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Abstract

Our aim in this paper is to deal with approximate identities and Young
type inequalities in Musielak-Orlicz spaces.

1 Introduction

Let κ be an integrable function on RN . For each t > 0, define the function κt by
κt(x) = t−Nκ(x/t). Note that by a change of variables, ∥κt∥L1(RN ) = ∥κ∥L1(RN ).
We say that the family {κt}t>0 is an approximate identity if

∫
RN κ(x) dx = 1.

Define the radial majorant of κ to be the function

κ̂(x) = sup
|y|≥|x|

|κ(y)|.

If κ̂ is integrable, we say that the family {κt}t>0 is of potential-type.
It is well known (see, e.g., [9]) that if {κt}t>0 is a potential-type approximate

identity, then κt ∗ f → f in Lp(RN) as t → 0 for every f ∈ Lp(RN) (p ≥ 1).
Variable exponent Lebesgue spaces and Sobolev spaces were introduced to dis-

cuss nonlinear partial differential equations with non-standard growth conditions
(see [3]). Cruz-Uribe and Fiorenza [1] gave sufficient conditions for the convergence
of approximate identities in variable exponent Lebesgue spaces Lp(·)(RN) when p(·)
is a variable exponent satisfying the log-Hölder conditions on RN , locally and at
∞, as an extension of [2], [9], etc. In fact they proved the following:

Theorem A. Let {κt}t>0 be an approximate identity. Suppose that either
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(1) {κt}t>0 is of potential-type, or

(2) κ ∈ L(p−)′(RN) and has compact support, where p− := infx∈RN p(x) (≥ 1)
and 1/p− + 1/(p−)′ = 1.

Then
sup
0<t≤1

∥κt ∗ f∥Lp(·)(RN ) ≤ C∥f∥Lp(·)(RN )

and
lim
t→0

∥κt ∗ f − f∥Lp(·)(RN ) = 0

for all f ∈ Lp(·)(RN).

Recently, Theorem A was extended to the two variable exponents spaces Lp(·)(logL)q(·)(RN)
in [4]. These spaces are special cases of so-called Musielak-Orlicz spaces ([8]).

Our aim in this paper is to extend these results to Musielak-Orlicz spaces
LΦ(RN) (see Section 2 for the definition of Φ). As a related topic, we also give a
Young type inequality for convolution with respect to the norm in LΦ(RN).

2 Preliminaries

We consider a function

Φ(x, t) = tϕ(x, t) : RN × [0,∞) → [0,∞)

satisfying the following conditions (Φ1) – (Φ4):

(Φ1) ϕ( · , t) is measurable on RN for each t ≥ 0 and ϕ(x, · ) is continuous on
[0,∞) for each x ∈ RN ;

(Φ2) there exists a constant A1 ≥ 1 such that

A−1
1 ≤ ϕ(x, 1) ≤ A1 for all x ∈ RN ;

(Φ3) ϕ(x, ·) is uniformly almost increasing, namely there exists a constant A2 ≥ 1
such that

ϕ(x, t) ≤ A2ϕ(x, s) for all x ∈ RN whenever 0 ≤ t < s;

(Φ4) there exists a constant A3 ≥ 1 such that

ϕ(x, 2t) ≤ A3ϕ(x, t) for all x ∈ RN and t > 0.

Note that (Φ2), (Φ3) and (Φ4) imply

0 < inf
x∈RN

ϕ(x, t) ≤ sup
x∈RN

ϕ(x, t) < ∞

for each t > 0.
If Φ(x, ·) is convex for each x ∈ RN , then (Φ3) holds with A2 = 1; namely

ϕ(x, ·) is non-decreasing for each x ∈ RN .
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Example 2.1. Let p1(·), p2(·), q1(·) and q2(·) be measurable functions on RN such
that

(P1) 1 ≤ p−j := infx∈RN pj(x) ≤ supx∈RN pj(x) =: p+j < ∞, j = 1, 2

and

(Q1) −∞ < q−j := infx∈RN qj(x) ≤ supx∈RN qj(x) =: q+j < ∞, j = 1, 2.

Then,

Φ(x, t) = (1 + t)p1(x)(1 + 1/t)−p2(x)(log(e+ t))q1(x)(log(e+ 1/t))−q2(x)

satisfies (Φ1), (Φ2) and (Φ4). It satisfies (Φ3) if p−j > 1, j = 1, 2 or q−j ≥ 0,
j = 1, 2. As a matter of fact, it satisfies (Φ3) if and only if pj(·), qj(·) satisfies the
following conditions:

(1) qj(x) ≥ 0 at points x where pj(x) = 1, j = 1, 2;

(2) supx:pj(x)>1

{
min(qj(x), 0) log(pj(x)− 1)

}
< ∞, j = 1, 2.

Let ϕ̄(x, t) = sup0≤s≤t ϕ(x, s) and

Φ(x, t) =

∫ t

0

ϕ̄(x, r) dr

for x ∈ RN and t ≥ 0. Then Φ(x, ·) is convex and

1

2A3

Φ(x, t) ≤ Φ(x, t) ≤ A2Φ(x, t) (2.1)

for all x ∈ RN and t ≥ 0. In fact, the first inequality is seen as follows:

Φ(x, t) ≥
∫ t

t/2

ϕ̄(x, r) dr ≥ t

2
ϕ(x, t/2) ≥ 1

2A3

Φ(x, t).

Corresponding to (Φ2) and (Φ4), we have by (2.1)

(2A1A3)
−1 ≤ Φ(x, 1) ≤ A1A2 and Φ(x, 2t) ≤ 2A3Φ(x, t) (2.2)

for all x ∈ RN and t > 0.

Given Φ(x, t) as above, the associated Musielak-Orlicz space

LΦ(RN) =

{
f ∈ L1

loc(R
N) ;

∫
RN

Φ
(
y, |f(y)|

)
dy < ∞

}
is a Banach space with respect to the norm

∥f∥LΦ(RN ) = inf

{
λ > 0 ;

∫
RN

Φ
(
y, |f(y)|/λ

)
dy ≤ 1

}
(cf. [8]).

By (2.2), we have the following lemma (see [7]).
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Lemma 2.2.

∥f∥LΦ(RN ) ≤ 2

(∫
RN

Φ(x, |f(x)|) dx
)σ

(2.3)

with σ = log 2/ log(2A3), if ∥f∥LΦ(RN ) ≤ 1.

We shall also consider the following conditions:

(Φ5) for every γ > 0, there exists a constant Bγ ≥ 1 such that

ϕ(x, t) ≤ Bγϕ(y, t)

whenever |x− y| ≤ γt−1/N and t ≥ 1;

(Φ6) there exist a function g ∈ L1(RN) and a constant B∞ ≥ 1 such that 0 ≤
g(x) < 1 for all x ∈ RN and

B−1
∞ Φ(x, t) ≤ Φ(x′, t) ≤ B∞Φ(x, t)

whenever |x′| ≥ |x| and g(x) ≤ t ≤ 1.

If Φ(x, t) satisfies (Φ5) (resp. (Φ6)), then so does Φ(x, t) with Bγ = 2A2A3Bγ

in place of Bγ (resp. B∞ = 2A2A3B∞ in place of B∞).

Example 2.3. Let Φ(x, t) be as in Example 2.1. It satisfies (Φ5) if

(P2) p1(·) is log-Hölder continuous, namely

|p1(x)− p1(y)| ≤
Cp

log(1/|x− y|)
for |x− y| ≤ 1

2

with a constant Cp ≥ 0,

and

(Q2) q1(·) is log-log-Hölder continuous, namely

|q1(x)− q1(y)| ≤
Cq

log(log(1/|x− y|))
for |x− y| ≤ e−2

with a constant Cq ≥ 0.
Φ(x, t) satisfies (Φ6) with g(x) = 1/(1 + |x|)N+1 if

(P3) p2(·) is log-Hölder continuous at ∞, namely

|p2(x)− p2(x
′)| ≤ Cp,∞

log(e+ |x|)
whenever |x′| ≥ |x|

with a constant Cp,∞ ≥ 0,

and
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(Q3) q2(·) is log-log-Hölder continuous at ∞, namely

|q2(x)− q2(x
′)| ≤ Cq,∞

log(e+ log(e+ |x|))
whenever |x′| ≥ |x|

with a constant Cq,∞ ≥ 0.

In fact, if 1/(1 + |x|)N+1 < t ≤ 1, then (1 + t)|p1(x)−p1(x′)| ≤ 2p
+
1 −1,

(1 + 1/t)|p2(x)−p2(x′)| ≤ e(N+1)Cp,∞ , (log(e+ t))|q1(x)−q1(x′)| ≤ (log(e+ 1))q
+
1 −q−1

and (log(e+ 1/t))|q2(x)−q2(x′)| ≤ C(N,Cq,∞) for |x′| ≥ |x|.

3 The case of potential-type

Throughout this paper, let C denote various positive constants independent of the
variables in question.

First, we recall the following classical result (see, e.g., Stein [9]).

Lemma 3.1. Let 1 ≤ p < ∞ and {κt}t>0 be a potential-type approximate identity.
Then, κt ∗ f converges to f in Lp(RN) for every f ∈ Lp(RN).

We denote by B(x, r) the open ball centered at x ∈ RN and with radius r > 0.
For a measurable set E, we denote by |E| the Lebesgue measure of E.

For a nonnegative f ∈ L1
loc(R

N), x ∈ RN and r > 0, let

I(f ;x, r) =
1

|B(x, r)|

∫
B(x,r)

f(y) dy

and

J(f ;x, r) =
1

|B(x, r)|

∫
B(x,r)

Φ
(
y, f(y)

)
dy

in this section.
The following lemmas are due to [5, 6].

Lemma 3.2 ([5, Lemma 2.1], [6, Lemma 3.1]). Suppose Φ(x, t) satisfies (Φ5). Then
there exists a constant C > 0 such that

Φ
(
x, I(f ; x, r)

)
≤ CJ(f ;x, r)

for all x ∈ RN , r > 0 and for all nonnegative f ∈ L1
loc(R

N) such that f(y) ≥ 1 or
f(y) = 0 for each y ∈ RN and ∥f∥LΦ(RN ) ≤ 1.

Lemma 3.3 ([5, Lemma 2.2], [6, Lemma 3.2]). Suppose Φ(x, t) satisfies (Φ6). Then
there exists a constant C > 0 such that

Φ
(
x, I(f ;x, r)

)
≤ C {J(f ;x, r) + g(x)}

for all x ∈ RN , r > 0 and for all nonnegative f ∈ L1
loc(R

N) such that g(y) ≤
f(y) ≤ 1 or f(y) = 0 for each y ∈ RN , where g is the function appearing in (Φ6).
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By using Lemmas 3.2 and 3.3, we show the following theorem.

Theorem 3.4. Suppose Φ(x, t) satisfies (Φ5) and (Φ6). If {κt}t>0 is of potential-
type, then

∥κt ∗ f∥LΦ(RN ) ≤ C∥κ̂∥L1(RN )∥f∥LΦ(RN )

for all t > 0 and f ∈ LΦ(RN).

Proof. Suppose ∥κ̂∥L1(RN ) = 1 and let f be a nonnegative measurable function on
RN such that ∥f∥LΦ(RN ) ≤ 1. Write

f = fχ{y∈RN :f(y)≥1} + fχ{y∈RN :g(y)<f(y)<1} + fχ{y∈RN :f(y)≤g(y)}

= f1 + f2 + f3,

where χE denotes the characteristic function of a measurable set E ⊂ RN and g
is the function appearing in (Φ6).

Since κ̂t is a radial function, we write κ̂t(r) for κ̂t(x) when |x| = r. First note
that

|κt ∗ fj(x)| ≤
∫
RN

κ̂t(|x− y|)fj(y) dy

=

∫ ∞

0

I(fj;x, r)|B(x, r)| d(−κ̂t(r)),

j = 1, 2 and ∫
RN

|B(x, r)| d(−κ̂t(r)) = ∥κ̂t∥L1(RN ) = 1,

so that Jensen’s inequality yields

Φ(x, |κt ∗ fj(x)|) ≤
∫ ∞

0

Φ (x, I(fj;x, r)) |B(x, r)| d(−κ̂t(r)),

j = 1, 2.
Hence, by Lemma 3.2

Φ(x, |κt ∗ f1(x)|) ≤ C

∫ ∞

0

J(f1; x, r)|B(x, r)| d(−κ̂t(r)) ≤ C(κ̂t ∗ h)(x),

where h(y) = Φ(y, f(y)). The usual Young inequality for convolution gives∫
RN

Φ(x, |κt ∗ f1(x)|) dx ≤ C

∫
RN

(κ̂t ∗ h)(x) dx

≤ C∥κ̂t∥L1(RN )∥h∥L1(RN ) ≤ C.

Similarly, noting that g ∈ L1(RN) and applying Lemma 3.3, we derive the same
result for f2.
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Finally, noting that |κt ∗ f3(x)| ≤ ∥κt∥L1(RN ) ≤ 1, we obtain∫
RN

Φ(x, |κt ∗ f3(x)|) dx ≤ C

∫
RN

|κt ∗ f3(x)| dx

≤ C∥κt∥L1(RN )∥g∥L1(RN ) ≤ C.

Thus ∫
RN

Φ(x, |κt ∗ f(x)|) dx ≤ C,

which implies the required assertion.

Theorem 3.5. Suppose Φ(x, t) satisfies (Φ5) and (Φ6). Let {κt}t>0 be a potential-
type approximate identity. Then κt ∗ f converges to f in LΦ(RN):

lim
t→0

∥κt ∗ f − f∥LΦ(RN ) = 0

for every f ∈ LΦ(RN).

Proof. Given ε > 0, we find a bounded function h in LΦ(RN) with compact support
such that ∥f − h∥LΦ(RN ) < ε. By Theorem 3.4 we have

∥κt ∗ f − f∥LΦ(RN ) ≤ ∥κt ∗ (f − h)∥LΦ(RN ) + ∥κt ∗ h− h∥LΦ(RN ) + ∥f − h∥LΦ(RN )

≤ (C∥κ̂∥L1(RN ) + 1)ε+ ∥κt ∗ h− h∥LΦ(RN ).

Since |κt ∗ h| ≤ ∥h∥L∞(RN ), we have∫
RN

Φ(x, |κt ∗ h(x)− h(x)| dx ≤ C ′
∫
RN

|κt ∗ h(x)− h(x)| dx → 0

as t → 0 by Lemma 3.1. (Here C ′ depends on ∥h∥L∞(RN )). Hence ∥κt ∗ h −
h∥LΦ(RN ) → 0 as t → 0 by Lemma 2.2, so that

lim sup
t→0

∥κt ∗ f − f∥LΦ(RN ) ≤ (C∥κ̂∥L1(RN ) + 1)ε,

which completes the proof.

4 The case of compact support

We know the following result due to Zo [10]; see also [1, Theorem 2.2].

Lemma 4.1. Let 1 ≤ p < ∞, 1/p + 1/p′ = 1 and {κt}t>0 be an approximate
identity. Suppose that κ ∈ Lp′(RN) and it has compact support. Then for every
f ∈ Lp(RN), κt ∗ f converges to f pointwise almost everywhere as t → 0.

In this section, we take p0 ≥ 1 as follows. Let P be the set of all p ≥ 1 such
that t 7→ t−pΦ(x, t) is uniformly almost increasing, and set p̃ = supP . Note that
1 ∈ P by (Φ3), so that p̃ > 1 if p̃ ̸∈ P . Let p0 = p̃ if p̃ ∈ P and 1 < p0 < p̃
otherwise.
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Example 4.2. For Φ(x, t) in Example 2.3, p̃ = min{p−1 , p−2 }, so that p0 = 1 if
p−1 = 1 or p−2 = 1; and 1 < p0 ≤ min{p−1 , p−2 } if p−j > 1, j = 1, 2. (Cf. [4]).

Since t−p0Φ(x, t) is uniformly almost increasing in t, there exists a constant
A′

2 ≥ 1 such that

t−p0Φ(x, t) ≤ A′
2s

−p0Φ(x, s) for all x ∈ RN whenever 0 ≤ t < s.

Set

Φ0(x, t) = Φ(x, t)1/p0

Then Φ0(x, t) also satisfies all the conditions (Φj), j = 1, 2, . . . , 6. In fact, it
trivially satisfies (Φj) for j = 1, 2, 4, 5, 6 with the same g for (Φ6). Since

Φ0(x, t) = tϕ0(x, t) with ϕ0(x, t) =
[
t−p0Φ(x, t)

]1/p0 ,
Φ0(x, t) satisfies (Φ3) with A2 replaced by A4 = (A′

2)
1/p0 .

Lemma 4.3. Suppose Φ(x, t) satisfies (Φ5). Let κ have compact support contained
in B(0, R) and let ∥κ∥L(p0)

′
(RN ) ≤ 1. Then there exists a constant C > 0, which

depends on R, such that

Φ0

(
x, |κt ∗ f(x)|

)
≤ C

∫
RN

|κt(x− y)|Φ0(y, f(y)) dy

for all x ∈ RN , 0 < t ≤ 1 and for all nonnegative f ∈ L1
loc(R

N) such that f(y) ≥ 1
or f(y) = 0 for each y ∈ RN and ∥f∥LΦ(RN ) ≤ 1.

Proof. Given f as in the statement of the lemma, x ∈ RN and 0 < t ≤ 1, set

F = |κt ∗ f(x)| and G =

∫
RN

|κt(x− y)|Φ0(y, f(y)) dy.

Note that ∥f∥LΦ(RN ) ≤ 1 implies

G ≤ ∥κt∥L(p0)
′
(RN )

(∫
RN

Φ(y, f(y)) dy

)1/p0

≤ t−N/p0(2A3)
1/p0 ≤ (2A3)

1/p0t−N

by Hölder’s inequality and (2.1).
By (Φ2), Φ0

(
y, f(y)

)
≥ (A1A4)

−1f(y), since f(y) ≥ 1 or f(y) = 0. Hence
F ≤ A1A4G. Thus, if G ≤ 1, then

Φ0(x, F ) ≤ (A1A4G)A4(A1A4)
(1−p0)/p0ϕ(x,A1A4)

1/p0 ≤ CG.

Next, let G > 1. Since Φ0(x, t) → ∞ as t → ∞, there exists K ≥ 1 such that

Φ0(x,K) = Φ0(x, 1)G.
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Then K ≤ A4G, since Φ0(x,K) ≥ A−1
4 KΦ0(x, 1). With this K, we have

F ≤ K

∫
RN

|κt(x− y)| dy + A4

∫
RN

|κt(x− y)|f(y)
ϕ0

(
y, f(y)

)
ϕ0(y,K)

dy.

Since
1 ≤ K ≤ A4G ≤ A4(2A3)

1/p0t−N ≤ C(tR)−N ,

there is β > 0, independent of f , x, t, such that

ϕ0(x,K) ≤ βϕ0(y,K) for all y ∈ B(x, tR)

by (Φ5). Thus, we have

F ≤ K∥κt∥L1(RN ) +
A4β

ϕ0(x,K)

∫
RN

|κt(x− y)|f(y)ϕ0

(
y, f(y)

)
dy

= K∥κ∥L1(RN ) + A4β
G

ϕ0(x,K)

= K

(
∥κ∥L1(RN ) +

A4β

ϕ0(x, 1)

)
≤ K

(
∥κ∥L1(RN ) + A

1/p0
1 A4β

)
≤ CK.

Therefore by (Φ3), (Φ4), the choice of K and (Φ2),

Φ0(x, F ) ≤ CΦ0(x,K) ≤ CG

with constants C > 0 independent of f , x, t, as required.

Lemma 4.4. Suppose Φ(x, t) satisfies (Φ6). LetM ≥ 1 and assume that ∥κ∥L1(RN ) ≤
M . Then there exists a constant C > 0, depending on M , such that

Φ
(
x, |κt ∗ f(x)|

)
≤ C

{∫
RN

|κt(x− y)|Φ(y, f(y)) dy + g(x)

}
for all x ∈ RN , t > 0 and for all nonnegative f ∈ L1

loc(R
N) such that g(y) ≤

f(y) ≤ 1 or f(y) = 0 for each y ∈ RN , where g is the function appearing in (Φ6).

Proof. Let f be as in the statement of the lemma, x ∈ RN and t > 0. By (Φ4),
there is a constant cM ≥ 1 such that Φ(x,Mt) ≤ cMΦ(x, t) for all x ∈ RN and
t > 0. By Jensen’s inequality, we have

Φ(x, |κt ∗ f(x)|) ≤ cMΦ

(
x,

∫
RN

(|κt(x− y)|/M)f(y) dy

)
≤ (cM/M)

∫
RN

|κt(x− y)|Φ
(
x, f(y)

)
dy.

If |x| ≥ |y|, then Φ
(
x, f(y)

)
≤ B∞Φ

(
y, f(y)

)
by (Φ6).
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If |x| < |y| and g(x) < f(y), then Φ
(
x, f(y)

)
≤ B∞Φ

(
y, f(y)

)
by (Φ6) again.

If |x| < |y| and g(x) ≥ f(y), then

Φ
(
x, f(y)

)
≤ Φ

(
x, g(x)

)
≤ g(x)Φ(x, 1) ≤ A1A2g(x)

by (2.2).
Hence,

Φ
(
x, f(y)

)
≤ C

{
Φ
(
y, f(y)

)
+ g(x)

}
in any case. Therefore, we obtain the required inequality.

Theorem 4.5. Suppose Φ(x, t) satisfies (Φ5) and (Φ6). Suppose that κ ∈ L(p0)′(RN)
and it has compact support in B(0, R). Then

∥κt ∗ f∥LΦ(RN ) ≤ C∥κ∥L(p0)
′
(RN )∥f∥LΦ(RN )

for all 0 < t ≤ 1 and f ∈ LΦ(RN), where C > 0 depends on R.

Proof. Let f be a nonnegative measurable function onRN such that ∥f∥LΦ(RN ) ≤ 1

and assume that ∥κ∥L(p0)
′
(RN ) = 1. Note that ∥κ∥L1(RN ) ≤ |B(0, R)|1/p0 by Hölder’s

inequality.
Write

f = fχ{y∈RN :f(y)≥1} + fχ{y∈RN :g(y)<f(y)<1} + fχ{y∈RN :f(y)≤g(y)}

= f1 + f2 + f3,

where g is the function appearing in (Φ6). We have by (2.1) and Lemma 4.3,

Φ(x, |κt ∗ f1(x)|) ≤ A2Φ0(x, |κt ∗ f1(x)|)p0 ≤ C(|κt| ∗ h(x))p0 ,

where h(y) = Φ(y, f(y))1/p0 . Since ∥h∥p0
Lp0(RN )

≤ 2A3, the usual Young’s inequality
for convolution gives∫

RN

Φ(x, |κt ∗ f1(x)|) dx ≤ C

∫
RN

(|κt| ∗ h(x))p0 dx

≤ C
(
∥κt∥L1(RN )∥h∥Lp0 (RN )

)p0 ≤ C.

Similarly, applying Lemma 4.4 with M = |B(0, R)|1/p0 and noting that g ∈
L1(RN), we derive the same result for f2.

Finally, since |κt ∗ f3(x)| ≤ ∥κt∥L1(RN ) ≤ M , we obtain∫
RN

Φ(x, |κt ∗ f3(x)|) dx ≤ C

∫
RN

|κt ∗ f3(x)| dx

≤ C∥κt∥L1(RN )∥g∥L1(RN ) ≤ C.

Thus, we have shown that∫
RN

Φ(x, |κt ∗ f(x)|) dx ≤ C,

which implies the required result.
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Theorem 4.6. Suppose Φ(x, t) satisfies (Φ5) and (Φ6). Let {κt}t>0 be an approx-
imate identity such that κ ∈ L(p0)′(RN) and it has compact support. Then κt ∗ f
converges to f in LΦ(RN):

lim
t→0

∥κt ∗ f − f∥LΦ(RN ) = 0

for every f ∈ LΦ(RN).

Proof. Let f ∈ LΦ(RN). Given ε > 0, choose a bounded function h with compact
support such that ∥f − h∥LΦ(RN ) < ε. As in the proof of Theorem 3.5, using
Theorem 4.5 this time, we have

∥κt ∗ f − f∥LΦ(RN ) ≤ (C∥κ∥L(p0)
′
(RN ) + 1)ε+ ∥κt ∗ h− h∥LΦ(RN ).

Obviously, h ∈ Lp0(RN). Hence by Lemma 4.1, κt ∗ h → h almost everywhere in
RN , and hence

Φ(x, |κt ∗ h(x)− h(x)|) → 0

almost everywhere in RN . Since {κt ∗ h − h} is uniformly bounded and there is
a compact set S containing all the supports of κt ∗ h, {Φ(x, |κt ∗ h(x) − h(x)|)}
is uniformly bounded and S contains all the supports of Φ(x, |κt ∗ h(x) − h(x)|).
Hence the Lebesgue convergence theorem implies∫

RN

Φ(x, |κt ∗ h(x)− h(x)|) dx → 0

as t → 0. Then, by Lemma 2.2, we see that ∥κt ∗ h − h∥LΦ(RN ) → 0 as t → 0, so
that

lim sup
t→0

∥κt ∗ f − f∥LΦ(RN ) ≤ (C∥κ∥L(p0)
′
(RN ) + 1)ε,

which completes the proof.

5 Young type inequality

Lemma 5.1. Suppose Φ(x, t) satisfies (Φ6). Let κ ∈ L1(RN) ∩ L∞(RN) with
∥κ∥L1(RN ) ≤ 1. For f ∈ L1

loc(R
N), set

I(f ;x) =

∫
RN\B(0,|x|/2)

|κ(x− y)f(y)| dy

and

J(f ; x) =

∫
RN

|κ(x− y)|Φ(y, |f(y)|) dy.

Then there exists a constant C > 0 (depending on ∥κ∥L∞(RN )) such that

Φ(x, I(f ;x)) ≤ C {J(f ;x) + g(x/2)}

for all x ∈ RN and f ∈ LΦ(RN) with ∥f∥LΦ(RN ) ≤ 1, where g is the function
appearing in (Φ6).
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Proof. Let k > 0. Since t 7→ Φ(x, t)/t is nondecreasing,

I(f ; x) ≤ k

∫
RN

|κ(x− y)| dy + k

∫
RN\B(0,|x|/2)

|κ(x− y)|Φ(y, |f(y)|)
Φ(y, k)

dy.

If g(x/2) ≤ k ≤ 1, then Φ(x, k) ≤ CΦ(y, k) for |y| > |x|/2 by (Φ6). Hence

I(f ;x) ≤ k

(
1 +

CJ(f ; x)

Φ(x, k)

)
whenever g(x/2) ≤ k ≤ 1. (5.1)

Since J(f ; x) ≤ ∥κ∥L∞(RN ), there exists Kx ∈ [0, 1] such that

Φ(x,Kx) =
J(f ; x)

∥κ∥L∞(RN )

Φ(x, 1).

If Kx ≥ g(x/2), then taking k = Kx in (5.1), we have

I(f ;x) ≤ Kx

(
1 +

C∥κ∥L∞(RN )

Φ(x, 1)

)
≤ CKx,

so that

Φ(x, I(f ;x)) ≤ CΦ(x,Kx) ≤ CJ(f ;x).

If Kx < g(x/2), then

J(f ; x) = ∥κ∥L∞(RN )

Φ(x,Kx)

Φ(x, 1)
≤ CΦ(x, g(x/2)).

Hence, taking k = g(x/2) in (5.1), we have I(f ;x) ≤ Cg(x/2), so that

Φ(x, I(f ; x)) ≤ CΦ(x, g(x/2)) ≤ Cg(x/2).

Hence, we have the assertion of the lemma.

Here, we recall the following result on the boundedness of the maximal operator
M on LΦ(RN) (see [6, Corollary 4.4]):

Lemma 5.2. Suppose Φ(x, t) satisfies (Φ5), (Φ6) and

(Φ3∗) t 7→ t−ε0ϕ(x, t) is uniformly almost increasing on (0,∞) for some ε0 > 0.

Then the maximal operator M is bounded from LΦ(RN) into itself, namely

∥Mf∥LΦ(RN ) ≤ C∥f∥LΦ(RN )

for all f ∈ LΦ(RN).
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Theorem 5.3. Suppose Φ(x, t) satisfies (Φ5), (Φ6) and (Φ3∗). Let p0 = 1+ε0 (> 1)
and R > 0. Assume that κ ∈ L1(RN) ∩ L(p0)′(B(0, R)) and |κ(x)| ≤ cκ|x|−N for
|x| ≥ R. Then there is a constant C > 0 such that

∥κ ∗ f∥LΦ(RN ) ≤ C
(
∥κ∥L1(RN ) + ∥κ∥L(p0)

′
(B(0,R))

)
∥f∥LΦ(RN )

for all f ∈ LΦ(RN).

Proof. Let f ∈ LΦ(RN) and f ≥ 0. Assume that ∥f∥LΦ(RN ) ≤ 1 and

∥κ∥L1(RN ) + ∥κ∥L(p0)
′
(B(0,R)) ≤ 1.

Let κ0 = κχB(0,R) and κ∞ = κχRN\B(0,R).
By Theorem 4.5,

∥κ0 ∗ f∥LΦ(RN ) ≤ C.

Hence it is enough to show that∫
RN

Φ(x, |κ∞| ∗ f(x)) dx ≤ C. (5.2)

Write

|κ∞| ∗ f(x) =
∫
B(0,|x|/2)

|κ∞(x− y)|f(y) dy +
∫
RN\B(0,|x|/2)

|κ∞(x− y)|f(y) dy

= I1(x) + I2(x).

Since |κ∞(x− y)| ≤ cκ|x− y|−N and |x− y| ≥ |x|/2 for |y| ≤ |x|/2,

I1(x) ≤ 2Ncκ|x|−N

∫
B(0,|x|/2)

f(y) dy ≤ 2Ncκ|x|−N

∫
B(x,3|x|/2)

f(y) dy ≤ CMf(x).

Hence, ∫
RN

Φ(x, I1(x)) dx ≤ C

by Lemma 5.2.
On the other hand, by Lemma 5.1,

Φ(x, I2(x)) ≤ C
{
|κ∞| ∗ h(x) + g(x/2)

}
,

where h(y) = Φ(y, f(y)). Since

∥|κ∞| ∗ h∥L1(RN ) ≤ ∥|κ∞|∥L1(RN )∥h∥L1(RN ) ≤ 1

and g ∈ L1(RN), it follows that∫
RN

Φ(x, I2(x)) dx ≤ C.

Hence we obtain (5.2), and the proof is complete.
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