Let $0 < \varepsilon < N$ and define

$$I_{\varepsilon}f(x) = \int_{G} |x - y|^{\varepsilon - N} f(y) \, dy$$

for a nonnegative measurable function f on G and

$$\lambda_{\varepsilon}(z,r) = \frac{1}{1 + \int_{r}^{d_{G}} \rho^{\varepsilon} \Phi^{-1}(z,\kappa(z,\rho)^{-1}) \frac{d\rho}{\rho}}$$

for $z \in G$. Then there exists a constant $C_{I,\varepsilon} > 0$ such that

$$\frac{\lambda_{\varepsilon}(z,r)}{|B(z,r)|} \int_{G \cap B(z,r)} I_{\varepsilon}f(x) dx \le C_{I,\varepsilon}$$

for all $z \in G$, $0 < r < d_G$ and $f \ge 0$ satisfying $||f||_{L^{\Phi,\kappa}(G)} \le 1$.

Proof. Let $z \in G$. Let f(x) = 0 for $x \in \mathbf{R}^N \setminus G$ and write

$$I_{\varepsilon}f(x) = \int_{B(z,2r)} |x-y|^{\varepsilon-N} f(y) \, dy + \int_{G \setminus B(z,2r)} |x-y|^{\varepsilon-N} f(y) \, dy$$
$$= I_1(x) + I_2(x)$$

for $x \in G$. By Fubini's theorem,

$$\begin{split} \int_{G \cap B(z,r)} I_1(x) \, dx &= \int_{B(z,2r)} \left(\int_{G \cap B(z,r)} |x-y|^{\varepsilon - N} \, dx \right) f(y) \, dy \\ &\leq \int_{B(z,2r)} \left(\int_{B(y,3r)} |x-y|^{\varepsilon - N} \, dx \right) f(y) \, dy \\ &\leq C \int_{B(z,2r)} \left(\int_0^{3r} t^\varepsilon \, \frac{dt}{t} \right) f(y) \, dy \\ &\leq \frac{C}{\varepsilon} r^\varepsilon \int_{B(z,2r)} f(y) dy. \end{split}$$

Now, by Lemma 3.3, $(\kappa 2)$ and (3.1) we have

$$r^{\varepsilon} \int_{B(z,2r)} f(y) \, dy \leq Cr^{\varepsilon} |B(z,2r)| \Phi^{-1}(z,\kappa(z,2r)^{-1})$$
$$\leq C|B(z,r)| \int_{r}^{2r} \rho^{\varepsilon} \Phi^{-1}(z,\kappa(z,\rho)^{-1}) \frac{d\rho}{\rho}$$

if $0 < r < d_G/2$ and, by Lemma 3.3 and (3.4), we have

$$r^{\varepsilon} \int_{B(z,2r)} f(y) \, dy = r^{\varepsilon} \int_{B(z,d_G)} f(y) \, dy$$

$$\leq C d_G^{\varepsilon} |B(z,d_G)| \Phi^{-1}(z,\kappa(z,d_G)^{-1}) \leq C |B(z,r)|$$

if $d_G/2 \leq r < d_G$. Therefore

$$\int_{G \cap B(z,r)} I_1(x) \, dx \le \frac{C}{\varepsilon} \frac{|B(z,r)|}{\lambda_{\varepsilon}(z,r)}$$

for all $0 < r < d_G$.

For I_2 , first note that $I_2(x) = 0$ if $x \in G$ and $r \ge d_G/2$. Let $0 < r < d_G/2$. Since

$$I_2(x) \le C \int_{G \setminus B(z,2r)} |z - y|^{\varepsilon - N} f(y) \, dy \quad \text{for} \quad x \in G \cap B(z,r),$$

by integration by parts and Lemma 3.3, we have

$$I_{2}(x) \leq C \left\{ d_{G}^{\varepsilon} \Phi^{-1}(z, \kappa(z, d_{G})^{-1}) + \int_{2r}^{d_{G}} \rho^{\varepsilon} \Phi^{-1}(z, \kappa(z, \rho)^{-1}) \frac{d\rho}{\rho} \right\}$$
$$\leq \frac{C}{\lambda_{\varepsilon}(z, r)}$$

for all $x \in G \cap B(z, r)$. Hence

$$\int_{G \cap B(z,r)} I_2(x) \, dx \le C \frac{|B(z,r)|}{\lambda_{\varepsilon}(z,r)}.$$

Thus this lemma is proved.

4 Trudinger's inequality

In this section, we deal with the case $\Gamma(x, r)$ satisfies the uniform log-type condition: (Γ_{log}) there exists a constant $c_{\Gamma} > 0$ such that

$$\Gamma(x, s^2) \le c_{\Gamma} \Gamma(x, s) \tag{4.1}$$

for all $x \in G$ and $s \ge 1$.

EXAMPLE 4.1. Let Φ , κ and J be as in Examples 2.1, 2.2 and 3.4, respectively. Then

$$\Gamma(x,s) \sim \int_{1/s}^{d_G} \rho^{\alpha(x)-\nu(x)/p(x)} \prod_{j=1}^k \left[L_e^{(j)}(1/\rho) \right]^{-\{q_j(x)+\beta_j(x)\}/p(x)} \frac{d\rho}{\rho} \qquad (s \ge 1/r_0),$$

so that it satisfies (Γ_{\log}) if and only if

$$\alpha(x)p(x) \ge \nu(x)$$
 for all $x \in G$.

(Here $h_1(x,s) \sim h_2(x,s)$ means that $C^{-1}h_2(x,s) \leq h_1(x,s) \leq Ch_2(x,s)$ for a constant C > 0.)

By (Γ_{\log}) , together with Lemma 3.5, we see that $\Gamma(x, s)$ satisfies the uniform doubling condition in s:

LEMMA 4.2. For every a > 1, there exists b > 0 such that $\Gamma(x, as) \leq b\Gamma(x, s)$ for all $x \in G$ and s > 0.

Proof. If $0 < s < a^{-1}r_0^{-1}$, then

$$\Gamma(x, as) = \Gamma(x, 1/r_0)r_0as = a\Gamma(x, s).$$

If $a^{-1}r_0^{-1} \leq s \leq a$, then by Lemma 3.5 we see that $C_1 \leq \Gamma(x, s) \leq C_2$ with positive constants C_1, C_2 independent of x. Finally, if s > a, then we see from (Γ_{\log}) that

$$\Gamma(x, as) \le \Gamma(x, s^2) \le c_{\Gamma} \Gamma(x, s)$$

For a nonnegative measurable function f on G, its J-potential Jf is defined by

$$Jf(x) = \int_G J(x, |x-y|)f(y) \, dy \qquad (x \in G).$$

Now we consider the following condition $(J\varepsilon)$:

 $(J\varepsilon)$ there exists $0 < \varepsilon < N - \sigma$ such that $r \mapsto r^{N-\varepsilon}J(x,r)$ is uniformly almost increasing on $(0, d_G)$ for σ in condition (J3).

EXAMPLE 4.3. Let J be as in Example 3.4. It satisfies $(J\varepsilon)$ with $0 < \varepsilon < \alpha^{-}$.

THEOREM 4.4. Assume that Φ satisfies (Φ 5), Γ satisfies (Γ_{\log}) and J satisfies ($J\varepsilon$). For each $x \in G$, let $\gamma(x) = \sup_{s>0} \Gamma(x, s)$. Suppose $\Psi(x, t) : G \times [0, \infty) \to [0, \infty]$ satisfies the following conditions:

- (Ψ 1) $\Psi(\cdot, t)$ is measurable on G for each $t \in [0, \infty)$; $\Psi(x, \cdot)$ is continuous on $[0, \infty)$ for each $x \in G$;
- (Ψ 2) there is a constant $A'_1 \ge 1$ such that $\Psi(x,t) \le \Psi(x,A'_1s)$ for all $x \in G$ whenever 0 < t < s;
- (Ψ 3) $\Psi(x, \Gamma(x, s)/A'_2) \leq A'_3 s$ for all $x \in G$ and s > 0 with constants A'_2 , $A'_3 \geq 1$ independent of x.

Then, for ε given in $(J\varepsilon)$, there exists a constant $C^* > 0$ such that $Jf(x)/C^* < \gamma(x)$ for a.e. $x \in G$ and

$$\frac{\lambda_{\varepsilon}(z,r)}{|B(z,r)|} \int_{G \cap B(z,r)} \Psi\left(x, \frac{Jf(x)}{C^*}\right) \ dx \le 1$$

for all $z \in G$, $0 < r < d_G$ and $f \ge 0$ satisfying $||f||_{L^{\Phi,\kappa}(G)} \le 1$.

Proof. Let $f \ge 0$ and $||f||_{L^{\Phi,\kappa}(G)} \le 1$. Set f = 0 outside G. Fix $x \in G$. For $0 < \delta \le r_0$, Lemma 3.6, $(J\varepsilon)$ and (J3) imply

$$\begin{split} Jf(x) &\leq \int_{B(x,\delta)} J(x, |x-y|) f(y) \, dy + C\Gamma\left(x, \frac{1}{\delta}\right) \\ &= \int_{B(x,\delta)} |x-y|^{N-\varepsilon} J(x, |x-y|) |x-y|^{\varepsilon-N} f(y) \, dy + C\Gamma\left(x, \frac{1}{\delta}\right) \\ &\leq C\left\{\delta^{N-\varepsilon} J(x, \delta) I_{\varepsilon} f(x) + \Gamma\left(x, \frac{1}{\delta}\right)\right\} \\ &\leq C\left\{\delta^{N-\sigma-\varepsilon} I_{\varepsilon} f(x) + \Gamma\left(x, \frac{1}{\delta}\right)\right\} \end{split}$$

with constants C > 0 independent of x.

If $I_{\varepsilon}f(x) \leq 1/r_0$, then we take $\delta = r_0$. Then, by Lemma 3.5(b)

$$Jf(x) \le C\Gamma\left(x, \frac{1}{r_0}\right).$$

By Lemma 4.2, there exists $C_1^* > 0$ independent of x such that

$$Jf(x) \le C_1^* \Gamma\left(x, \frac{1}{2A_3'}\right) \qquad \text{if } I_{\varepsilon} f(x) \le 1/r_0.$$

$$(4.2)$$

Next, suppose $1/r_0 < I_{\varepsilon}f(x) < \infty$. Let $m = \sup_{s \ge 1/r_0, x \in G} \Gamma(x, s)/s$. By (Γ_{\log}) , $m < \infty$. Define δ by

$$\delta^{N-\sigma-\varepsilon} = \frac{r_0^{N-\sigma-\varepsilon}}{m} \Gamma(x, I_{\varepsilon}f(x))(I_{\varepsilon}f(x))^{-1}.$$

Since $\Gamma(x, I_{\varepsilon}f(x))(I_{\varepsilon}f(x))^{-1} \leq m, 0 < \delta \leq r_0$. Then by Lemma 3.5(b)

$$\frac{1}{\delta} \leq C\Gamma(x, I_{\varepsilon}f(x))^{-1/(N-\sigma-\varepsilon)} (I_{\varepsilon}f(x))^{1/(N-\sigma-\varepsilon)} \\
\leq C\Gamma(x, 1/r_0)^{-1/(N-\sigma-\varepsilon)} (I_{\varepsilon}f(x))^{1/(N-\sigma-\varepsilon)} \leq C(I_{\varepsilon}f(x))^{1/(N-\sigma-\varepsilon)}.$$

Hence, using (Γ_{\log}) and Lemma 4.2, we obtain

$$\Gamma\left(x,\frac{1}{\delta}\right) \leq \Gamma\left(x,C(I_{\varepsilon}f(x))^{1/(N-\sigma-\varepsilon)}\right) \leq C\Gamma(x,I_{\varepsilon}f(x)).$$

By Lemma 4.2 again, we see that there exists a constant $C_2^* > 0$ independent of x such that

$$Jf(x) \le C_2^* \Gamma\left(x, \frac{1}{2C_{I,\varepsilon} A_3'} I_{\varepsilon} f(x)\right) \quad \text{if } 1/r_0 < I_{\varepsilon} f(x) < \infty, \quad (4.3)$$

where $C_{I,\varepsilon}$ is the constant given in Lemma 3.7.

Now, let $C^* = A'_1 A'_2 \max(C^*_1, C^*_2)$. Then, by (4.2) and (4.3),

$$\frac{Jf(x)}{C^*} \le \frac{1}{A_1'A_2'} \max\left\{\Gamma\left(x, \frac{1}{2A_3'}\right), \Gamma\left(x, \frac{1}{2C_{I,\varepsilon}A_3'}I_{\varepsilon}f(x)\right)\right\}$$
(4.4)

whenever $I_{\varepsilon}f(x) < \infty$. Since $I_{\varepsilon}f(x) < \infty$ for a.e. $x \in G$ by Lemma 3.7, $Jf(x)/C^* < \gamma(x)$ a.e. $x \in G$, and by (Ψ 2) and (Ψ 3), we have

$$\begin{split} \Psi\left(x, \frac{Jf(x)}{C^*}\right) \\ &\leq \max\left\{\Psi\left(x, \Gamma\left(x, \frac{1}{2A'_3}\right)/A'_2\right), \Psi\left(x, \Gamma\left(x, \frac{1}{2C_{I,\varepsilon}A'_3}I_{\varepsilon}f(x)\right)/A'_2\right)\right\} \\ &\leq \frac{1}{2} + \frac{1}{2C_{I,\varepsilon}}I_{\varepsilon}f(x) \end{split}$$

for a.e. $x \in G$. Thus, noting that $\lambda_{\varepsilon}(z,r) \leq 1$ and using Lemma 3.7, we have

$$\begin{aligned} \frac{\lambda_{\varepsilon}(z,r)}{|B(z,r)|} \int_{G \cap B(z,r)} \Psi\left(x, \frac{Jf(x)}{C^*}\right) dx \\ &\leq \frac{1}{2}\lambda_{\varepsilon}(z,r) + \frac{1}{2C_{I,\varepsilon}} \frac{\lambda_{\varepsilon}(z,r)}{|B(z,r)|} \int_{G \cap B(z,r)} I_{\varepsilon}f(x) dx \\ &\leq \frac{1}{2} + \frac{1}{2} = 1 \end{aligned}$$

for all $z \in G$ and $0 < r < d_G$.

REMARK 4.5. If $\Gamma(x, s)$ is bounded, that is,

$$\sup_{x\in G}\int_0^{d_G}\rho^N\Phi^{-1}(x,\kappa(x,\rho)^{-1})\,d(-\overline{J}(x,\cdot))(\rho)<\infty,$$

then by Lemma 3.6 we see that J|f| is bounded for every $f \in L^{\Phi,\kappa}(G)$. In particular, if $\lambda_{N-\sigma}(x,r)^{-1}$ is bounded, that is,

$$\sup_{x\in G}\int_0^{d_G}\rho^{N-\sigma}\Phi^{-1}(x,\kappa(x,\rho)^{-1})\,\frac{d\rho}{\rho}<\infty,$$

then $\Gamma(x,s)$ is bounded by (J3), and hence J|f| is bounded for every $f \in L^{\Phi,\kappa}(G)$.

Applying Theorem 4.4 to special Φ , κ and J given in Examples 2.1, 2.2 and 3.4, we obtain the following corollary, which is an extension of [18, Corollary 5.3]. In fact, [18, Corollary 5.3] is a case k = 1 of Corollary 4.6.

COROLLARY 4.6. Let Φ and κ be as in Examples 2.1 and 2.2 and let α be as in Example 3.4.

Set

$$I_{\alpha(\cdot)}f(x) = \int_G |x-y|^{\alpha(x)-N} f(y) \, dy$$

for a nonnegative locally integrable function f on G. Assume that

$$\alpha(x) - \nu(x)/p(x) = 0$$
 for all $x \in G$.

(1) Suppose there exists an integer $1 \le j_0 \le k$ such that

$$\inf_{x \in G} (p(x) - q_{j_0}(x) - \beta_{j_0}(x)) > 0$$
(4.5)

and

$$\sup_{x \in G} (p(x) - q_j(x) - \beta_j(x)) \le 0$$
(4.6)

 ≤ 0

for all $j \leq j_0 - 1$ in case $j_0 \geq 2$. Then for $0 < \varepsilon < \alpha^-$ there exist constants $C^* > 0$ and $C^{**} > 0$ such that

$$\frac{r^{\nu(z)/p(z)-\varepsilon}}{|B(z,r)|} \int_{G\cap B(z,r)} E_{+}^{(j_0)} \left(\left(\frac{I_{\alpha(\cdot)}f(x)}{C^*} \right)^{p(x)/(p(x)-q_{j_0}(x)-\beta_{j_0}(x))} \right) \\ \times \prod_{j=1}^{k-j_0} \left(L_e^{(j)} \left(\frac{I_{\alpha(\cdot)}f(x)}{C^*} \right) \right)^{(q_{j_0+j}(x)+\beta_{j_0+j}(x))/(p(x)-q_{j_0}(x)-\beta_{j_0}(x))} \right) \, dx \le C^{**}$$

for all $z \in G$, $0 < r < d_G$ and $f \ge 0$ satisfying $||f||_{L^{\Phi,\kappa}(G)} \le 1$, where $E^{(1)}(t) = e^t - e$, $E^{(j+1)}(t) = \exp(E^j(t)) - e$ and $E^{(j)}_+(t) = \max(E^{(j)}(t), 0)$. (2) If

$$\sup_{x \in G} (p(x) - q_j(x) - \beta_j(x))$$

for all j = 1, ..., k, then for $0 < \varepsilon < \alpha^{-}$ there exist constants $C^* > 0$ and $C^{**} > 0$ such that

$$\frac{r^{\nu(z)/p(z)-\varepsilon}}{|B(z,r)|} \int_{G \cap B(z,r)} E^{(k+1)} \left(\frac{I_{\alpha(\cdot)}f(x)}{C^*}\right) dx \le C^{**}$$

for all $z \in G$, $0 < r < d_G$ and $f \ge 0$ satisfying $||f||_{L^{\Phi,\kappa}(G)} \le 1$.

REMARK 4.7. [16, Remark 2.8] shows that we cannot take $\varepsilon = \alpha^{-}$ in the above corollary.

Proof of Corollary 5.6. By Example 4.1,

$$\Gamma(x,s) \sim \int_{1/s}^{d_G} \prod_{j=1}^k \left[L_e^{(j)}(1/\rho) \right]^{-\{q_j(x)+\beta_j(x)\}/p(x)} \frac{d\rho}{\rho}$$

for $s \ge 1/r_0$. We shall show

$$\Gamma(x,s) \le C_1 \Gamma_1(x,s) \tag{4.7}$$

for $s \geq 1/r_0$, where

$$\Gamma_1(x,s) = \left[L_e^{(j_0)}(s)\right]^{1 - \{q_{j_0}(x) + \beta_{j_0}(x)\}/p(x)} \prod_{j=j_0+1}^k \left[L_e^{(j)}(s)\right]^{-\{q_j(x) + \beta_j(x)\}/p(x)}$$

To prove the assertion of (1), assume (4.5) and (4.6). Let $\rho > 1/s$. By (4.6), $[L_e^{(j)}(1/\rho)]^{-\{q_j(x)+\beta_j(x)\}/p(x)} \leq [L_e^{(j)}(1/\rho)]^{-1}$ for $1 \leq j \leq j_0 - 1$. By (4.5), we find $\varepsilon_0 > 0$ such that $\inf_{x \in G} \{1 - \{q_{j_0}(x) + \beta_{j_0}(x)\}/p(x)\} > \varepsilon_0$. Since

$$t \mapsto \left[L_e^{(j_0)}(t)\right]^{1 - \{q_{j_0}(x) + \beta_{j_0}(x)\}/p(x) - \varepsilon_0} \prod_{j=j_0+1}^k \left[L_e^{(j)}(t)\right]^{-\{q_j(x) + \beta_j(x)\}/p(x)}$$

is uniformly almost increasing,

$$\begin{split} \Gamma(x,s) &\leq C \int_{1/s}^{d_G} \prod_{j=1}^k \left[L_e^{(j)}(1/\rho) \right]^{-\{q_j(x)+\beta_j(x)\}/p(x)} \frac{d\rho}{\rho} \\ &\leq C \left[L_e^{(j_0)}(s) \right]^{1-\{q_{j_0}(x)+\beta_{j_0}(x)\}/p(x)-\varepsilon_0} \prod_{j=j_0+1}^k \left[L_e^{(j)}(s) \right]^{-\{q_j(x)+\beta_j(x)\}/p(x)} \\ &\qquad \times \int_{1/s}^{d_G} \left(\prod_{j=1}^{j_0-1} \left[L_e^{(j)}(1/\rho) \right]^{-1} \right) \left[L_e^{(j_0)}(1/\rho) \right]^{-1+\varepsilon_0} \frac{d\rho}{\rho} \\ &\leq C_1 \Gamma_1(x,s), \end{split}$$

which shows (4.7).

Now, set

$$\psi(x,t) = t^{p(x)/\{p(x) - q_{j_0}(x) - \beta_{j_0}(x)\}} \prod_{i=1}^{k-j_0} \left[L_e^{(i)}(t) \right]^{\{q_{j_0+i}(x) + \beta_{j_0+i}(x)\}/\{p(x) - q_{j_0}(x) - \beta_{j_0}(x)\}}$$

for $x \in G$ and t > 0. Then

$$\psi(x, \Gamma_1(x, s)) \le C_2 L_e^{(j_0)}(s)$$

for $s \geq 1/r_0$.

Since $\inf_{x \in G} p(x) / \{ p(x) - q_{j_0}(x) - \beta_{j_0}(x) \} > 0$, there are constants $0 < \theta \le 1$ and $C_3 \ge 1$ such that

$$\psi(x,at) \le C_3 a^{\theta} \psi(x,t) \tag{4.8}$$

for all $x \in G$, t > 0 and $0 < a \le 1$. Hence, choosing $A' \ge 1$ such that $C_3^2 C_2 (C_1/A')^{\theta} \le 1$, we have

$$\begin{split} \psi(x,\Gamma(x,s)/A') &\leq C_3\psi(x,(C_1/A')\Gamma_1(x,s)) \\ &\leq C_3^2(C_1/A')^\theta\psi(x,\Gamma_1(x,s)) \leq C_3^2(C_1/A')^\theta C_2 L_e^{(j_0)}(s) \leq L_e^{(j_0)}(s) \end{split}$$

for $s \geq 1/r_0$. Thus,

$$E^{(j_0)}(\psi(x,\Gamma(x,s)/A')) \le s \text{ for } s \ge 1/r_0.$$
 (4.9)

Let $u_0 > 0$ be the unique solution of the equation $e^u - e = u$. Then $E(u) \ge u_0$ if and only if $u \ge u_0$. Choose $t_0 > 0$ such that $\psi(x, t) \ge u_0$ for $t \ge t_0$ and define

$$\Psi(x,t) = \begin{cases} E^{(j_0)}(\psi(x,t)) & \text{for } t \ge t_0, \\ \Psi(x,t_0)\frac{t}{t_0} & \text{for } 0 < t < t_0 \end{cases}$$

Then, $\Psi(x,t)$ satisfies (Ψ 1), (Ψ 2) (with $A'_1 = C_3^{1/\theta}$, say) and (Ψ 3), in view of (4.8) and (4.9).

In the present situation, we see that

$$\lambda_{\varepsilon'}(z,r) \sim r^{\nu(z)/p(z)-\varepsilon'} \prod_{j=1}^{k} [L_e^{(j)}(1/r)]^{\{q_j(z)+\beta_j(z)\}/p(z)\}}$$

for $0 < \varepsilon' < \alpha^-$, so that

$$r^{\nu(z)/p(z)-\varepsilon} \le C_4 \lambda_{\varepsilon'}(z,r)$$

if $0 < \varepsilon < \varepsilon' < \alpha^-$. Thus, given $0 < \varepsilon < \alpha^-$, Theorem 4.4 implies the existence of a constant $C^* > 0$ such that

$$\frac{r^{\nu(z)/p(z)-\varepsilon}}{|B(z,r)|} \int_{G \cap B(z,r)} \Psi\left(x, \frac{I_{\alpha(\cdot)}f(x)}{C^*}\right) \, dx \le C_4$$

for all $z \in G$, $0 < r < d_G$ and $f \ge 0$ satisfying $||f||_{L^{\Phi,\kappa}(G)} \le 1$. Let $S_f = \{x \in G : I_{\alpha(\cdot)}f(x) \ge C^*t_0\}$. Then

$$\frac{r^{\nu(z)/p(z)-\varepsilon}}{|B(z,r)|} \int_{G\cap B(z,r)} E_{+}^{(j_0)} \left(\psi\left(x, \frac{I_{\alpha(\cdot)}f(x)}{C^*}\right)\right) dx$$

$$\leq \frac{C_5}{|B(z,r)|} \int_{B(z,r)\setminus S_f} dx + \frac{r^{\nu(z)/p(z)-\varepsilon}}{|B(z,r)|} \int_{S_f\cap B(z,r)} \Psi\left(x, \frac{I_{\alpha(\cdot)}f(x)}{C^*}\right) dx$$

$$\leq C_5 + C_4 = C^{**}$$

for all $z \in G$, $0 < r < d_G$ and $f \ge 0$ satisfying $||f||_{L^{\Phi,\kappa}(G)} \le 1$, which shows the assertion of (1).

The case (2) can be considered as the case (1) with $j_0 = k + 1$ and $q_{k+1}(x) = \beta_{k+1}(x) \equiv 0$.

5 Continuity

In this section, we discuss the continuity of potentials Jf under the condition (J5) there are $0 < \theta \le 1$ and C > 0 such that

$$|J(x,r) - J(z,s)| \le C \left(\frac{|x-z|}{r}\right)^{\theta} \overline{J}(x,r) \quad \text{whenever} \quad |r-s| \le |x-z| \le r/2$$

for $x, z \in G, \ 0 < r, \ s < d_G.$

We consider the functions

$$\omega(x,r) = \int_0^r \rho^{N-1} \Phi^{-1}(x,\kappa(x,\rho)^{-1}) \overline{J}(x,\rho) d\rho$$

and

$$\omega_{\theta}(x,r) = r^{\theta} \int_{r}^{d_{G}} \rho^{N-1-\theta} \Phi^{-1}(x,\kappa(x,\rho)^{-1}) \overline{J}(x,\rho) d\rho$$

for $\theta > 0$ and $0 < r \leq d_G$.

LEMMA 5.1. Let $E \subset G$. If $\omega(x,r) \to 0$ as $r \to 0+$ uniformly in $x \in E$, then $\omega_{\theta}(x,r) \to 0$ as $r \to 0+$ uniformly in $x \in E$.

Proof. Suppose $\omega(x,r) \to 0$ as $r \to 0+$ uniformly in $x \in E$. Given $\varepsilon > 0$ there is $\delta > 0$ ($\delta \leq d_G$) such that $\omega(x,\delta) < \varepsilon/2$ for all $x \in E$. Set $g(x,\rho) = \rho^{N-1}\Phi^{-1}(x,\kappa(x,\rho)^{-1})\overline{J}(x,\rho)$. By Lemma 3.2 and (J3),

$$C_{\delta} := \sup_{x \in G, \, \delta \le \rho \le d_G} g(x, \rho) < \infty.$$

If $0 < r \leq \delta$ and $x \in E$, then

$$\omega_{\theta}(x,r) = r^{\theta} \int_{r}^{d_{G}} \rho^{-\theta} g(x,\rho) d\rho \leq \int_{r}^{\delta} g(x,\rho) d\rho + \left(\frac{r}{\delta}\right)^{\theta} \int_{\delta}^{d_{G}} g(x,\rho) d\rho$$
$$\leq \omega(x,\delta) + \left(\frac{r}{\delta}\right)^{\theta} C_{\delta} d_{G} < \frac{\varepsilon}{2} + \left(\frac{r}{\delta}\right)^{\theta} C_{\delta} d_{G}.$$

Choosing $\delta' > 0$ ($\delta' \leq \delta$) such that $(\delta'/\delta)^{\theta}C_{\delta}d_G < \varepsilon/2$, we see that $\omega_{\theta}(x,r) < \varepsilon$ for all $x \in E$ and $0 < r \leq \delta'$, which means that $\omega_{\theta}(x,r) \to 0$ as $r \to 0+$ uniformly in $x \in E$.

LEMMA 5.2. There exists a constant C > 0 such that

$$\omega(x,2r) \le C\omega(x,r)$$

for all $x \in G$ and $0 < r \leq d_G/2$.

Proof. By (κ^2) , (3.1) and the fact that $\overline{J}(x, \cdot)$ is strictly decreasing, we have

$$\begin{split} \omega(x,2r) &= \int_0^{2r} \rho^{N-1} \Phi^{-1} \big(x, \kappa(x,\rho)^{-1} \big) \overline{J}(x,\rho) d\rho \\ &= C \int_0^r \rho^{N-1} \Phi^{-1} \big(x, \kappa(x,2\rho)^{-1} \big) \overline{J}(x,2\rho) d\rho \\ &\leq C \int_0^r \rho^{N-1} \Phi^{-1} \big(x, Q_1 \kappa(x,\rho)^{-1} \big) \overline{J}(x,\rho) d\rho \\ &\leq C \int_0^r \rho^{N-1} \Phi^{-1} \big(x, \kappa(x,\rho)^{-1} \big) \overline{J}(x,\rho) d\rho = C \omega(x,r), \end{split}$$

as required.

THEOREM 5.3. Suppose that J satisfies (J5). Then there exists a constant C > 0 such that

$$|Jf(x) - Jf(z)| \leq C\{\omega(x, |x-z|) + \omega(z, |x-z|) + \omega_{\theta}(x, |x-z|)\}$$

for all $x, z \in G$ with $|x-z| < d_G/4$ and nonnegative $f \in L^{\Phi,\kappa}(G)$ with $||f||_{L^{\Phi,\kappa}(G)} \le 1$.

Before giving a proof of Theorem 5.3, we prepare two more lemmas. LEMMA 5.4. There exists a constant C > 0 such that

$$\int_{B(x,r)} J(x, |x-y|) f(y) \, dy \le C\omega(x, r)$$

for all $x \in G$, $0 < r \leq d_G$ and nonnegative $f \in L^{\Phi,\kappa}(G)$ with $||f||_{L^{\Phi,\kappa}(G)} \leq 1$. Proof. By integration by parts, Lemma 3.3 and (3.5), we have

$$\begin{split} &\int_{B(x,r)} J(x,|x-y|)f(y)\,dy \leq \int_{B(x,r)} \overline{J}(x,|x-y|)f(y)\,dy\\ \leq & C\Big\{r^N\overline{J}(x,r)\Phi^{-1}\big(x,\kappa(x,r)^{-1}\big)\\ &\quad +\int_0^r \rho^N\Phi^{-1}\big(x,\kappa(x,\rho)^{-1}\big)d(-\overline{J}(x,\cdot))(\rho)\Big\}\\ \leq & C\Big\{r^N\overline{J}(x,r)\Phi^{-1}\big(x,\kappa(x,r)^{-1}\big)+\omega(x,r)\Big\}. \end{split}$$

In view of $(\kappa 2)$ and (3.1), we have

$$\begin{aligned} \omega(x,r) &\geq \Phi^{-1}(x,Q_1^{-1}\kappa(x,r)^{-1})\overline{J}(x,r)\int_0^r \rho^{N-1}d\rho \\ &\geq Cr^N\overline{J}(x,r)\Phi^{-1}(x,\kappa(x,r)^{-1}). \end{aligned}$$

Hence we have the required inequality.

LEMMA 5.5. Let $0 < \theta \leq 1$. Then there exists a constant C > 0 such that

$$\int_{G\setminus B(x,r)} |x-y|^{-\theta} \overline{J}(x, |x-y|) f(y) \, dy \le Cr^{-\theta} \omega_{\theta}(x, r)$$

for all $x \in G$, $0 < r \le d_G/2$ and nonnegative $f \in L^{\Phi,\kappa}(G)$ with $||f||_{L^{\Phi,\kappa}(G)} \le 1$.

Proof. Let $\widetilde{J}(x,r) = r^{-\theta}\overline{J}(x,r)$. Then, $\widetilde{J}(x,\cdot)$ is continuous, strictly decreasing and by (3.5)

$$d(-\widetilde{J}(x,\cdot))(\rho) = \theta \rho^{-\theta-1} \overline{J}(x,\rho) \, d\rho + \rho^{-\theta} d(-\overline{J}(x,\cdot)(\rho) \le (N+1)\rho^{-\theta-1} \overline{J}(x,\rho) \, d\rho$$

as measures. Hence, by integration by parts and Lemma 3.3, we have

$$\int_{G\setminus B(x,r)} |x-y|^{-\theta} \overline{J}(x,|x-y|) f(y) \, dy$$

$$\leq C \Big\{ d_G^{N-\theta} \overline{J}(x,d_G) \Phi^{-1}(x,\kappa(x,d_G)^{-1}) + \int_r^{d_G} \rho^{N-\theta-1} \Phi^{-1}(x,\kappa(x,\rho)^{-1}) \overline{J}(x,\rho) d\rho \Big\}.$$

In view of $(\kappa 2)$ and (3.1), we have

$$\int_{r}^{d_{G}} \rho^{N-\theta-1} \Phi^{-1} (x, \kappa(x, \rho)^{-1}) \overline{J}(x, \rho) d\rho$$

$$\geq d_{G}^{-\theta} \Phi^{-1} (x, Q_{1}^{-1} \kappa(x, d_{G})^{-1}) \overline{J}(x, d_{G}) \int_{d_{G}/2}^{d_{G}} \rho^{N-1} d\rho$$

$$\geq C d_{G}^{N-\theta} \overline{J}(x, d_{G}) \Phi^{-1} (x, \kappa(x, d_{G})^{-1})$$

if $r \leq d_G/2$. Hence

$$\int_{G \setminus B(x,r)} |x-y|^{-\theta} \overline{J}(x,|x-y|) f(y) \, dy$$

$$\leq C \int_{r}^{d_{G}} \rho^{N-1-\theta} \Phi^{-1}(x,\kappa(x,\rho)^{-1}) \overline{J}(x,\rho) d\rho = Cr^{-\theta} \omega_{\theta}(x,r),$$

as required.

Proof of Theorem 5.3. Let $f \in L^{\Phi,\kappa}(G)$ be nonnegative and $\|f\|_{L^{\Phi,\kappa}(G)} \leq 1$. Write

$$Jf(x) - Jf(z) = \int_{B(x,2|x-z|)} J(x, |x-y|)f(y) \, dy - \int_{B(x,2|x-z|)} J(z, |z-y|)f(y) \, dy + \int_{G \setminus B(x,2|x-z|)} (J(x, |x-y|) - J(z, |z-y|))f(y) \, dy$$

for $x, z \in G$. By Lemma 5.4 and Lemma 5.2, we have

$$\int_{B(x,2|x-z|)} J(x,|x-y|)f(y)\,dy \leq C\omega(x,|x-z|),$$

and

$$\begin{split} \int_{B(x,2|x-z|)} J(z,|z-y|)f(y)\,dy &\leq \int_{B(z,3|x-z|)} J(z,|z-y|)f(y)\,dy \\ &\leq C\omega(z,|x-z|). \end{split}$$

On the other hand, we have by (J5), Lemma 5.5 and Lemma 5.2,

$$\int_{G\setminus B(x,2|x-z|)} |J(x,|x-y|) - J(z,|z-y|)|f(y) \, dy$$

$$\leq C|x-z|^{\theta} \int_{G\setminus B(x,2|x-z|)} |x-y|^{-\theta} \overline{J}(x,|x-y|)f(y) \, dy$$

$$\leq C\omega_{\theta}(x,2|x-z|) \leq C\omega_{\theta}(x,|x-z|)$$

if $|x - z| < d_G/4$.

Thus we have the conclusion of the theorem.

In view of Lemma 5.1, we obtain

COROLLARY 5.6. Assume that J satisfies (J5).

(a) Let $x_0 \in G$ and suppose $\omega(x, r) \to 0$ as $r \to 0+$ uniformly in $x \in B(x_0, \delta) \cap G$ for some $\delta > 0$. Then Jf is continuous at x_0 for every $f \in L^{\Phi,\kappa}(G)$.

(b) Suppose $\omega(x,r) \to 0$ as $r \to 0+$ uniformly in $x \in G$. Then Jf is uniformly continuous on G for every $f \in L^{\Phi,\kappa}(G)$.

REMARK 5.7. Let $E \subset G$. If there exist $\delta \in (0, d_G)$ and a measurable function h(r) on $(0, \delta)$ such that

$$\Phi^{-1}(x,\kappa(x,r)^{-1})\overline{J}(x,r) \le h(r)$$

for all $x \in E$ and $0 < r < \delta$ and

$$\int_0^\delta \rho^{N-1} h(\rho) \, d\rho < \infty,$$

then $\omega(x, r) \to 0$ as $r \to 0+$ uniformly in $x \in E$.

In this case, $\Gamma(x, s)$ is bounded on $E \times (0, \infty)$.

Applying Theorem 5.3 to special Φ , κ and J given in Examples 2.1, 2.2 and 3.4, we obtain the following Example, which is an extension of [18, section 6]. In [18, section 6], a case k = 1 is dealt with.

EXAMPLE 5.8 (cf. [18, section 6]). Let Φ , κ and J be as in Examples 2.1, 2.2 and 3.4. J satisfies (J5) if α is θ -Hölder continuous. Since

$$\omega(x,r) \sim \int_0^r \rho^{\alpha(x)-\nu(x)/p(x)} \prod_{j=1}^k \left[L_e^{(j)}(1/\rho) \right]^{-\{q_j(x)+\beta_j(x)\}/p(x)} \frac{d\rho}{\rho},$$

 $\omega(x,r) \to 0$ as $r \to 0+$ uniformly in $x \in E$ $(E \subset G)$ if either

$$\inf_{x \in E} \left(\alpha(x) - \frac{\nu(x)}{p(x)} \right) > 0,$$

or

$$\inf_{x \in E} \left(\alpha(x) - \frac{\nu(x)}{p(x)} \right) = 0, \quad \sup_{x \in E} \frac{q_j(x) + \beta_j(x)}{p(x)} \le 1, \ j = 1, \dots, j_0 - 1,$$

and

$$\inf_{x \in E} \frac{q_{j_0}(x) + \beta_{j_0}(x)}{p(x)} > 1$$

for some $1 \leq j_0 \leq k$.

x

References

- [1] R. A. Adams, Sobolev spaces, Academic Press, 1975.
- [2] D. R. Adams and L. I. Hedberg, Function spaces and potential theory, Springer-Verlag, Berlin, Heidelberg, 1996.

- [3] A. Alberico and A. Cianchi, Differentiability properties of Orlicz-Sobolev functions, Ark. Mat. 43 (2005), 1-28.
- [4] H. Brézis and S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Diff. Equations 5 (1980), 773-789.
- [5] D. E. Edmunds, P. Gurka and B. Opic, Double exponential integrability, Bessel potentials and embedding theorems, Studia Math. **115** (1995), 151–181.
- [6] D. E. Edmunds, P. Gurka and B. Opic, Sharpness of embeddings in logarithmic Bessel-potential spaces, Proc. Royal Soc. Edinburgh. 126 (1996), 995–1009.
- [7] D. E. Edmunds and R. Hurri-Syrjänen, Sobolev inequalities of exponential type, Israel. J. Math. 123 (2001), 61-92.
- [8] D. E. Edmunds and M. Krbec, Two limiting cases of Sobolev imbeddings, Houston J. Math. 21 (1995), 119-128.
- [9] T. Futamura and Y. Mizuta, Continuity properties of Riesz potentials for functions in $L^{p(\cdot)}$ of variable exponent, Math. Inequal. Appl. 8(4) (2005), 619–631.
- [10] T. Futamura, Y. Mizuta and T. Shimomura, Sobolev embedding for variable exponent Riesz potentials on metric spaces, Ann. Acad. Sci. Fenn. Math. 31 (2006), 495–522.
- [11] T. Futamura, Y. Mizuta and T. Shimomura, Integrability of maximal functions and Riesz potentials in Orlicz spaces of variable exponent, J. Math. Anal. Appl. 366 (2010), 391-417.
- [12] P. Harjulehto and P. Hästö, A capacity approach to the Poincaré inequality and Sobolev imbeddings in variable exponent Sobolev spaces, Rev. Mat.Complut. 17 (2004), 129–146.
- [13] F. Y. Maeda, Y. Mizuta, T. Ohno and T. Shimomura, Boundedness of maximal operators and Sobolev's inequality on Musielak-Orlicz-Morrey spaces, preprint.
- [14] Y. Mizuta, Potential theory in Euclidean spaces, Gakkotosho, Tokyo, 1996.
- [15] Y. Mizuta, Continuity properties of Riesz potentials and boundary limits of Beppo Levi functions, Math. Scand. 63 (1988), 238-260.
- [16] Y. Mizuta, E. Nakai, T. Ohno and T. Shimomura, An elementary proof of Sobolev embeddings for Riesz potentials of functions in Morrey spaces $L^{1,\nu,\beta}(G)$, Hiroshima Math. J. **38** (2008), 425-436.
- [17] Y. Mizuta, E. Nakai, T. Ohno and T. Shimomura, Boundedness of fractional integral operators on Morrey spaces and Sobolev embeddings for generalized Riesz potentials, J. Math. Soc. Japan 62 (2010), 707-744.

- [18] Y. Mizuta, E. Nakai, T. Ohno and T. Shimomura, Riesz potentials and Sobolev embeddings on Morrey spaces of variable exponent, Complex Var. Elliptic Equ. 56, (2011), 671–695.
- [19] Y. Mizuta, T. Ohno and T. Shimomura, Sobolev embeddings for Riesz potential spaces of variable exponents near 1 and Sobolev's exponent, Bull. Sci. Math. 134 (2010), 12-36.
- [20] Y. Mizuta and T. Shimomura, Exponential integrability for Riesz potentials of functions in Orlicz classes, Hiroshima Math. J. 28 (1998), 355–371.
- [21] Y. Mizuta and T. Shimomura, Differentiability and Hölder continuity of Riesz potentials of Orlicz functions, Analysis 20 (2000), 201-223.
- [22] Y. Mizuta and T. Shimomura, Continuity and differentiability for weighted Sobolev spaces, Proc. Amer. Math. Soc. 130 (2002), 2985-2994.
- [23] Y. Mizuta and T. Shimomura, Sobolev embeddings for Riesz potentials of functions in Morrey spaces of variable exponent, J. Math. Soc. Japan 60 (2008), 583-602.
- [24] Y. Mizuta and T. Shimomura, Continuity properties of Riesz potentials of Orlicz functions, Tohoku Math. J. 61 (2009), 225-240.
- [25] Y. Mizuta and T. Shimomura, Sobolev's inequality for Riesz potentials of functions in Morrey spaces of integral form, Math. Nachr. 283 (2010), No.9, 1336-1352.
- [26] Y. Mizuta and T. Shimomura, Continuity properties for Riesz potentials of functions in Morrey spaces of variable exponent, Math. Inequal. Appl. 13 (2010), no. 1, 99–122.
- [27] C. B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43 (1938), 126–166.
- [28] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1971), 1077-1092.
- [29] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math. 1034, Springer-Verlag, 1983.
- [30] E. Nakai, Generalized fractional integrals on Orlicz-Morrey spaces, Banach and function spaces, 323–333, Yokohama Publ., Yokohama, 2004.
- [31] J. Peetre, On the theory of $L_{p,\lambda}$ spaces, J. Funct. Anal. 4 (1969), 71-87.
- [32] M. Růžička, Electrorheological fluids : modeling and Mathematical theory, Lecture Notes in Math. **1748**, Springer, Berlin, 2000.
- [33] J. Serrin, A remark on Morrey potential, Contemp. Math. 426 (2007), 307-315.

- [34] N. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473-483.
- [35] W. P. Ziemer, Weakly differentiable functions, Springer-Verlag, New York, 1989.

4-24 Furue-higashi-machi, Nishi-ku Hiroshima 733-0872, Japan *E-mail* : fymaeda@h6.dion.ne.jp and Department of Mechanical Systems Engineering Hiroshima Institute of Technology 2-1-1 Miyake Saeki-ku Hiroshima 731-5193, Japan *E-mail* : yoshihiromizuta3@gmail.com and Faculty of Education and Welfare Science Oita University Dannoharu Oita-city 870-1192, Japan *E-mail* : t-ohno@oita-u.ac.jp and Department of Mathematics Graduate School of Education Hiroshima University Higashi-Hiroshima 739-8524, Japan *E-mail* : tshimo@hiroshima-u.ac.jp