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Abstract

Our aim in this paper is to deal with the boundedness of the Hardy-
Littlewood maximal operator on Musielak-Orlicz-Morrey spaces. As an ap-
plication of the boundedness of the maximal operator, we establish a general-
ization of Sobolev’s inequality for general potentials of functions in Musielak-
Orlicz-Morrey spaces.

1 Introduction

For a locally integrable function f on RN , the Hardy-Littlewood maximal function
Mf is defined by

Mf(x) = sup
r>0

1

|B(x, r)|

∫
B(x,r)

|f(y)|dy,

where B(x, r) is the ball in RN with center x and of radius r > 0 and |B(x, r)|
denotes its Lebesgue measure. The mapping f 7→ Mf is called the maximal
operator.

The maximal operator is a classical tool in harmonic analysis and studying
Sobolev functions and partial differential equations and plays a central role in the
study of differentiation, singular integrals, smoothness of functions and so on (see
[4, 9, 10, 25], etc.).

It is well known that the maximal operator is bounded on the Lebesgue space
Lp(RN) if p > 1 (see [25]). In [5] and [19], the boundedness of the maximal operator
was generalized by replacing Lebesgue space by Morrey space, where Morrey space
was introduced to estimate solutions of partial differential equations. For Morrey
spaces, we refer to [17] and [23]; also cf. [16]. Further, the boundedness of the
maximal operator was also studied on Orlicz-Morrey spaces (see [20, 21, 22]).

In the mean time, variable exponent Lebesgue spaces and Sobolev spaces were
introduced to discuss nonlinear partial differential equations with non-standard
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growth condition. These spaces have attracted more and more attention, in con-
nection with the study of elasticity, fluid mechanics; see [24]. Boundedness of the
maximal operator on variable exponent Lebesgue spaces Lp(·) was investigated in
[6] and [7], and then their results were extended to the two variable exponents
spaces Lp(·)(logL)q(·) in [11] and [14]. These spaces are special cases of so-called
Musielak-Orlicz spaces ([18]). For general Musielak-Orlicz spaces, Diening [8] gave
a sufficient condition for the maximal operator to be bounded. However that con-
dition is not easy to verify for the above special cases.

The boundedness of the maximal operator was also studied for variable expo-
nent Morrey spaces (see [3, 12, 15]). All the above spaces are special cases of what
we call “the Musielak-Orlicz-Morrey spaces”. Our first aim in this paper is to show
that the maximal operator M is bounded on Musielak-Orlicz-Morrey spaces.

One of important applications of the boundedness of the maximal operator is
Sobolev’s inequality; in the classical case,

∥Iα ∗ f∥p∗ ≤ C∥f∥p

for f ∈ Lp(RN), 0 < α < N and 1 < p < N/α, where Iα is the Riesz kernel of
order α and 1/p∗ = 1/p− α/N (see, e.g. [2, Theorem 3.1.4]).

Sobolev’s inequality for Morrey spaces was given by D. R. Adams [1] (also [5]
and [19]): For 0 < α < N , 1 < p < N/α and 0 < λ < N − αp,

∥Iα ∗ f∥q,λ ≤ C∥f∥p,λ where
1

q
=

1

p
− α

N − λ
.

This result was extended to Orlicz-Morrey spaces and generalized Riesz kernel
by E. Nakai [20]. On the other hand, variable exponent versions were discussed on
bounded open sets in [3], [12], [15], etc.. In [3] and [12], Riesz kernel of variable
order is also considered. Variable exponent version on RN has been given in [13].

As an application of the boundedness of M , we shall give a general version of
Sobolev’s inequality for potentials of functions in Musielak-Orlicz-Morrey spaces.
We consider a general potential kernel of “variable order”.

2 Preliminaries

We consider a function

Φ(x, t) = tϕ(x, t) : RN × [0,∞) → [0,∞)

satisfying the following conditions (Φ1) – (Φ4):

(Φ1) ϕ( · , t) is measurable on RN for each t ≥ 0 and ϕ(x, · ) is continuous on
[0,∞) for each x ∈ RN ;

(Φ2) there exists a constant A1 ≥ 1 such that

A−1
1 ≤ ϕ(x, 1) ≤ A1 for all x ∈ RN ;
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(Φ3) ϕ(x, ·) is uniformly almost increasing, namely there exists a constant A2 ≥ 1
such that

ϕ(x, t) ≤ A2ϕ(x, s) for all x ∈ RN whenever 0 ≤ t < s;

(Φ4) there exists a constant A3 ≥ 1 such that

ϕ(x, 2t) ≤ A3ϕ(x, t) for all x ∈ RN and t > 0.

Note that (Φ2), (Φ3) and (Φ4) imply

0 < inf
x∈RN

ϕ(x, t) ≤ sup
x∈RN

ϕ(x, t) < ∞

for each t > 0.
If Φ(x, ·) is convex for each x ∈ RN , then (Φ3) holds with A2 = 1; namely

ϕ(x, ·) is non-decreasing for each x ∈ RN .

Let ϕ̄(x, t) = sup0≤s≤t ϕ(x, s) and

Φ(x, t) =

∫ t

0

ϕ̄(x, r) dr

for x ∈ RN and t ≥ 0. Then Φ(x, ·) is convex and

1

2A3

Φ(x, t) ≤ Φ(x, t) ≤ A2Φ(x, t) (2.1)

for all x ∈ RN and t ≥ 0.
By (Φ3), we see that

Φ(x, at)

{
≤ A2aΦ(x, t) if 0 ≤ a ≤ 1

≥ A−1
2 aΦ(x, t) if a ≥ 1.

(2.2)

We shall also consider the following conditions:

(Φ5) for every γ > 0, there exists a constant Bγ ≥ 1 such that

ϕ(x, t) ≤ Bγϕ(y, t)

whenever |x− y| ≤ γt−1/N and t ≥ 1;

(Φ6) there exist a function g ∈ L1(RN) and a constant B∞ ≥ 1 such that 0 ≤
g(x) < 1 for all x ∈ RN and

B−1
∞ Φ(x, t) ≤ Φ(x′, t) ≤ B∞Φ(x, t)

whenever |x′| ≥ |x| and g(x) ≤ t ≤ 1.
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Example 2.1. Let p(·) and q(·) be measurable functions on RN such that

(P1) 1 ≤ p− := ess infx∈RN p(x) ≤ ess supx∈RN p(x) =: p+ < ∞
and

(Q1) −∞ < q− := ess infx∈RN q(x) ≤ ess supx∈RN q(x) =: q+ < ∞.

Then, Φp(·),q(·),a(x, t) = tp(x)(log(a+t))q(x) (a ≥ e) satisfies (Φ1), (Φ2) and (Φ4).
It satisfies (Φ3) if p− > 1 or q− ≥ 0. As a matter of fact, it satisfies (Φ3) if and
only if q(x) ≥ 0 at points x where p(x) = 1 and

sup
x:p(x)>1,q(x)<0

q(x) log(p(x) − 1) < ∞.

Φp(·),q(·),a(x, t) satisfies (Φ5) if

(P2) p(·) is log-Hölder continuous, namely

|p(x) − p(y)| ≤ Cp

log(1/|x− y|)
for |x− y| ≤ 1

2

with a constant Cp ≥ 0,

and

(Q2) q(·) is log-log-Hölder continuous, namely

|q(x) − q(y)| ≤ Cq

log(log(1/|x− y|))
for |x− y| ≤ e−2

with a constant Cq ≥ 0.
Φp(·),q(·),a(x, t) satisfies (Φ6) with g(x) = 1/(1 + |x|)N+1 if p(·) is log-Hölder

continuous at ∞, namely if it satisfies

(P3) |p(x) − p(x′)| ≤ C∞

log(e + |x|)
whenever |x′| ≥ |x| with a constant C∞ ≥ 0.

In fact, if 1/(1 + |x|)N+1 < t ≤ 1, then t−|p(x)−p(x′)| ≤ e(N+1)C∞ for |x′| ≥ |x|
and (log(a + t))|q(x)−q(x′)| ≤ (log(a + 1))q

+−q− .

Given Φ(x, t) as above, the associated Musielak-Orlicz space

LΦ(RN) =

{
f ∈ L1

loc(R
N) ;

∫
RN

Φ
(
y, |f(y)|

)
dy < ∞

}
is a Banach space with respect to the norm

∥f∥Φ = inf

{
λ > 0 ;

∫
RN

Φ
(
y, |f(y)|/λ

)
dy ≤ 1

}
(cf. [18]).

We also consider a function κ(x, r) : RN × (0,∞) → (0,∞) satisfying the
following conditions:
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(κ1) there is a constant Q1 ≥ 1 such that

κ(x, 2r) ≤ Q1κ(x, r)

for all x ∈ RN and r > 0;

(κ2) r 7→ r−εκ(x, r) is uniformly almost increasing on (0,∞) for some ε > 0,
namely there exists a constant Q2 ≥ 1 such that

r−εκ(x, r) ≤ Q2s
−εκ(x, s)

for all x ∈ RN whenever 0 < r < s;

(κ3) there is a constant Q3 ≥ 1 such that

Q−1
3 min(1, rN) ≤ κ(x, r) ≤ Q3 max(1, rN)

for all x ∈ RN and r > 0.

Example 2.2. Let ν(·) and β(·) be functions on RN such that infx∈RN ν(x) > 0,
supx∈RN ν(x) ≤ N and −c(N − ν(x)) ≤ β(x) ≤ c(N − ν(x)) for all x ∈ RN and
some constant c > 0. Then κ(x, r) = rν(x)(log(e + r + 1/r))β(x) satisfies (κ1), (κ2)
and (κ3).

Condition (κ2) implies that κ(x, ·) is uniformly almost increasing on (0,∞)
and κ(x, r) → ∞ uniformly as r → ∞. Further, if κ(x, ·) is measurable for every
x ∈ RN , then (κ2) implies ∫ ∞

r

1

κ(x, ρ)

dρ

ρ
≤ Q2

ε

1

κ(x, r)
(2.3)

for all x ∈ RN and r > 0.

Remark 2.3. Conversely, if κ(x, r) satisfies (κ1) and∫ ∞

r

1

κ(x, ρ)

dρ

ρ
≤ Q

1

κ(x, r)

for all x ∈ RN and r > 0, then we can show that κ(x, r) satisfies (κ2) with ε = 1/Q.

Given Φ(x, t) and κ(x, r), we define the Musielak-Orlicz-Morrey space LΦ,κ(RN)
by

LΦ,κ(RN) =

{
f ∈ L1

loc(R
N) ; sup

x∈RN , r>0

κ(x, r)

|B(x, r)|

∫
B(x,r)

Φ
(
y, |f(y)|

)
dy < ∞

}
.

It is a Banach space with respect to the norm

∥f∥Φ,κ = inf

{
λ > 0 ; sup

x∈RN , r>0

κ(x, r)

|B(x, r)|

∫
B(x,r)

Φ
(
y, |f(y)|/λ

)
dy ≤ 1

}
(cf. [20]).

Note that LΦ,κ(RN) = LΦ(RN) if κ(x, r) = rN .
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Proposition 2.4.
L1(RN) ∩ L∞(RN) ⊂ LΦ,κ(RN).

Proof. Let f ∈ L1(RN) ∩ L∞(RN). We may assume that ∥f∥∞ ≤ 1.
If 0 < r ≤ 1, then by (κ3), (Φ2) and (Φ3),

κ(x, r)

|B(x, r)|

∫
B(x,r)

Φ
(
y, |f(y)|

)
dy ≤ Q3A1A2 < ∞.

If r > 1, then by (κ3), (Φ2) and (2.2)

κ(x, r)

|B(x, r)|

∫
B(x,r)

Φ
(
y, |f(y)|

)
dy ≤ Q3r

N

|B(x, r)|
A1A2

∫
RN

|f(y)| dy ≤ C∥f∥1 < ∞.

Hence f ∈ LΦ,κ(RN).

3 Lemmas

For a nonnegative f ∈ L1
loc(R

N), let

I(f ;x, r) =
1

|B(x, r)|

∫
B(x,r)

f(y) dy

and

J(f ;x, r) =
1

|B(x, r)|

∫
B(x,r)

Φ
(
y, f(y)

)
dy

in this section.

Lemma 3.1. Suppose Φ(x, t) satisfies (Φ5). Then there exists a constant C > 0
such that

Φ
(
x, I(f ; x, r)

)
≤ CJ(f ;x, r)

for all x ∈ RN , r > 0 and for all nonnegative f ∈ L1
loc(R

N) such that f(y) ≥ 1 or
f(y) = 0 for each y ∈ RN and ∥f∥Φ,κ ≤ 1.

Proof. Given f as in the statement of the lemma, x ∈ RN and r > 0, set I =
I(f ; x, r) and J = J(f ; x, r). Note that ∥f∥Φ,κ ≤ 1 implies J ≤ 2A3κ(x, r)−1 by
(2.1).

By (Φ2) and (2.2), Φ
(
y, f(y)

)
≥ (A1A2)

−1f(y), since f(y) ≥ 1 or f(y) = 0.
Hence I ≤ A1A2J . Thus, if J ≤ 1, then

Φ(x, I) ≤ (A1A2J)A2ϕ(x,A1A2) ≤ CJ.

Next, suppose J > 1. Since Φ(x, t) → ∞ as t → ∞, there exists K ≥ 1 such
that

Φ(x,K) = Φ(x, 1)J.

Then K ≤ A2J by (2.2). With this K, we have∫
B(x,r)

f(y) dy ≤ K|B(x, r)| + A2

∫
B(x,r)

f(y)
ϕ
(
y, f(y)

)
ϕ(y,K)

dy.
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Since κ(x, r)J ≤ 2A3, κ(x, r) < 2A3. Since κ(x, r) → ∞ uniformly as r → ∞,
there is R > 0 such that κ(y, ρ) > 2A3 for all y ∈ RN and ρ > R. Then 0 < r ≤ R,
so that

1 ≤ K ≤ A2J ≤ 2A2A3κ(x, r)−1 ≤ Cr−N

with a constant C > 0 by (κ3). Hence, by (Φ5) there is β > 0, independent of f ,
x, r, such that

ϕ(x,K) ≤ βϕ(y,K) for all y ∈ B(x, r).

Thus, we have∫
B(x,r)

f(y) dy ≤ K|B(x, r)| +
A2β

ϕ(x,K)

∫
B(x,r)

f(y)ϕ
(
y, f(y)

)
dy

= K|B(x, r)| + A2β|B(x, r)| J

ϕ(x,K)

= K|B(x, r)|
(

1 +
A2β

ϕ(x, 1)

)
≤ K|B(x, r)| (1 + A1A2β) .

Therefore
I ≤ (1 + A1A2β)K,

so that by (Φ2), (Φ3) and (Φ4)

Φ(x, I) ≤ CΦ(x,K) ≤ CJ

with constants C > 0 independent of f , x, r, as required.

Lemma 3.2. Suppose Φ(x, t) satisfies (Φ6). Then there exists a constant C > 0
such that

Φ
(
x, I(f ;x, r)

)
≤ C {J(f ;x, r) + Φ(x, g(x))}

for all x ∈ RN , r > 0 and for all nonnegative f ∈ L1
loc(R

N) such that g(y) ≤
f(y) ≤ 1 or f(y) = 0 for each y ∈ RN , where g is the function appearing in (Φ6).

Proof. Given f as in the statement of the lemma, x ∈ RN and r > 0, let I =
I(f ; x, r) and J = J(f ;x, r).

By Jensen’s inequality, we have

Φ(x, I) ≤ 1

|B(x, r)|

∫
B(x,r)

Φ
(
x, f(y)

)
dy.

In view of (2.1),

Φ(x, I) ≤ 2A2A3
1

|B(x, r)|

∫
B(x,r)

Φ
(
x, f(y)

)
dy.

If |x| ≥ |y|, then Φ
(
x, f(y)

)
≤ B∞Φ

(
y, f(y)

)
by (Φ6).

Let |x| < |y|. If g(x) < f(y), then Φ
(
x, f(y)

)
≤ B∞Φ

(
y, f(y)

)
by (Φ6) again.

If g(x) ≥ f(y), then Φ
(
x, f(y)

)
≤ A2Φ

(
x, g(x)

)
by (Φ3). Hence,

Φ
(
x, f(y)

)
≤ C

{
Φ
(
y, f(y)

)
+ Φ

(
x, g(x)

)}
in any case. Therefore, we obtain the required inequality.
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4 Boundedness of the maximal operator

Theorem 4.1. Suppose that Φ(x, t) satisfies (Φ5), (Φ6) and further assume:

(Φ3∗) t 7→ t−ε0ϕ(x, t) is uniformly almost increasing on (0,∞) for some ε0 > 0.

Then the maximal operator M is bounded from LΦ,κ(RN) into itself, namely, there
is a constant C > 0 such that

∥Mf∥Φ,κ ≤ C∥f∥Φ,κ

for all f ∈ LΦ,κ(RN).

We use the following result which is a special case of the theorem when Φ(x, t) =
tp0 (p0 > 1) (see [19, Theorem 1]):

Lemma 4.2. Let p0 > 1. Then there exists a constant C > 0 for which the following
holds: If f is a measurable function such that∫

B(x,r)

|f(y)|p0 dy ≤ |B(x, r)|κ(x, r)−1

for all x ∈ RN and r > 0, then∫
B(x,r)

[Mf(y)]p0 dy ≤ C|B(x, r)|κ(x, r)−1

for all x ∈ RN and r > 0.

Remark 4.3. In the proof of [19, Theorem 1], a condition like (2.3) is used. Mod-
ifying its proof, we can prove this result without the measurability of κ(·, r).

Proof of Theorem 4.1. Set p0 = 1 + ε0 for ε0 > 0 in condition (Φ3∗) and consider
the function

Φ0(x, t) = Φ(x, t)1/p0 .

Then Φ0(x, t) also satisfies all the conditions (Φj), j = 1, 2, . . . , 6. In fact, it
trivially satisfies (Φj) for j = 1, 2, 4, 5, 6 with the same g for (Φ6). Since

Φ0(x, t) = tϕ0(x, t) with ϕ0(x, t) =
[
t−ε0ϕ(x, t)

]1/p0 ,
condition (Φ3∗) implies that Φ0(x, t) satisfies (Φ3).

Let f ≥ 0 and ∥f∥Φ,κ ≤ 1. Let f1 = fχ{x:f(x)≥1}, f2 = fχ{x:g(x)≤f(x)<1} with g
in (Φ6) and f3 = f − f1 − f2, where χE is the characteristic function of E.

Since Φ(x, t) ≥ 1/(A1A2) for t ≥ 1,

Φ0(x, t) ≤ (A1A2)
1−1/p0Φ(x, t)

if t ≥ 1. Hence there is a constant λ > 0 such that ∥f1∥Φ0,κ ≤ λ whenever
∥f∥Φ,κ ≤ 1. Applying Lemma 3.1 to Φ0 and f1/λ, we have

Φ0

(
x,Mf1(x)

)
≤ CMΦ0

(
·, f1(·)

)
(x),
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so that
Φ
(
x,Mf1(x)

)
≤ C

[
MΦ0

(
·, f(·)

)
(x)

]p0
(4.1)

for all x ∈ RN with a constant C > 0 independent of f .
Next, applying Lemma 3.2 to Φ0 and f2, we have

Φ0(x,Mf2(x)) ≤ C
[
MΦ0

(
·, f2(·)

)
(x) + Φ0

(
x, g(x)

)]
.

Noting that Φ0(x, g(x)) ≤ Cg(x) by (2.2) and (Φ2), we have

Φ
(
x,Mf2(x)

)
≤ C

{[
MΦ0

(
·, f(·)

)
(x)

]p0
+ g(x)p0

}
(4.2)

for all x ∈ RN with a constant C > 0 independent of f .
Since 0 ≤ f3 ≤ g ≤ 1, 0 ≤ Mf3 ≤ Mg ≤ 1. Hence we have

Φ
(
x,Mf3(x)

)
≤ A2Φ0(x,Mg(x))p0 ≤ C[Mg(x)]p0 (4.3)

for all x ∈ RN with a constant C > 0 independent of f .
Combining (4.1), (4.2) and (4.3), and noting that g(x) ≤ Mg(x) for a.e. x ∈

RN , we obtain

Φ
(
x,Mf(x)

)
≤ C

{[
MΦ0

(
·, f(·)

)
(x)

]p0
+ [Mg(x)]p0

}
(4.4)

for a.e. x ∈ RN with a constant C > 0 independent of f .
In view of (2.1),∫

B(x,r)

Φ0(y, f(y))p0 dy =

∫
B(x,r)

Φ(y, f(y)) dy ≤ 2A3|B(x, r)|κ(x, r)−1

for all x ∈ RN and r > 0. Hence, applying Lemma 4.2 to (2A3)
−1/p0Φ0(y, f(y)),

we have ∫
B(x,r)

[
MΦ0

(
·, f(·)

)
(y)

]p0
dy ≤ C|B(x, r)|κ(x, r)−1

with a constant C > 0 independent of x, r and f .
Applying Proposition 2.4 with Φ(x, t) = tp0 and Lemma 4.2 to g, we obtain∫

B(x,r)

[Mg(y)]p0 dy ≤ C|B(x, r)|κ(x, r)−1

for all x ∈ RN and r > 0.
Thus, by (4.4), we finally obtain∫

B(x,r)

Φ
(
y,Mf(y)

)
dy ≤ C|B(x, r)|κ(x, r)−1

for all x ∈ RN and r > 0. This completes the proof of the theorem.

Taking κ(x, r) = rN in the above theorem, we have
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Corollary 4.4. If Φ(x, t) satisfies the same conditions as in Theorem 4.1, then
the maximal operator M is bounded from LΦ(RN) into itself, namely, there is a
constant C > 0 such that

∥Mf∥Φ ≤ C∥f∥Φ
for f ∈ LΦ(RN).

Example 4.5. Let pj(·), j = 1, . . . ,m, satisfy (P1), (P2) and (P3), and qj(·),
j = 1, . . . ,m, satisfy (Q1) and (Q2). Further assume that p−j > 1 for all j. For
positive numbers bj, j = 1, . . . ,m, set

Φ{pj(·)},{qj(·)},{bj}(x, t) =
m∑
j=1

bjt
pj(x)(log(e + t))qj(x).

This function satisfies all the conditions (Φ1) – (Φ5) and (Φ6) with g(x) = 1/(1 +
|x|)N+1. It satisfies (Φ3∗) for 0 < ε0 < minj p

−
j − 1.

5 Lemmas for Sobolev’s inequality

We begin with the following lemma:

Lemma 5.1. Let F (x, t) be a positive function on RN × (0,∞) satisfying the
following conditions:

(F1) F (x, · ) is continuous on (0,∞) for each x ∈ RN ;

(F2) t 7→ t−εF (x, t) is uniformly almost increasing for ε > 0; namely there exists
a constant K1 ≥ 1 such that

t−εF (x, t) ≤ K1s
−εF (x, s) for all x ∈ RN whenever 0 < t < s;

(F3) there exists a constant K2 ≥ 1 such that

K−1
2 ≤ F (x, 1) ≤ K2 for all x ∈ RN .

Set
F−1(x, s) = sup{t > 0 ; F (x, t) < s}

for x ∈ RN and s > 0. Then:

(1) F−1(x, ·) is non-decreasing.

(2)
F−1(x, λs) ≤ (K1λ)1/εF−1(x, s) (5.1)

for all x ∈ RN , s > 0 and λ ≥ 1.

(3)
F (x, F−1(x, t)) = t (5.2)

for all x ∈ RN and t > 0.
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(4)

K
−1/ε
1 t ≤ F−1(x, F (x, t)) ≤ K

2/ε
1 t (5.3)

for all x ∈ RN and t > 0.

(5)

min

{
1,

(
s

K1K2

)1/ε
}

≤ F−1(x, s) ≤ max{1, (K1K2s)
1/ε} (5.4)

for all x ∈ RN and s > 0.

Proof. (1) is obvious from the definition of F−1(x, s) and (3) is an easy consequence
of the definition of F−1(x, s) and the continuity of F (x, ·).

(2) Let λ ≥ 1 and 0 < t < F−1(x, λs). Then there is t′ with t < t′ ≤ F−1(x, λs)
such that F (x, t′) < λs. Then by (F2)

s >
1

λ
F (x, t′) ≥ F (x, t′/(K1λ)1/ε),

so that t′/(K1λ)1/ε ≤ F−1(x, s). Letting t → F−1(x, λs), we obtain (5.1).
(4) If F (x, t′) < K−1

1 F (x, t), then t′ < t by (F2). Hence

F−1(x,K−1
1 F (x, t)) ≤ t.

Then, using (5.1), we have

F−1(x, F (x, t)) ≤ K
2/ε
1 F−1(x,K−1

1 F (x, t)) ≤ K
2/ε
1 t.

On the other hand, if s < K
−1/ε
1 t, then s < t, so that by (F2)

F (x, s) < (K
−1/ε
1 )εK1F (x, t) = F (x, t).

Hence F−1(x, F (x, t)) ≥ s. Letting s → K
−1/ε
1 t, we have

F−1(x, F (x, t)) ≥ K
−1/ε
1 t.

(5) First consider the case F−1(x, s) < 1. Then, for any t with F−1(x, s) < t <
1, we find by (F2) and (F3)

s ≤ F (x, t) ≤ K1K2 tε,

so that (
s

K1K2

)1/ε

≤ F−1(x, s) ≤ 1.

In the case F−1(x, s) > 1, for every t with 1 < t < F−1(x, s) there exists t with
t < t ≤ F−1(x, s) such that F (x, t) < s. In view of (F2) and (F3), we have

1

K1K2

tε ≤ F (x, t) < s,

so that
1 < tε < tε ≤ K1K2s.

Letting t → F−1(x, s), we have the second inequality in (5.4).
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Remark 5.2. F (x, t) = Φ(x, t) satisfies (F1), (F2) and (F3) with ε = 1. F (x, t) =
κ(x, t) satisfies (F2) and (F3).

Hereafter, we assume (Φ5), (Φ6) and

(κ4) κ(x, ·) is continuous for each x ∈ RN ,

i.e., condition (F1) for F = κ.

Set g∗(x) = max
(
g(x), Mg(x)

)
for the function g appearing in condition (Φ6).

We consider the function

w(x) := κ−1(x,Φ(x, ag∗(x))−1), x ∈ RN ,

where 0 < a ≤ 1.

Lemma 5.3. There exists a constant C > 0 (which may depend on a) such that∫
B(x,r)

f(y)dy ≤ C|B(x, r)|Φ−1(x, κ(x, r)−1)

for all x ∈ RN , 0 < r ≤ w(x) and f ≥ 0 satisfying ∥f∥Φ,κ ≤ 1.

Proof. Let f be a nonnegative measurable function satisfying ∥f∥Φ,κ ≤ 1. Set
f1 = fχ{x:f(x)≥1}, f2 = fχ{x:g(x)≤f(x)<1} and f3 = f − f1 − f2. Let

Ii =
1

|B(x, r)|

∫
B(x,r)

fi(y) dy, i = 1, 2, 3,

I = I1 + I2 + I3 and

J =
1

|B(x, r)|

∫
B(x,r)

Φ(y, f(y)) dy.

By Lemma 3.1,
Φ(x, I1) ≤ CJ ≤ Cκ(x, r)−1

and by Lemma 3.2,

Φ(x, I2) ≤ C(J + Φ(x, g(x))) ≤ C(κ(x, r)−1 + Φ(x, g(x)))

with constants C > 0 independent of x, r, f .
As to I3, since I3 ≤ Mf3(x) ≤ Mg(x), we have

Φ(x, I3) ≤ A2Φ(x,Mg(x)).

Hence
Φ(x, I) ≤ C

(
κ(x, r)−1 + Φ(x, g∗(x))

)
for all x ∈ RN . (5.5)

If 0 < r ≤ w(x), then by (κ2) and (5.2)

κ(x, r) ≤ Cκ(x,w(x)) = CΦ(x, ag∗(x))−1,

so that Φ(x, ag∗(x)) ≤ Cκ(x, r)−1. By (Φ4), Φ(x, g∗(x)) ≤ CΦ(x, ag∗(x)) (with
C > 0 which may depend on a), and hence Φ(x, I) ≤ Cκ(x, r)−1 by (5.5), which
implies

I ≤ CΦ−1(x, κ(x, r)−1)

by Lemma 5.1 with F = Φ. Thus we obtain the required inequality.
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We consider a continuous function Φ∞(t) = tϕ∞(t) : [0,∞) → [0,∞) such that
ϕ∞(t) > 0 for t > 0, ϕ∞(t) is almost increasing on [0,∞) and satisfies the doubling
condition. We further assume:

(Φ∞1) There exists a constant B̃∞ ≥ 1 such that

B̃−1
∞ Φ(x, t) ≤ Φ∞(t) ≤ B̃∞Φ(x, t) whenever g(x) ≤ t ≤ 1

for g(x) in condition (Φ6).

Note that if Φ∞(t) is continuous on [0,∞) and if there exists a sequence {xn}
such that |xn| → ∞ and limn→∞ Φ(xn, t) = Φ∞(t) for all t > 0, then it satisfies the
above conditions.

Lemma 5.4. Assume:

(Φ∞2) There exists a constant c∞ ≥ 1 such that

Φ∞(g∗(x)) ≤ c∞(1 + |x|)−N

for all x ∈ RN .

Then there are constants C1 > 0 and C2 > 0, which are independent of a, such
that

w(x) ≥ C1(1 + |x|) and g∗(y) ≤ C2Φ
−1
∞ (κ(x, 1 + |y|)−1) (5.6)

for all x, y ∈ RN .

Proof. By (Φ3), (Φ∞1) and (Φ∞2),

Φ(x, ag∗(x)) ≤ A2Φ(x, g∗(x)) ≤ A2B̃∞Φ∞(g∗(x)) ≤ A2B̃∞c∞(1 + |x|)−N .

Hence, using (κ3) and Lemma 5.1 with F = κ, we have

w(x) = κ−1(x,Φ(x, ag∗(x))−1)

≥ κ−1(x,C(1 + |x|)N) ≥ κ−1(x,Cκ(x, 1 + |x|)) ≥ C1(1 + |x|)

with a constant C1 > 0 independent of x and a.
Next, by (κ3) and (Φ∞2)

Φ∞(g∗(y)) ≤ c∞Q3κ(x, 1 + |y|)−1.

Hence by Lemma 5.1 with F (x, t) = Φ∞(t), we have

g∗(y) ≤ C2Φ
−1
∞ (κ(x, 1 + |y|)−1)

with C2 > 0 independent of x, y.

Remark 5.5. Condition (Φ∞2) is satisfied if g(x) = (1 + |x|)−γ with γ > N . In
fact, g∗(x) = Mg(x) ≤ min{1, C(1 + |x|)−γ} in this case, so that

Φ∞(g∗(x)) = g∗(x)ϕ∞(g∗(x)) ≤ C(1 + |x|)−γϕ∞(1) ≤ C(1 + |x|)−N .
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Lemma 5.6. Assume (Φ∞2) and

(Φ∞κ) r 7→ rγΦ−1
∞ (κ(x, r)−1) is uniformly almost increasing on [1,∞) for some

0 < γ < N .

Then there exists a constant C > 0 (independent of a) such that∫
B(x,r)

f(y)dy ≤ CrNΦ−1
∞ (κ(x, r)−1)

for all x ∈ RN , r ≥ w(x) and f ≥ 0 satisfying ∥f∥Φ,κ ≤ 1.

Proof. Let f be a nonnegative measurable function satisfying ∥f∥Φ,κ ≤ 1.
Given x ∈ RN , set

k(y) = min
{

1, C2Φ
−1
∞ (κ(x, 1 + |y|)−1)

}
with C2 > 0 given in Lemma 5.4. Then by (Φ3)∫

B(x,r)

f(y) dy ≤
∫
B(x,r)

k(y) dy + A2

∫
B(x,r)

f(y)
ϕ(y, f(y))

ϕ(y, k(y))
dy.

If r ≥ w(x), then r ≥ C1(1+ |x|) by (5.6), so that |y| < |x|+r ≤ (1+1/C1)r−1
for y ∈ B(x, r). Hence∫

B(x,r)

k(y) dy ≤ C2

∫
B(0,(1+1/C1)r)

Φ−1
∞ (κ(x, 1 + |y|)−1) dy

= C

∫ (1+1/C1)r

0

ρNΦ−1
∞ (κ(x, 1 + ρ)−1)

dρ

ρ
.

Noting that 1 + (1 + 1/C1)r ≤ (1 + 2/C1)r and using (κ2), (Φ∞κ) and (5.1) with
F (x, t) = Φ∞(t), we have∫

B(x,r)

k(y) dy ≤ CrγΦ−1
∞ (κ(x, r)−1)

∫ (1+1/C1)r

0

ρN−γ dρ

ρ

= CrNΦ−1
∞ (κ(x, r)−1).

Since g(y) ≤ g∗(y) ≤ k(y) ≤ 1 by (5.6),

ϕ(y, k(y)) ≥ B̃−1
∞ ϕ∞(k(y)) (5.7)

for all y ∈ RN by (Φ∞1).
Since 1 + |y| < (1 + 1/C1)r for y ∈ B(x, r), (κ2) and (κ1) imply κ(x, 1 + |y|) ≤

Cκ(x, r), and hence by Lemma 5.1 with F (x, t) = Φ∞(t)

Φ−1
∞ (κ(x, 1 + |y|)−1) ≥ CΦ−1

∞ (κ(x, r)−1)

for all y ∈ B(x, r) with a constant C > 0 (independent of x, y and r). Hence,

k(y) ≥ min
{

1, CΦ−1
∞ (κ(x, r)−1)

}
,
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so that by the doubling condition for ϕ∞

ϕ∞(k(y)) ≥ C min
{

1, ϕ∞(Φ−1
∞ (κ(x, r)−1))

}
= C min

{
1,

1

κ(x, r)Φ−1
∞ (κ(x, r)−1)

}
with a constant C > 0. Thus, in view of (5.7),

1

ϕ(y, k(y))
≤ C max

{
1, κ(x, r)Φ−1

∞ (κ(x, r)−1)
}
,

and hence∫
B(x,r)

f(y)
ϕ(y, f(y))

ϕ(y, k(y))
dy

≤ C max
{

1, κ(x, r)Φ−1
∞ (κ(x, r)−1)

}∫
B(x,r)

Φ(y, f(y)) dy

≤ C|B(x, r)|max
{
κ(x, r)−1, Φ−1

∞ (κ(x, r)−1)
}
.

Since r ≥ C1 as seen above, κ(x, r)−1 is bounded by (κ3), so that Φ−1
∞ (κ(x, r)−1) ≥

Cκ(x, r)−1 by (5.4) with F (x, t) = Φ∞(t). Therefore∫
B(x,r)

f(y)
ϕ(y, f(y))

ϕ(y, k(y))
dy ≤ C|B(x, r)|Φ−1

∞ (κ(x, r)−1).

This completes the proof.

6 Sobolev’s inequality

As a potential kernel, we consider a function

J(x, r) : RN × (0,∞) → [0,∞)

satisfying the following conditions:

(J1) J(·, r) is measurable on RN for each r ∈ (0,∞);

(J2) J(x, ·) is non-increasing on (0,∞) for each x ∈ RN ;

(J3)
∫ 1

0
J(x, r)rN−1dr < ∞ for every x ∈ RN .

Example 6.1. Let α(·) be a measurable function on RN such that

0 < α− := inf
x∈RN

α(x) ≤ sup
x∈RN

α(x) =: α+ < N.

Then, J(x, r) = rα(x)−N satisfies (J1), (J2) and (J3).
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For a nonnegative measurable function f on RN , its J-potential Jf is defined
by

Jf(x) =

∫
RN

J(x, |x− y|)f(y) dy.

Set

J(x, r) =
N

rN

∫ r

0

J(x, ρ)ρN−1dρ

for x ∈ RN and r > 0. Then J(x, r) ≤ J(x, r) for all x ∈ RN and r > 0. Further,
J(x, ·) is non-increasing and continuous on (0,∞) for each x ∈ RN . Also, set

YJ(x, r) = rNJ(x, r)

for x ∈ RN and r > 0.

We consider a function Ψ(x, t) : RN × [0,∞) → [0,∞) satisfying the following
conditions:

(Ψ1) Ψ(·, t) is measurable on RN for each t ≥ 0 and Ψ(x, ·) is continuous on [0,∞)
for each x ∈ RN ;

(Ψ2) Ψ(x, ·) is uniformly almost increasing on [0,∞), namely there is a constant
A4 ≥ 1 such that Ψ(x, t) ≤ A4Ψ(x, t′) for all x ∈ RN , whenever 0 ≤ t < t′;

(Ψ3) there exists a constant A5 ≥ 1 such that

Ψ
(
x, tYJ

(
x, κ−1(x,Φ(x, t)−1)

))
≤ A5Φ(x, t)

for all x ∈ RN and t > 0.

Now we consider the following conditions (ΦκJ) and (Φ∞κJ):

(ΦκJ) r 7→ rεYJ(x, r)Φ−1(x, κ(x, r)−1) is uniformly almost decreasing on (0,∞) for
some ε > 0;

(Φ∞κJ) r 7→ rεYJ(x, r)Φ−1
∞ (κ(x, r)−1) is uniformly almost decreasing on [1,∞) for

some ε > 0.

Lemma 6.2. (1) Assume (ΦκJ). Then there exists a constant C > 0 such that∫ ∞

r

ρNΦ−1(x, κ(x, ρ)−1) d(−J(x, ·))(ρ) ≤ CYJ(x, r)Φ−1(x, κ(x, r)−1) (6.1)

for all r > 0 and x ∈ RN .

(2) Assume (Φ∞κJ). Then, given r0 > 0, there exists a constant C > 0 such
that ∫ ∞

r

ρNΦ−1
∞ (κ(x, ρ)−1) d(−J(x, ·))(ρ) ≤ CYJ(x, r)Φ−1

∞ (κ(x, r)−1) (6.2)

for all r ≥ r0 and x ∈ RN .
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Proof. From the definition of J(x, r), we see that

d(−J(x, ·))(ρ) ≤ NJ(x, ρ)
dρ

ρ

as measures. Hence by (ΦκJ),∫ ∞

r

ρNΦ−1(x, κ(x, ρ)−1) d(−J(x, ·))(ρ)

≤ N

∫ ∞

r

ρN−1Φ−1(x, κ(x, ρ)−1)J(x, ρ) dρ

≤ CrεYJ(x, r)Φ−1(x, κ(x, r)−1)

∫ ∞

r

ρ−ε−1 dρ

=
C

ε
YJ(x, r)Φ−1(x, κ(x, r)−1),

which shows (6.1).
Note that r 7→ rεYJ(x, r)Φ−1

∞ (κ(x, r)−1) is uniformly almost decreasing on
[r0,∞). Then we can show (6.2) just as (6.1).

Recall that w(x) = κ−1(x,Φ(x, ag∗(x))−1) with 0 < a ≤ 1.

Lemma 6.3. Assume (ΦκJ). Then there exists a constant C > 0 (which may
depend on a) such that∫

B(x,w(x))\B(x,δ)

J(x, |x− y|)f(y)dy ≤ CYJ(x, δ)Φ−1(x, κ(x, δ)−1)

for all x ∈ RN , 0 < δ ≤ w(x) and f ≥ 0 satisfying ∥f∥Φ,κ ≤ 1.

Proof. By the integration by parts, Lemmas 5.3 and 6.2, we have∫
B(x,w(x))\B(x,δ)

J(x, |x− y|)f(y)dy ≤
∫
B(x,w(x))\B(x,δ)

J(x, |x− y|)f(y)dy

≤ C

{
w(x)NJ(x,w(x))Φ−1(x, κ(x,w(x))−1)

+

∫ w(x)

δ

ρNΦ−1(x, κ(x, ρ)−1) d(−J(x, ·))(ρ)

}
≤ CYJ(x, δ)Φ−1(x, κ(x, δ)−1),

where we used the fact that r 7→ rNJ(x, r)Φ−1(x, κ(x, r)−1) is also uniformly almost
decreasing.

Theorem 6.4. Suppose Φ(x, t) satisfies (Φ5), (Φ3∗) and (Φ6). For the function
Φ∞(t) as in the previous section, assume (Φ∞1), (Φ∞2) and (Φ∞κ). Further assume
(ΦκJ) and (Φ∞κJ). Then there exists a constant C > 0 such that

sup
x∈RN , r>0

κ(x, r)

|B(x, r)|

∫
B(x,r)

Ψ(y, Jf(y)/C)dy ≤ 1

for all f ≥ 0 satisfying ∥f∥Φ,κ ≤ 1.
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Proof. Let f be a nonnegative measurable function such that ∥f∥Φ,κ ≤ 1. By
Theorem 4.1, there is a constant λ0 ≥ 1 such that ∥Mf∥Φ,κ ≤ λ0.

Note that Mg ∈ LΦ,κ(RN) by Proposition 2.4 and Theorem 4.1. Set λ =
∥g∗∥Φ,κ = ∥Mg∥Φ,κ and

a = min

{
1,

1

4A2A3A2
4A5λ

}
. (6.3)

Let

J1(x) =

∫
B(x,w(x))

J(x, |x− y|)f(y)dy

and

J2(x) =

∫
RN\B(x,w(x))

J(x, |x− y|)f(y)dy.

Also, set
v(x) = κ−1(x,Φ(x, bMf(x))−1)

with

b =
1

4A2A3A2
4A5λ0

. (6.4)

First, note that∫
B(x,δ)

J(x, |x− y|)f(y)dy ≤ C(N)YJ(x, δ)Mf(x)

for any δ > 0. Thus, if v(x) ≥ w(x), then

J1(x) ≤ C(N)YJ(x, v(x))Mf(x).

If v(x) < w(x), then by Lemma 6.3

J1(x) ≤ C(N)YJ(x, v(x))Mf(x) +

∫
B(x,w(x))\B(x,v(x))

J(x, |x− y|)f(y) dy

≤ C
{
YJ(x, v(x))Mf(x) + YJ(x, v(x))Φ−1(x, κ(x, v(x))−1)

}
.

Since κ(x, v(x)) = Φ(x, bMf(x))−1,

Φ−1(x, κ(x, v(x))−1) = Φ−1
(
x,Φ(x, bMf(x))

)
≤ A2

2bMf(x)

by (5.3). Therefore
J1(x) ≤ C0YJ(x, v(x))[bMf(x)]

in any case with a constant C0 > 0 independent of x and f . Hence

Ψ(x, J1(x)/C0) ≤ A4A5Φ(x, bMf(x))

by (Ψ2) and (Ψ3). By (2.2), (2.1) and (6.4),

Φ(x, bMf(x)) ≤ A2bλ0Φ(x,Mf(x)/λ0) ≤ 2A2A3bλ0Φ(x,Mf(x)/λ0).
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Hence by (6.4)

Ψ(x, J1(x)/C0) ≤
1

2A4

Φ(x,Mf(x)/λ0). (6.5)

Next, we treat J2(x). By the integration by parts, (Φ∞κJ), Lemma 5.6 and
Lemma 6.2,

J2(x) ≤
∫
RN\B(x,w(x))

J(x, |x− y|)f(y)dy

≤ C
{
w(x)NΦ−1

∞ (κ(x,w(x))−1)J(x,w(x))

+

∫ ∞

w(x)

ρNΦ−1
∞ (κ(x, ρ)−1)d(−J(x, ·))(ρ)

}
≤ CYJ(x,w(x))Φ−1

∞ (κ(x,w(x))−1).

Since κ(x,w(x)) = Φ(x, ag∗(x))−1,

κ(x,w(x))−1 = Φ(x, ag∗(x)) ≤ A2Φ(x, g∗(x)) ≤ A2B∞Φ∞(g∗(x))

by (Φ∞1), so that
Φ−1

∞ (κ(x,w(x))−1) ≤ Cg∗(x)

by Lemma 5.1 with F (x, t) = Φ∞(t). Thus there is a constant C ′
0 > 0 such that

J2(x) ≤ C ′
0YJ(x, κ−1(x,Φ(x, ag∗(x))−1))[ag∗(x)],

which implies
Ψ(x, J2(x)/C ′

0) ≤ A4A5Φ(x, ag∗(x))

by (Ψ2) and (Ψ3). Now, by (2.2), (2.1) and (6.3),

Φ(x, ag∗(x)) ≤ aA2λΦ(x, g∗(x)/λ) ≤ 2aA2A3λΦ(x, g∗(x)/λ).

Hence, by (6.3)

Ψ(x, J2(x)/C ′
0) ≤

1

2A4

Φ(x, g∗(x)/λ). (6.6)

Thus, by (6.5), (6.6) and (Ψ2), we have

Ψ
(
x, Jf(x)/(C0 + C ′

0)
)
≤ 1

2

{
Φ(x,Mf(x)/λ0) + Φ(x, g∗(x)/λ)

}
.

Hence

sup
x∈RN ,r>0

κ(x, r)

|B(x, r)|

∫
B(x,r)

Ψ
(
y, Jf(y)/(C0 + C ′

0)
)
dy ≤ 1

2
+

1

2
= 1,

as required.

Taking κ(x, r) = rN in Theorem 6.4, we have

Corollary 6.5. Suppose Φ(x, t) satisfies (Φ5), (Φ3∗) and (Φ6). For the function
Φ∞(t) as in the previous section, assume (Φ∞1), (Φ∞2),
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(Φ∞3) r 7→ rγΦ−1
∞ (r−N) is almost increasing for some 0 < γ < N ,

(ΦJ) r 7→ rεYJ(x, r)Φ−1(x, r−N) is uniformly almost decreasing on (0,∞) for some
ε > 0,

(Φ∞J) r 7→ rεYJ(x, r)Φ−1
∞ (r−N) is uniformly almost decreasing on [1,∞) for some

ε > 0.

Suppose that Ψ(x, t) satisfies (Ψ1), (Ψ2) and that there exists a constant A∗ ≥ 1
such that

Ψ
(
x, tYJ(x,Φ(x, t)−1/N)

)
≤ A∗Φ(x, t)

for all t > 0.
Then there exists a constant C > 0 such that∫

RN

Ψ(x, Jf(x)/C)dx ≤ 1

for all f ≥ 0 satisfying
∫
RN Φ(x, f(x)) dx ≤ 1.

Example 6.6 (cf. [13]). Let

Φ(x, t) = tp(x)(log(e + t))q(x)

with functions p(·) and q(·) on RN satisfying (P1), (P2), (P3), (Q1) and (Q2) in
Example 2.1. Assume further that p− > 1. Then Φ(x, t) satisfies (Φ3∗).

Let
κ(x, r) = rν(x)(log(e + r + 1/r))β(x)

with functions ν(·) and β(·) on RN satisfying conditions in Example 2.2.
For these Φ and κ,

κ−1(x,Φ(x, t)−1) ≈
[
tp(x)(log(e + t))q(x)(log(e + t + 1/t))β(x)

]−1/ν(x)
.

(Here h1(x, t) ≈ h2(x, t) means that C−1h2(x, t) ≤ h1(x, t) ≤ Ch2(x, t) for a con-
stant C > 0.)

If J(x, r) = rα(x)−N (0 < α− ≤ α+ < N), then YJ(x, r) = (N/α(x))rα(x) ≈
rα(x), so that

tYJ

(
x,κ−1(x,Φ(x, t)−1)

)
≈ t1−p(x)α(x)/ν(x)(log(e + t))−α(x)q(x)/ν(x)(log(e + t + 1/t))−α(x)β(x)/ν(x).

Thus, if

inf
x∈RN

(
ν(x)

p(x)
− α(x)

)
> 0, (6.7)

we may take

Ψ(x, t) =
[
t(log(e + t))q(x)/p(x)(log(e + t + 1/t))α(x)β(x)/ν(x)

]p∗(x)
,

where
1

p∗(x)
=

1

p(x)
− α(x)

ν(x)
.
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Also, we may take Φ∞(t) = tp(∞), where p(∞) = lim|x|→∞ p(x), which exists
by (P3). Then, (Φ∞1) and (Φ∞2) are satisfied. (Note that g(x) = 1/(1 + |x|)N+1;
cf. Remark 5.5.) Also, (Φ∞κ) is satisfied since ν+ ≤ N and p(∞) ≥ p− > 1.
Condition (ΦκJ) is satisfied for these special Φ, κ and J under condition (6.7).
Finally condition (Φ∞κJ) is satisfied if

inf
x∈RN

(
ν(x)

p(∞)
− α(x)

)
> 0.
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