Approximate identities and Young type inequalities in Musielak-Orlicz spaces

Fumi-Yuki Maeda, Yoshihiro Mizuta, Takao Ohno and Tetsu Shimomura

October 2, 2012

Abstract

Our aim in this paper is to deal with approximate identities and Young type inequalities in Musielak-Orlicz spaces.

1 Introduction

Let κ be an integrable function on \mathbf{R}^{N}. For each $t>0$, define the function κ_{t} by $\kappa_{t}(x)=t^{-N} \kappa(x / t)$. Note that by a change of variables, $\left\|\kappa_{t}\right\|_{L^{1}\left(\mathbf{R}^{N}\right)}=\|\kappa\|_{L^{1}\left(\mathbf{R}^{N}\right)}$. We say that the family $\left\{\kappa_{t}\right\}_{t>0}$ is an approximate identity if $\int_{\mathbf{R}^{N}} \kappa(x) d x=1$. Define the radial majorant of κ to be the function

$$
\hat{\kappa}(x)=\sup _{|y| \geq|x|}|\kappa(y)| .
$$

If $\hat{\kappa}$ is integrable, we say that the family $\left\{\kappa_{t}\right\}_{t>0}$ is of potential-type.
It is well known (see, e.g., [9]) that if $\left\{\kappa_{t}\right\}_{t>0}$ is a potential-type approximate identity, then $\kappa_{t} * f \rightarrow f$ in $L^{p}\left(\mathbf{R}^{N}\right)$ as $t \rightarrow 0$ for every $f \in L^{p}\left(\mathbf{R}^{N}\right)(p \geq 1)$.

Variable exponent Lebesgue spaces and Sobolev spaces were introduced to discuss nonlinear partial differential equations with non-standard growth conditions (see [3]). Cruz-Uribe and Fiorenza [1] gave sufficient conditions for the convergence of approximate identities in variable exponent Lebesgue spaces $L^{p(\cdot)}\left(\mathbf{R}^{N}\right)$ when $p(\cdot)$ is a variable exponent satisfying the log-Hölder conditions on \mathbf{R}^{N}, locally and at ∞, as an extension of [2], [9], etc. In fact they proved the following:

Theorem A. Let $\left\{\kappa_{t}\right\}_{t>0}$ be an approximate identity. Suppose that either

[^0](1) $\left\{\kappa_{t}\right\}_{t>0}$ is of potential-type, or
(2) $\kappa \in L^{\left(p^{-}\right)^{\prime}}\left(\mathbf{R}^{N}\right)$ and has compact support, where $p^{-}:=\inf _{x \in \mathbf{R}^{N}} p(x)(\geq 1)$ and $1 / p^{-}+1 /\left(p^{-}\right)^{\prime}=1$.

Then

$$
\sup _{0<t \leq 1}\left\|\kappa_{t} * f\right\|_{L^{p(\cdot)}\left(\mathbf{R}^{N}\right)} \leq C\|f\|_{L^{p(\cdot)}\left(\mathbf{R}^{N}\right)}
$$

and

$$
\lim _{t \rightarrow 0}\left\|\kappa_{t} * f-f\right\|_{L^{p(\cdot)}\left(\mathbf{R}^{N}\right)}=0
$$

for all $f \in L^{p(\cdot)}\left(\mathbf{R}^{N}\right)$.
Recently, Theorem A was extended to the two variable exponents spaces $L^{p(\cdot)}(\log L)^{q(\cdot)}\left(\mathbf{R}^{N}\right)$ in [4]. These spaces are special cases of so-called Musielak-Orlicz spaces ([8]).

Our aim in this paper is to extend these results to Musielak-Orlicz spaces $L^{\Phi}\left(\mathbf{R}^{N}\right)$ (see Section 2 for the definition of Φ). As a related topic, we also give a Young type inequality for convolution with respect to the norm in $L^{\Phi}\left(\mathbf{R}^{N}\right)$.

2 Preliminaries

We consider a function

$$
\Phi(x, t)=t \phi(x, t): \mathbf{R}^{N} \times[0, \infty) \rightarrow[0, \infty)
$$

satisfying the following conditions $(\Phi 1)-(\Phi 4)$:
(Ф1) $\phi(\cdot, t)$ is measurable on \mathbf{R}^{N} for each $t \geq 0$ and $\phi(x, \cdot)$ is continuous on $[0, \infty)$ for each $x \in \mathbf{R}^{N}$;
($\Phi 2$) there exists a constant $A_{1} \geq 1$ such that

$$
A_{1}^{-1} \leq \phi(x, 1) \leq A_{1} \quad \text { for all } x \in \mathbf{R}^{N} ;
$$

($\Phi 3$) $\quad \phi(x, \cdot)$ is uniformly almost increasing, namely there exists a constant $A_{2} \geq 1$ such that

$$
\phi(x, t) \leq A_{2} \phi(x, s) \quad \text { for all } x \in \mathbf{R}^{N} \quad \text { whenever } 0 \leq t<s ;
$$

$(\Phi 4)$ there exists a constant $A_{3} \geq 1$ such that

$$
\phi(x, 2 t) \leq A_{3} \phi(x, t) \quad \text { for all } x \in \mathbf{R}^{N} \text { and } t>0 .
$$

Note that ($\Phi 2$), ($\Phi 3$) and ($\Phi 4$) imply

$$
0<\inf _{x \in \mathbf{R}^{N}} \phi(x, t) \leq \sup _{x \in \mathbf{R}^{N}} \phi(x, t)<\infty
$$

for each $t>0$.
If $\Phi(x, \cdot)$ is convex for each $x \in \mathbf{R}^{N}$, then ($\Phi 3$) holds with $A_{2}=1$; namely $\phi(x, \cdot)$ is non-decreasing for each $x \in \mathbf{R}^{N}$.

Example 2.1. Let $p_{1}(\cdot), p_{2}(\cdot), q_{1}(\cdot)$ and $q_{2}(\cdot)$ be measurable functions on \mathbf{R}^{N} such that
(P1) $1 \leq p_{j}^{-}:=\inf _{x \in \mathbf{R}^{N}} p_{j}(x) \leq \sup _{x \in \mathbf{R}^{N}} p_{j}(x)=: p_{j}^{+}<\infty, j=1,2$
and
(Q1) $-\infty<q_{j}^{-}:=\inf _{x \in \mathbf{R}^{N}} q_{j}(x) \leq \sup _{x \in \mathbf{R}^{N}} q_{j}(x)=: q_{j}^{+}<\infty, j=1,2$.
Then,

$$
\Phi(x, t)=(1+t)^{p_{1}(x)}(1+1 / t)^{-p_{2}(x)}(\log (e+t))^{q_{1}(x)}(\log (e+1 / t))^{-q_{2}(x)}
$$

satisfies $(\Phi 1),(\Phi 2)$ and $(\Phi 4)$. It satisfies $(\Phi 3)$ if $p_{j}^{-}>1, j=1,2$ or $q_{j}^{-} \geq 0$, $j=1,2$. As a matter of fact, it satisfies $(\Phi 3)$ if and only if $p_{j}(\cdot), q_{j}(\cdot)$ satisfies the following conditions:
(1) $q_{j}(x) \geq 0$ at points x where $p_{j}(x)=1, j=1,2$;
(2) $\sup _{x: p_{j}(x)>1}\left\{\min \left(q_{j}(x), 0\right) \log \left(p_{j}(x)-1\right)\right\}<\infty, j=1,2$.

Let $\bar{\phi}(x, t)=\sup _{0 \leq s \leq t} \phi(x, s)$ and

$$
\bar{\Phi}(x, t)=\int_{0}^{t} \bar{\phi}(x, r) d r
$$

for $x \in \mathbf{R}^{N}$ and $t \geq 0$. Then $\bar{\Phi}(x, \cdot)$ is convex and

$$
\begin{equation*}
\frac{1}{2 A_{3}} \Phi(x, t) \leq \bar{\Phi}(x, t) \leq A_{2} \Phi(x, t) \tag{2.1}
\end{equation*}
$$

for all $x \in \mathbf{R}^{N}$ and $t \geq 0$. In fact, the first inequality is seen as follows:

$$
\bar{\Phi}(x, t) \geq \int_{t / 2}^{t} \bar{\phi}(x, r) d r \geq \frac{t}{2} \phi(x, t / 2) \geq \frac{1}{2 A_{3}} \Phi(x, t)
$$

Corresponding to ($\Phi 2$) and ($\Phi 4$), we have by (2.1)

$$
\begin{equation*}
\left(2 A_{1} A_{3}\right)^{-1} \leq \bar{\Phi}(x, 1) \leq A_{1} A_{2} \quad \text { and } \quad \bar{\Phi}(x, 2 t) \leq 2 A_{3} \bar{\Phi}(x, t) \tag{2.2}
\end{equation*}
$$

for all $x \in \mathbf{R}^{N}$ and $t>0$.
Given $\Phi(x, t)$ as above, the associated Musielak-Orlicz space

$$
L^{\Phi}\left(\mathbf{R}^{N}\right)=\left\{f \in L_{l o c}^{1}\left(\mathbf{R}^{N}\right) ; \int_{\mathbf{R}^{N}} \Phi(y,|f(y)|) d y<\infty\right\}
$$

is a Banach space with respect to the norm

$$
\|f\|_{L^{\Phi}\left(\mathbf{R}^{N}\right)}=\inf \left\{\lambda>0 ; \int_{\mathbf{R}^{N}} \bar{\Phi}(y,|f(y)| / \lambda) d y \leq 1\right\}
$$

(cf. [8]).
By (2.2), we have the following lemma (see [7]).

Lemma 2.2.

$$
\begin{equation*}
\|f\|_{L^{\Phi}\left(\mathbf{R}^{N}\right)} \leq 2\left(\int_{\mathbf{R}^{N}} \bar{\Phi}(x,|f(x)|) d x\right)^{\sigma} \tag{2.3}
\end{equation*}
$$

with $\sigma=\log 2 / \log \left(2 A_{3}\right)$, if $\|f\|_{L^{\Phi}\left(\mathbf{R}^{N}\right)} \leq 1$.
We shall also consider the following conditions:
($\Phi 5$) for every $\gamma>0$, there exists a constant $B_{\gamma} \geq 1$ such that

$$
\phi(x, t) \leq B_{\gamma} \phi(y, t)
$$

whenever $|x-y| \leq \gamma t^{-1 / N}$ and $t \geq 1$;
(Ф6) there exist a function $g \in L^{1}\left(\mathbf{R}^{N}\right)$ and a constant $B_{\infty} \geq 1$ such that $0 \leq$ $g(x)<1$ for all $x \in \mathbf{R}^{N}$ and

$$
B_{\infty}^{-1} \Phi(x, t) \leq \Phi\left(x^{\prime}, t\right) \leq B_{\infty} \Phi(x, t)
$$

whenever $\left|x^{\prime}\right| \geq|x|$ and $g(x) \leq t \leq 1$.
If $\Phi(x, t)$ satisfies ($\Phi 5$) (resp. ($\Phi 6$)), then so does $\bar{\Phi}(x, t)$ with $\bar{B}_{\gamma}=2 A_{2} A_{3} B_{\gamma}$ in place of B_{γ} (resp. $\bar{B}_{\infty}=2 A_{2} A_{3} B_{\infty}$ in place of B_{∞}).

Example 2.3. Let $\Phi(x, t)$ be as in Example 2.1. It satisfies ($\Phi 5$) if (P2) $p_{1}(\cdot)$ is log-Hölder continuous, namely

$$
\left|p_{1}(x)-p_{1}(y)\right| \leq \frac{C_{p}}{\log (1 /|x-y|)} \quad \text { for }|x-y| \leq \frac{1}{2}
$$

with a constant $C_{p} \geq 0$,
and
(Q2) $q_{1}(\cdot)$ is \log-log-Hölder continuous, namely

$$
\left|q_{1}(x)-q_{1}(y)\right| \leq \frac{C_{q}}{\log (\log (1 /|x-y|))} \quad \text { for }|x-y| \leq e^{-2}
$$

with a constant $C_{q} \geq 0$.
$\Phi(x, t)$ satisfies $(\Phi 6)$ with $g(x)=1 /(1+|x|)^{N+1}$ if
(P3) $p_{2}(\cdot)$ is \log-Hölder continuous at ∞, namely

$$
\left|p_{2}(x)-p_{2}\left(x^{\prime}\right)\right| \leq \frac{C_{p, \infty}}{\log (e+|x|)} \quad \text { whenever }\left|x^{\prime}\right| \geq|x|
$$

with a constant $C_{p, \infty} \geq 0$, and
(Q3) $q_{2}(\cdot)$ is $\log -\log$-Hölder continuous at ∞, namely

$$
\left|q_{2}(x)-q_{2}\left(x^{\prime}\right)\right| \leq \frac{C_{q, \infty}}{\log (e+\log (e+|x|))} \quad \text { whenever }\left|x^{\prime}\right| \geq|x|
$$

with a constant $C_{q, \infty} \geq 0$.
In fact, if $1 /(1+|x|)^{N+1}<t \leq 1$, then $(1+t)^{\left|p_{1}(x)-p_{1}\left(x^{\prime}\right)\right|} \leq 2^{p_{1}^{+}-1}$, $(1+1 / t)^{\left|p_{2}(x)-p_{2}\left(x^{\prime}\right)\right|} \leq e^{(N+1) C_{p, \infty}}, \quad(\log (e+t))^{\left|q_{1}(x)-q_{1}\left(x^{\prime}\right)\right|} \leq(\log (e+1))^{q_{1}^{+}-q_{1}^{-}}$ and $(\log (e+1 / t))^{\left|q_{2}(x)-q_{2}\left(x^{\prime}\right)\right|} \leq C\left(N, C_{q, \infty}\right)$ for $\left|x^{\prime}\right| \geq|x|$.

3 The case of potential-type

Throughout this paper, let C denote various positive constants independent of the variables in question.

First, we recall the following classical result (see, e.g., Stein [9]).
Lemma 3.1. Let $1 \leq p<\infty$ and $\left\{\kappa_{t}\right\}_{t>0}$ be a potential-type approximate identity. Then, $\kappa_{t} * f$ converges to f in $L^{p}\left(\mathbf{R}^{N}\right)$ for every $f \in L^{p}\left(\mathbf{R}^{N}\right)$.

We denote by $B(x, r)$ the open ball centered at $x \in \mathbf{R}^{N}$ and with radius $r>0$. For a measurable set E, we denote by $|E|$ the Lebesgue measure of E.

For a nonnegative $f \in L_{l o c}^{1}\left(\mathbf{R}^{N}\right), x \in \mathbf{R}^{N}$ and $r>0$, let

$$
I(f ; x, r)=\frac{1}{|B(x, r)|} \int_{B(x, r)} f(y) d y
$$

and

$$
J(f ; x, r)=\frac{1}{|B(x, r)|} \int_{B(x, r)} \bar{\Phi}(y, f(y)) d y
$$

in this section.
The following lemmas are due to $[5,6]$.
Lemma 3.2 ([5, Lemma 2.1], [6, Lemma 3.1]). Suppose $\Phi(x, t)$ satisfies ($\Phi 5$). Then there exists a constant $C>0$ such that

$$
\bar{\Phi}(x, I(f ; x, r)) \leq C J(f ; x, r)
$$

for all $x \in \mathbf{R}^{N}, r>0$ and for all nonnegative $f \in L_{l o c}^{1}\left(\mathbf{R}^{N}\right)$ such that $f(y) \geq 1$ or $f(y)=0$ for each $y \in \mathbf{R}^{N}$ and $\|f\|_{L^{\Phi}\left(\mathbf{R}^{N}\right)} \leq 1$.

Lemma 3.3 ([5, Lemma 2.2], [6, Lemma 3.2]). Suppose $\Phi(x, t)$ satisfies ($\Phi 6$). Then there exists a constant $C>0$ such that

$$
\bar{\Phi}(x, I(f ; x, r)) \leq C\{J(f ; x, r)+g(x)\}
$$

for all $x \in \mathbf{R}^{N}, r>0$ and for all nonnegative $f \in L_{l o c}^{1}\left(\mathbf{R}^{N}\right)$ such that $g(y) \leq$ $f(y) \leq 1$ or $f(y)=0$ for each $y \in \mathbf{R}^{N}$, where g is the function appearing in ($\left.\Phi 6\right)$.

By using Lemmas 3.2 and 3.3, we show the following theorem.
Theorem 3.4. Suppose $\Phi(x, t)$ satisfies ($\Phi 5$) and ($\Phi 6$). If $\left\{\kappa_{t}\right\}_{t>0}$ is of potentialtype, then

$$
\left\|\kappa_{t} * f\right\|_{L^{\Phi}\left(\mathbf{R}^{N}\right)} \leq C\|\hat{\kappa}\|_{L^{1}\left(\mathbf{R}^{N}\right)}\|f\|_{L^{\Phi}\left(\mathbf{R}^{N}\right)}
$$

for all $t>0$ and $f \in L^{\Phi}\left(\mathbf{R}^{N}\right)$.
Proof. Suppose $\|\hat{\kappa}\|_{L^{1}\left(\mathbf{R}^{N}\right)}=1$ and let f be a nonnegative measurable function on \mathbf{R}^{N} such that $\|f\|_{L^{\Phi}\left(\mathbf{R}^{N}\right)} \leq 1$. Write

$$
\begin{aligned}
f & =f \chi_{\left\{y \in \mathbf{R}^{N}: f(y) \geq 1\right\}}+f \chi_{\left\{y \in \mathbf{R}^{N}: g(y)<f(y)<1\right\}}+f \chi_{\left\{y \in \mathbf{R}^{N}: f(y) \leq g(y)\right\}} \\
& =f_{1}+f_{2}+f_{3},
\end{aligned}
$$

where χ_{E} denotes the characteristic function of a measurable set $E \subset \mathbf{R}^{N}$ and g is the function appearing in ($\Phi 6$).

Since $\hat{\kappa}_{t}$ is a radial function, we write $\hat{\kappa}_{t}(r)$ for $\hat{\kappa}_{t}(x)$ when $|x|=r$. First note that

$$
\begin{aligned}
\left|\kappa_{t} * f_{j}(x)\right| & \leq \int_{\mathbf{R}^{N}} \hat{\kappa}_{t}(|x-y|) f_{j}(y) d y \\
& =\int_{0}^{\infty} I\left(f_{j} ; x, r\right)|B(x, r)| d\left(-\hat{\kappa}_{t}(r)\right)
\end{aligned}
$$

$j=1,2$ and

$$
\int_{\mathbf{R}^{N}}|B(x, r)| d\left(-\hat{\kappa}_{t}(r)\right)=\left\|\hat{\kappa}_{t}\right\|_{L^{1}\left(\mathbf{R}^{N}\right)}=1
$$

so that Jensen's inequality yields

$$
\bar{\Phi}\left(x,\left|\kappa_{t} * f_{j}(x)\right|\right) \leq \int_{0}^{\infty} \bar{\Phi}\left(x, I\left(f_{j} ; x, r\right)\right)|B(x, r)| d\left(-\hat{\kappa}_{t}(r)\right)
$$

$j=1,2$.
Hence, by Lemma 3.2

$$
\bar{\Phi}\left(x,\left|\kappa_{t} * f_{1}(x)\right|\right) \leq C \int_{0}^{\infty} J\left(f_{1} ; x, r\right)|B(x, r)| d\left(-\hat{\kappa}_{t}(r)\right) \leq C\left(\hat{\kappa}_{t} * h\right)(x)
$$

where $h(y)=\bar{\Phi}(y, f(y))$. The usual Young inequality for convolution gives

$$
\begin{aligned}
\int_{\mathbf{R}^{N}} \bar{\Phi}\left(x,\left|\kappa_{t} * f_{1}(x)\right|\right) d x & \leq C \int_{\mathbf{R}^{N}}\left(\hat{\kappa}_{t} * h\right)(x) d x \\
& \leq C\left\|\hat{\kappa}_{t}\right\|_{L^{1}\left(\mathbf{R}^{N}\right)}\|h\|_{L^{1}\left(\mathbf{R}^{N}\right)} \leq C
\end{aligned}
$$

Similarly, noting that $g \in L^{1}\left(\mathbf{R}^{N}\right)$ and applying Lemma 3.3, we derive the same result for f_{2}.

Finally, noting that $\left|\kappa_{t} * f_{3}(x)\right| \leq\left\|\kappa_{t}\right\|_{L^{1}\left(\mathbf{R}^{N}\right)} \leq 1$, we obtain

$$
\begin{aligned}
\int_{\mathbf{R}^{N}} \bar{\Phi}\left(x,\left|\kappa_{t} * f_{3}(x)\right|\right) d x & \leq C \int_{\mathbf{R}^{N}}\left|\kappa_{t} * f_{3}(x)\right| d x \\
& \leq C\left\|\kappa_{t}\right\|_{L^{1}\left(\mathbf{R}^{N}\right)}\|g\|_{L^{1}\left(\mathbf{R}^{N}\right)} \leq C
\end{aligned}
$$

Thus

$$
\int_{\mathbf{R}^{N}} \bar{\Phi}\left(x,\left|\kappa_{t} * f(x)\right|\right) d x \leq C,
$$

which implies the required assertion.
Theorem 3.5. Suppose $\Phi(x, t)$ satisfies ($\Phi 5$) and ($\Phi 6$). Let $\left\{\kappa_{t}\right\}_{t>0}$ be a potentialtype approximate identity. Then $\kappa_{t} * f$ converges to f in $L^{\Phi}\left(\mathbf{R}^{N}\right)$:

$$
\lim _{t \rightarrow 0}\left\|\kappa_{t} * f-f\right\|_{L^{\Phi}\left(\mathbf{R}^{N}\right)}=0
$$

for every $f \in L^{\Phi}\left(\mathbf{R}^{N}\right)$.
Proof. Given $\varepsilon>0$, we find a bounded function h in $L^{\Phi}\left(\mathbf{R}^{N}\right)$ with compact support such that $\|f-h\|_{L^{\Phi}\left(\mathbf{R}^{N}\right)}<\varepsilon$. By Theorem 3.4 we have

$$
\begin{aligned}
\left\|\kappa_{t} * f-f\right\|_{L^{\Phi}\left(\mathbf{R}^{N}\right)} & \leq\left\|\kappa_{t} *(f-h)\right\|_{L^{\Phi}\left(\mathbf{R}^{N}\right)}+\left\|\kappa_{t} * h-h\right\|_{L^{\Phi}\left(\mathbf{R}^{N}\right)}+\|f-h\|_{L^{\Phi}\left(\mathbf{R}^{N}\right)} \\
& \leq\left(C\|\hat{\kappa}\|_{L^{1}\left(\mathbf{R}^{N}\right)}+1\right) \varepsilon+\left\|\kappa_{t} * h-h\right\|_{L^{\Phi}\left(\mathbf{R}^{N}\right)} .
\end{aligned}
$$

Since $\left|\kappa_{t} * h\right| \leq\|h\|_{L^{\infty}\left(\mathbf{R}^{N}\right)}$, we have

$$
\int_{\mathbf{R}^{N}} \bar{\Phi}\left(x,\left|\kappa_{t} * h(x)-h(x)\right| d x \leq C^{\prime} \int_{\mathbf{R}^{N}}\left|\kappa_{t} * h(x)-h(x)\right| d x \rightarrow 0\right.
$$

as $t \rightarrow 0$ by Lemma 3.1. (Here C^{\prime} depends on $\left.\|h\|_{L^{\infty}\left(\mathbf{R}^{N}\right)}\right)$. Hence $\| \kappa_{t} * h-$ $h \|_{L^{\Phi}\left(\mathbf{R}^{N}\right)} \rightarrow 0$ as $t \rightarrow 0$ by Lemma 2.2, so that

$$
\limsup _{t \rightarrow 0}\left\|\kappa_{t} * f-f\right\|_{L^{\Phi}\left(\mathbf{R}^{N}\right)} \leq\left(C\|\hat{\kappa}\|_{L^{1}\left(\mathbf{R}^{N}\right)}+1\right) \varepsilon
$$

which completes the proof.

4 The case of compact support

We know the following result due to Zo [10]; see also [1, Theorem 2.2].
Lemma 4.1. Let $1 \leq p<\infty, 1 / p+1 / p^{\prime}=1$ and $\left\{\kappa_{t}\right\}_{t>0}$ be an approximate identity. Suppose that $\kappa \in L^{p^{\prime}}\left(\mathbf{R}^{N}\right)$ and it has compact support. Then for every $f \in L^{p}\left(\mathbf{R}^{N}\right), \kappa_{t} * f$ converges to f pointwise almost everywhere as $t \rightarrow 0$.

In this section, we take $p_{0} \geq 1$ as follows. Let P be the set of all $p \geq 1$ such that $t \mapsto t^{-p} \Phi(x, t)$ is uniformly almost increasing, and set $\tilde{p}=\sup P$. Note that $1 \in P$ by ($\Phi 3$), so that $\tilde{p}>1$ if $\tilde{p} \notin P$. Let $p_{0}=\tilde{p}$ if $\tilde{p} \in P$ and $1<p_{0}<\tilde{p}$ otherwise.

Example 4.2. For $\Phi(x, t)$ in Example 2.3, $\tilde{p}=\min \left\{p_{1}^{-}, p_{2}^{-}\right\}$, so that $p_{0}=1$ if $p_{1}^{-}=1$ or $p_{2}^{-}=1$; and $1<p_{0} \leq \min \left\{p_{1}^{-}, p_{2}^{-}\right\}$if $p_{j}^{-}>1, j=1,2$. (Cf. [4]).

Since $t^{-p_{0}} \Phi(x, t)$ is uniformly almost increasing in t, there exists a constant $A_{2}^{\prime} \geq 1$ such that

$$
t^{-p_{0}} \Phi(x, t) \leq A_{2}^{\prime} s^{-p_{0}} \Phi(x, s) \quad \text { for all } x \in \mathbf{R}^{N} \quad \text { whenever } 0 \leq t<s
$$

Set

$$
\Phi_{0}(x, t)=\Phi(x, t)^{1 / p_{0}}
$$

Then $\Phi_{0}(x, t)$ also satisfies all the conditions $(\Phi j), j=1,2, \ldots, 6$. In fact, it trivially satisfies (Φj) for $j=1,2,4,5,6$ with the same g for ($\Phi 6$). Since

$$
\Phi_{0}(x, t)=t \phi_{0}(x, t) \quad \text { with } \quad \phi_{0}(x, t)=\left[t^{-p_{0}} \Phi(x, t)\right]^{1 / p_{0}}
$$

$\Phi_{0}(x, t)$ satisfies $(\Phi 3)$ with A_{2} replaced by $A_{4}=\left(A_{2}^{\prime}\right)^{1 / p_{0}}$.
Lemma 4.3. Suppose $\Phi(x, t)$ satisfies ($\Phi 5$). Let κ have compact support contained in $B(0, R)$ and let $\|\kappa\|_{L^{\left(p_{0}\right)^{\prime}}\left(\mathbf{R}^{N}\right)} \leq 1$. Then there exists a constant $C>0$, which depends on R, such that

$$
\Phi_{0}\left(x,\left|\kappa_{t} * f(x)\right|\right) \leq C \int_{\mathbf{R}^{N}}\left|\kappa_{t}(x-y)\right| \Phi_{0}(y, f(y)) d y
$$

for all $x \in \mathbf{R}^{N}, 0<t \leq 1$ and for all nonnegative $f \in L_{l o c}^{1}\left(\mathbf{R}^{N}\right)$ such that $f(y) \geq 1$ or $f(y)=0$ for each $y \in \mathbf{R}^{N}$ and $\|f\|_{L^{\Phi}\left(\mathbf{R}^{N}\right)} \leq 1$.

Proof. Given f as in the statement of the lemma, $x \in \mathbf{R}^{N}$ and $0<t \leq 1$, set

$$
F=\left|\kappa_{t} * f(x)\right| \quad \text { and } \quad G=\int_{\mathbf{R}^{N}}\left|\kappa_{t}(x-y)\right| \Phi_{0}(y, f(y)) d y
$$

Note that $\|f\|_{L^{\Phi}\left(\mathbf{R}^{N}\right)} \leq 1$ implies

$$
G \leq\left\|\kappa_{t}\right\|_{L^{\left(p_{0}\right)^{\prime}}\left(\mathbf{R}^{N}\right)}\left(\int_{\mathbf{R}^{N}} \Phi(y, f(y)) d y\right)^{1 / p_{0}} \leq t^{-N / p_{0}}\left(2 A_{3}\right)^{1 / p_{0}} \leq\left(2 A_{3}\right)^{1 / p_{0}} t^{-N}
$$

by Hölder's inequality and (2.1).
By $(\Phi 2), \Phi_{0}(y, f(y)) \geq\left(A_{1} A_{4}\right)^{-1} f(y)$, since $f(y) \geq 1$ or $f(y)=0$. Hence $F \leq A_{1} A_{4} G$. Thus, if $G \leq 1$, then

$$
\Phi_{0}(x, F) \leq\left(A_{1} A_{4} G\right) A_{4}\left(A_{1} A_{4}\right)^{\left(1-p_{0}\right) / p_{0}} \phi\left(x, A_{1} A_{4}\right)^{1 / p_{0}} \leq C G
$$

Next, let $G>1$. Since $\Phi_{0}(x, t) \rightarrow \infty$ as $t \rightarrow \infty$, there exists $K \geq 1$ such that

$$
\Phi_{0}(x, K)=\Phi_{0}(x, 1) G
$$

Then $K \leq A_{4} G$, since $\Phi_{0}(x, K) \geq A_{4}^{-1} K \Phi_{0}(x, 1)$. With this K, we have

$$
F \leq K \int_{\mathbf{R}^{N}}\left|\kappa_{t}(x-y)\right| d y+A_{4} \int_{\mathbf{R}^{N}}\left|\kappa_{t}(x-y)\right| f(y) \frac{\phi_{0}(y, f(y))}{\phi_{0}(y, K)} d y .
$$

Since

$$
1 \leq K \leq A_{4} G \leq A_{4}\left(2 A_{3}\right)^{1 / p_{0}} t^{-N} \leq C(t R)^{-N},
$$

there is $\beta>0$, independent of f, x, t, such that

$$
\phi_{0}(x, K) \leq \beta \phi_{0}(y, K) \quad \text { for all } y \in B(x, t R)
$$

by ($\Phi 5$). Thus, we have

$$
\begin{aligned}
F & \leq K\left\|\kappa_{t}\right\|_{L^{1}\left(\mathbf{R}^{N}\right)}+\frac{A_{4} \beta}{\phi_{0}(x, K)} \int_{\mathbf{R}^{N}}\left|\kappa_{t}(x-y)\right| f(y) \phi_{0}(y, f(y)) d y \\
& =K\|\kappa\|_{L^{1}\left(\mathbf{R}^{N}\right)}+A_{4} \beta \frac{G}{\phi_{0}(x, K)} \\
& =K\left(\|\kappa\|_{L^{1}\left(\mathbf{R}^{N}\right)}+\frac{A_{4} \beta}{\phi_{0}(x, 1)}\right) \\
& \leq K\left(\|\kappa\|_{L^{1}\left(\mathbf{R}^{N}\right)}+A_{1}^{1 / p_{0}} A_{4} \beta\right) \leq C K .
\end{aligned}
$$

Therefore by ($\Phi 3$), ($\Phi 4$), the choice of K and ($\Phi 2$),

$$
\Phi_{0}(x, F) \leq C \Phi_{0}(x, K) \leq C G
$$

with constants $C>0$ independent of f, x, t, as required.
Lemma 4.4. Suppose $\Phi(x, t)$ satisfies ($\Phi 6$). Let $M \geq 1$ and assume that $\|\kappa\|_{L^{1}\left(\mathbf{R}^{N}\right)} \leq$ M. Then there exists a constant $C>0$, depending on M, such that

$$
\bar{\Phi}\left(x,\left|\kappa_{t} * f(x)\right|\right) \leq C\left\{\int_{\mathbf{R}^{N}}\left|\kappa_{t}(x-y)\right| \bar{\Phi}(y, f(y)) d y+g(x)\right\}
$$

for all $x \in \mathbf{R}^{N}, t>0$ and for all nonnegative $f \in L_{l o c}^{1}\left(\mathbf{R}^{N}\right)$ such that $g(y) \leq$ $f(y) \leq 1$ or $f(y)=0$ for each $y \in \mathbf{R}^{N}$, where g is the function appearing in ($\Phi 6$).

Proof. Let f be as in the statement of the lemma, $x \in \mathbf{R}^{N}$ and $t>0$. By ($\Phi 4$), there is a constant $c_{M} \geq 1$ such that $\bar{\Phi}(x, M t) \leq c_{M} \bar{\Phi}(x, t)$ for all $x \in \mathbf{R}^{N}$ and $t>0$. By Jensen's inequality, we have

$$
\begin{aligned}
\bar{\Phi}\left(x,\left|\kappa_{t} * f(x)\right|\right) & \leq c_{M} \bar{\Phi}\left(x, \int_{\mathbf{R}^{N}}\left(\left|\kappa_{t}(x-y)\right| / M\right) f(y) d y\right) \\
& \leq\left(c_{M} / M\right) \int_{\mathbf{R}^{N}}\left|\kappa_{t}(x-y)\right| \bar{\Phi}(x, f(y)) d y
\end{aligned}
$$

If $|x| \geq|y|$, then $\bar{\Phi}(x, f(y)) \leq \bar{B}_{\infty} \bar{\Phi}(y, f(y))$ by ($\left.\Phi 6\right)$.

If $|x|<|y|$ and $g(x)<f(y)$, then $\bar{\Phi}(x, f(y)) \leq \bar{B}_{\infty} \bar{\Phi}(y, f(y))$ by ($\left.\Phi 6\right)$ again. If $|x|<|y|$ and $g(x) \geq f(y)$, then

$$
\bar{\Phi}(x, f(y)) \leq \bar{\Phi}(x, g(x)) \leq g(x) \bar{\Phi}(x, 1) \leq A_{1} A_{2} g(x)
$$

by (2.2).
Hence,

$$
\bar{\Phi}(x, f(y)) \leq C\{\bar{\Phi}(y, f(y))+g(x)\}
$$

in any case. Therefore, we obtain the required inequality.
Theorem 4.5. Suppose $\Phi(x, t)$ satisfies ($\Phi 5$) and ($\Phi 6$). Suppose that $\kappa \in L^{\left(p_{0}\right)^{\prime}}\left(\mathbf{R}^{N}\right)$ and it has compact support in $B(0, R)$. Then

$$
\left\|\kappa_{t} * f\right\|_{L^{\Phi}\left(\mathbf{R}^{N}\right)} \leq C\|\kappa\|_{L^{\left(p_{0}\right)^{\prime}}\left(\mathbf{R}^{N}\right)}\|f\|_{L^{\Phi}\left(\mathbf{R}^{N}\right)}
$$

for all $0<t \leq 1$ and $f \in L^{\Phi}\left(\mathbf{R}^{N}\right)$, where $C>0$ depends on R.
Proof. Let f be a nonnegative measurable function on \mathbf{R}^{N} such that $\|f\|_{L^{\Phi}\left(\mathbf{R}^{N}\right)} \leq 1$ and assume that $\|\kappa\|_{L^{\left(p_{0}\right)^{\prime}}\left(\mathbf{R}^{N}\right)}=1$. Note that $\|\kappa\|_{L^{1}\left(\mathbf{R}^{N}\right)} \leq|B(0, R)|^{1 / p_{0}}$ by Hölder's inequality.

Write

$$
\begin{aligned}
f & =f \chi_{\left\{y \in \mathbf{R}^{N}: f(y) \geq 1\right\}}+f \chi_{\left\{y \in \mathbf{R}^{N}: g(y)<f(y)<1\right\}}+f \chi_{\left\{y \in \mathbf{R}^{N}: f(y) \leq g(y)\right\}} \\
& =f_{1}+f_{2}+f_{3},
\end{aligned}
$$

where g is the function appearing in ($\Phi 6$). We have by (2.1) and Lemma 4.3,

$$
\bar{\Phi}\left(x,\left|\kappa_{t} * f_{1}(x)\right|\right) \leq A_{2} \Phi_{0}\left(x,\left|\kappa_{t} * f_{1}(x)\right|\right)^{p_{0}} \leq C\left(\left|\kappa_{t}\right| * h(x)\right)^{p_{0}}
$$

where $h(y)=\Phi(y, f(y))^{1 / p_{0}}$. Since $\|h\|_{L^{p_{0}}\left(\mathbf{R}^{N}\right)}^{p_{0}} \leq 2 A_{3}$, the usual Young's inequality for convolution gives

$$
\begin{aligned}
\int_{\mathbf{R}^{N}} \bar{\Phi}\left(x,\left|\kappa_{t} * f_{1}(x)\right|\right) d x & \leq C \int_{\mathbf{R}^{N}}\left(\left|\kappa_{t}\right| * h(x)\right)^{p_{0}} d x \\
& \leq C\left(\left\|\kappa_{t}\right\|_{L^{1}\left(\mathbf{R}^{N}\right)}\|h\|_{L^{p_{0}}\left(\mathbf{R}^{N}\right)}\right)^{p_{0}} \leq C .
\end{aligned}
$$

Similarly, applying Lemma 4.4 with $M=|B(0, R)|^{1 / p_{0}}$ and noting that $g \in$ $L^{1}\left(\mathbf{R}^{N}\right)$, we derive the same result for f_{2}.

Finally, since $\left|\kappa_{t} * f_{3}(x)\right| \leq\left\|\kappa_{t}\right\|_{L^{1}\left(\mathbf{R}^{N}\right)} \leq M$, we obtain

$$
\begin{aligned}
\int_{\mathbf{R}^{N}} \bar{\Phi}\left(x,\left|\kappa_{t} * f_{3}(x)\right|\right) d x & \leq C \int_{\mathbf{R}^{N}}\left|\kappa_{t} * f_{3}(x)\right| d x \\
& \leq C\left\|\kappa_{t}\right\|_{L^{1}\left(\mathbf{R}^{N}\right)}\|g\|_{L^{1}\left(\mathbf{R}^{N}\right)} \leq C
\end{aligned}
$$

Thus, we have shown that

$$
\int_{\mathbf{R}^{N}} \bar{\Phi}\left(x,\left|\kappa_{t} * f(x)\right|\right) d x \leq C
$$

which implies the required result.

Theorem 4.6. Suppose $\Phi(x, t)$ satisfies ($\Phi 5$) and ($\Phi 6$). Let $\left\{\kappa_{t}\right\}_{t>0}$ be an approximate identity such that $\kappa \in L^{\left(p_{0}\right)^{\prime}}\left(\mathbf{R}^{N}\right)$ and it has compact support. Then $\kappa_{t} * f$ converges to f in $L^{\Phi}\left(\mathbf{R}^{N}\right)$:

$$
\lim _{t \rightarrow 0}\left\|\kappa_{t} * f-f\right\|_{L^{\Phi}\left(\mathbf{R}^{N}\right)}=0
$$

for every $f \in L^{\Phi}\left(\mathbf{R}^{N}\right)$.
Proof. Let $f \in L^{\Phi}\left(\mathbf{R}^{N}\right)$. Given $\varepsilon>0$, choose a bounded function h with compact support such that $\|f-h\|_{L^{\Phi}\left(\mathbf{R}^{N}\right)}<\varepsilon$. As in the proof of Theorem 3.5, using Theorem 4.5 this time, we have

$$
\left\|\kappa_{t} * f-f\right\|_{L^{\Phi}\left(\mathbf{R}^{N}\right)} \leq\left(C\|\kappa\|_{L^{\left(p_{0}\right)^{\prime}}\left(\mathbf{R}^{N}\right)}+1\right) \varepsilon+\left\|\kappa_{t} * h-h\right\|_{L^{\Phi}\left(\mathbf{R}^{N}\right)} .
$$

Obviously, $h \in L^{p_{0}}\left(\mathbf{R}^{N}\right)$. Hence by Lemma 4.1, $\kappa_{t} * h \rightarrow h$ almost everywhere in \mathbf{R}^{N}, and hence

$$
\bar{\Phi}\left(x,\left|\kappa_{t} * h(x)-h(x)\right|\right) \rightarrow 0
$$

almost everywhere in \mathbf{R}^{N}. Since $\left\{\kappa_{t} * h-h\right\}$ is uniformly bounded and there is a compact set S containing all the supports of $\kappa_{t} * h,\left\{\bar{\Phi}\left(x,\left|\kappa_{t} * h(x)-h(x)\right|\right)\right\}$ is uniformly bounded and S contains all the supports of $\bar{\Phi}\left(x,\left|\kappa_{t} * h(x)-h(x)\right|\right)$. Hence the Lebesgue convergence theorem implies

$$
\int_{\mathbf{R}^{N}} \bar{\Phi}\left(x,\left|\kappa_{t} * h(x)-h(x)\right|\right) d x \rightarrow 0
$$

as $t \rightarrow 0$. Then, by Lemma 2.2, we see that $\left\|\kappa_{t} * h-h\right\|_{L^{\Phi}\left(\mathbf{R}^{N}\right)} \rightarrow 0$ as $t \rightarrow 0$, so that

$$
\limsup _{t \rightarrow 0}\left\|\kappa_{t} * f-f\right\|_{L^{\Phi}\left(\mathbf{R}^{N}\right)} \leq\left(C\|\kappa\|_{L^{\left(p_{0}\right)^{\prime}}\left(\mathbf{R}^{N}\right)}+1\right) \varepsilon
$$

which completes the proof.

5 Young type inequality

Lemma 5.1. Suppose $\Phi(x, t)$ satisfies ($\Phi 6$). Let $\kappa \in L^{1}\left(\mathbf{R}^{N}\right) \cap L^{\infty}\left(\mathbf{R}^{N}\right)$ with $\|\kappa\|_{L^{1}\left(\mathbf{R}^{N}\right)} \leq 1$. For $f \in L_{l o c}^{1}\left(\mathbf{R}^{N}\right)$, set

$$
I(f ; x)=\int_{\mathbf{R}^{N} \backslash B(0,|x| / 2)}|\kappa(x-y) f(y)| d y
$$

and

$$
J(f ; x)=\int_{\mathbf{R}^{N}}|\kappa(x-y)| \bar{\Phi}(y,|f(y)|) d y
$$

Then there exists a constant $C>0$ (depending on $\left.\|\kappa\|_{L^{\infty}\left(\mathbf{R}^{N}\right)}\right)$ such that

$$
\bar{\Phi}(x, I(f ; x)) \leq C\{J(f ; x)+g(x / 2)\}
$$

for all $x \in \mathbf{R}^{N}$ and $f \in L^{\Phi}\left(\mathbf{R}^{N}\right)$ with $\|f\|_{L^{\Phi}\left(\mathbf{R}^{N}\right)} \leq 1$, where g is the function appearing in ($\Phi 6$).

Proof. Let $k>0$. Since $t \mapsto \Phi(x, t) / t$ is nondecreasing,

$$
I(f ; x) \leq k \int_{\mathbf{R}^{N}}|\kappa(x-y)| d y+k \int_{\mathbf{R}^{N} \backslash B(0,|x| / 2)} \frac{|\kappa(x-y)| \bar{\Phi}(y,|f(y)|)}{\bar{\Phi}(y, k)} d y .
$$

If $g(x / 2) \leq k \leq 1$, then $\bar{\Phi}(x, k) \leq C \bar{\Phi}(y, k)$ for $|y|>|x| / 2$ by ($\Phi 6$). Hence

$$
\begin{equation*}
I(f ; x) \leq k\left(1+\frac{C J(f ; x)}{\bar{\Phi}(x, k)}\right) \quad \text { whenever } g(x / 2) \leq k \leq 1 \tag{5.1}
\end{equation*}
$$

Since $J(f ; x) \leq\|\kappa\|_{L^{\infty}\left(\mathbf{R}^{N}\right)}$, there exists $K_{x} \in[0,1]$ such that

$$
\bar{\Phi}\left(x, K_{x}\right)=\frac{J(f ; x)}{\|\kappa\|_{L^{\infty}\left(\mathbf{R}^{N}\right)}} \bar{\Phi}(x, 1)
$$

If $K_{x} \geq g(x / 2)$, then taking $k=K_{x}$ in (5.1), we have

$$
I(f ; x) \leq K_{x}\left(1+\frac{C\|\kappa\|_{L^{\infty}\left(\mathbf{R}^{N}\right)}}{\bar{\Phi}(x, 1)}\right) \leq C K_{x}
$$

so that

$$
\bar{\Phi}(x, I(f ; x)) \leq C \bar{\Phi}\left(x, K_{x}\right) \leq C J(f ; x)
$$

If $K_{x}<g(x / 2)$, then

$$
J(f ; x)=\|\kappa\|_{L^{\infty}\left(\mathbf{R}^{N}\right)} \frac{\bar{\Phi}\left(x, K_{x}\right)}{\bar{\Phi}(x, 1)} \leq C \bar{\Phi}(x, g(x / 2))
$$

Hence, taking $k=g(x / 2)$ in (5.1), we have $I(f ; x) \leq C g(x / 2)$, so that

$$
\bar{\Phi}(x, I(f ; x)) \leq C \bar{\Phi}(x, g(x / 2)) \leq C g(x / 2)
$$

Hence, we have the assertion of the lemma.
Here, we recall the following result on the boundedness of the maximal operator M on $L^{\Phi}\left(\mathbf{R}^{N}\right)$ (see [6, Corollary 4.4]):

Lemma 5.2. Suppose $\Phi(x, t)$ satisfies ($\Phi 5$), ($\Phi 6$) and
$\left(\Phi 3^{*}\right) t \mapsto t^{-\varepsilon_{0}} \phi(x, t)$ is uniformly almost increasing on $(0, \infty)$ for some $\varepsilon_{0}>0$.
Then the maximal operator M is bounded from $L^{\Phi}\left(\mathbf{R}^{N}\right)$ into itself, namely

$$
\|M f\|_{L^{\Phi}\left(\mathbf{R}^{N}\right)} \leq C\|f\|_{L^{\Phi}\left(\mathbf{R}^{N}\right)}
$$

for all $f \in L^{\Phi}\left(\mathbf{R}^{N}\right)$.

Theorem 5.3. Suppose $\Phi(x, t)$ satisfies ($\Phi 5$), ($\Phi 6$) and ($\Phi 3^{*}$). Let $p_{0}=1+\varepsilon_{0}(>1)$ and $R>0$. Assume that $\kappa \in L^{1}\left(\mathbf{R}^{N}\right) \cap L^{\left(p_{0}\right)^{\prime}}(B(0, R))$ and $|\kappa(x)| \leq c_{\kappa}|x|^{-N}$ for $|x| \geq R$. Then there is a constant $C>0$ such that

$$
\|\kappa * f\|_{L^{\Phi}\left(\mathbf{R}^{N}\right)} \leq C\left(\|\kappa\|_{L^{1}\left(\mathbf{R}^{N}\right)}+\|\kappa\|_{L^{\left(p_{0}\right)^{\prime}}(B(0, R))}\right)\|f\|_{L^{\Phi}\left(\mathbf{R}^{N}\right)}
$$

for all $f \in L^{\Phi}\left(\mathbf{R}^{N}\right)$.
Proof. Let $f \in L^{\Phi}\left(\mathbf{R}^{N}\right)$ and $f \geq 0$. Assume that $\|f\|_{L^{\Phi}\left(\mathbf{R}^{N}\right)} \leq 1$ and

$$
\|\kappa\|_{L^{1}\left(\mathbf{R}^{N}\right)}+\|\kappa\|_{L^{\left(p_{0}\right)^{\prime}}(B(0, R))} \leq 1 .
$$

Let $\kappa_{0}=\kappa \chi_{B(0, R)}$ and $\kappa_{\infty}=\kappa \chi_{\mathbf{R}^{N} \backslash B(0, R)}$.
By Theorem 4.5,

$$
\left\|\kappa_{0} * f\right\|_{L^{\Phi}\left(\mathbf{R}^{N}\right)} \leq C
$$

Hence it is enough to show that

$$
\begin{equation*}
\int_{\mathbf{R}^{N}} \bar{\Phi}\left(x,\left|\kappa_{\infty}\right| * f(x)\right) d x \leq C \tag{5.2}
\end{equation*}
$$

Write

$$
\begin{aligned}
\left|\kappa_{\infty}\right| * f(x) & =\int_{B(0,|x| / 2)}\left|\kappa_{\infty}(x-y)\right| f(y) d y+\int_{\mathbf{R}^{N} \backslash B(0,|x| / 2)}\left|\kappa_{\infty}(x-y)\right| f(y) d y \\
& =I_{1}(x)+I_{2}(x) .
\end{aligned}
$$

Since $\left|\kappa_{\infty}(x-y)\right| \leq c_{\kappa}|x-y|^{-N}$ and $|x-y| \geq|x| / 2$ for $|y| \leq|x| / 2$,

$$
I_{1}(x) \leq 2^{N} c_{\kappa}|x|^{-N} \int_{B(0,|x| / 2)} f(y) d y \leq 2^{N} c_{\kappa}|x|^{-N} \int_{B(x, 3|x| / 2)} f(y) d y \leq C M f(x)
$$

Hence,

$$
\int_{\mathbf{R}^{N}} \bar{\Phi}\left(x, I_{1}(x)\right) d x \leq C
$$

by Lemma 5.2.
On the other hand, by Lemma 5.1,

$$
\bar{\Phi}\left(x, I_{2}(x)\right) \leq C\left\{\left|\kappa_{\infty}\right| * h(x)+g(x / 2)\right\},
$$

where $h(y)=\bar{\Phi}(y, f(y))$. Since

$$
\left\|\left|\kappa_{\infty}\right| * h\right\|_{L^{1}\left(\mathbf{R}^{N}\right)} \leq\left\|\left|\kappa_{\infty}\right|\right\|_{L^{1}\left(\mathbf{R}^{N}\right)}\|h\|_{L^{1}\left(\mathbf{R}^{N}\right)} \leq 1
$$

and $g \in L^{1}\left(\mathbf{R}^{N}\right)$, it follows that

$$
\int_{\mathbf{R}^{N}} \bar{\Phi}\left(x, I_{2}(x)\right) d x \leq C .
$$

Hence we obtain (5.2), and the proof is complete.

References

[1] D. Cruz-Uribe and A. Fiorenza, Approximate identities in variable L^{p} spaces, Math. Nachr. 280 (2007), 256-270.
[2] L. Diening, Maximal function on Musielak-Orlicz spaces, Bull. Sci. Math. 129, 657-700.
[3] L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Math. 2017, Springer-Verlag, Berlin, 2011.
[4] F.-Y. Maeda, Y. Mizuta and T. Ohno, Approximate identities and Young type inequalities in variable Lebesgue-Orlicz spaces $L^{p(\cdot)}(\log L)^{q(\cdot)}$, Ann. Acad. Sci. Fenn. Math. 35 (2010), 405-420.
[5] F.-Y. Maeda, Y. Mizuta, T. Ohno and T. Shimomura, Boundedness of maximal operator and Sobolev's inequality on Musielak-Orlicz-Morrey spaces, Research on potential theory 2010, Ohita Univ., 17-30.
[6] F.-Y. Maeda, Y. Mizuta, T. Ohno and T. Shimomura, Boundedness of maximal operators and Sobolev's inequality on Musielak-Orlicz-Morrey spaces, Bull. Sci. Math., in press (DOI:10.1016/j.bulsci.2012.03.008).
[7] F.-Y. Maeda, Y. Mizuta, T. Ohno and T. Shimomura, Mean continuity for potentials of functions in Musielak-Orlicz spaces, submitted.
[8] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer-Verlag, Berlin, 1983.
[9] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1970.
[10] F. Zo, A note on approximation of the identity, Studia. Math. 55 (1976), 111-122.

```
4-24 Furue-higashi-machi, Nishi-ku, Hiroshima 733-0872, Japan
    E-mail: fymaeda@h6.dion.ne.jp
        Department of Mechanical Systems Engineering,
        Hiroshima Institute of Technology
    2-1-1 Miyake Saeki-ku Hiroshima 731-5193, Japan
    E-mail: yoshihiromizuta3@gmail.com
    Faculty of Education and Welfare Science, Oita University
        Dannoharu Oita-city 870-1192, Japan
        E-mail: t-ohno@oita-u.ac.jp
```

Department of Mathematics, Graduate School of Education, Hiroshima University Higashi-Hiroshima 739-8524, Japan
E-mail : tshimo@hiroshima-u.ac.jp

[^0]: 2000 Mathematics Subject Classification : Primary 46E30
 Key words and phrases : approximate identities, Musielak-Orlicz space, Young type inequality

