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Abstract. In the present paper we discuss the boundedness of the maximal
operator in the Lorentz space of variable exponent defined by the symmetric
decreasing rearrangement in the sense of Almut [1]. As an application of the
boundedness of the maximal operator, we establish the Sobolev inequality by
using Hedberg’s trick in his paper [10].

1. Introduction

In this paper we use B(x, r) to denote the open ball centered at x of radius
r > 0. The volume of a measurable set E ⊂ Rn is written as |E|.

Given a measurable function f onRn, recall the symmetric decreasing rearrange-
ment of f defined by

f ⋆(x) =

∫ ∞

0

χEf (t)⋆(x)dt,

where E⋆ = {x : |B(0, |x|)| < |E|} and Ef (t) = {y : |f(y)| > t} (see Almut [1]).
Note here that

f ∗(|B(0, |x|)|) = f ⋆(x),

where f ∗ is the usual decreasing rearrangement of f . The fundamental fact of the
symmetric decreasing rearrangement of f is that

|Ef (t)| = |Ef⋆(t)|

for all t ≥ 0. This readily gives the rearrangement preserving Lp-norm property
such as

∥f∥Lp(Rn) = ∥f ⋆∥Lp(Rn)

for 1 ≤ p ≤ ∞. For fundamental properties of the symmetric decreasing rearrange-
ment, we refer the reader to the Lecture Notes by Almut [1]; see also his papers
[2, 3].

For variable exponents p, q, the Lorentz space Lp,q(Rn) is defined as the set of
all measurable functions f on Rn with

∥f∥Lp,q(Rn) = inf

{
λ > 0 :

∫
Rn

|f ⋆(x)/λ|q(x)|x|n(
q(x)
p(x)

−1)dx ≤ 1

}
< ∞.
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If p and q are radial, then we refer the reader to the paper by Ephremidze, Koki-
lashvili and Samko [8].

In Lorentz spaces, we establish the Sobolev inequality for the Riesz potential

Iαf(x) =

∫
Rn

|x− y|α−nf(y)dy

of order α; for fundamental properties of Riesz potentials, see e.g. [12]. To do
this, we first prepare the boundedness of the maximal operator, and then apply
Hedberg’s method in [10]. For this purpose, our task is to discuss the Hardy type
operator

Hαf(x) =

∫
Rn\B(0,|x|)

|y|α−nf(y)dy.

2. Symmetric decreasing rearrangement

Let us recall the Hardy-Littlewood inequality for the symmetric decreasing re-
arrangement (see Almut [1, Lemma 1.6]).

Lemma 2.1. For all nonnegative measurable functions f and g on Rn,∫
Rn

f(x)g(x)dx ≤
∫
Rn

f ⋆(x)g⋆(x)dx.

The (centered) maximal functionMf of a measurable function f onRn is defined
by

Mf(x) = sup
r>0

1

|B(x, r)|

∫
B(x,r)

|f(y)|dy.

Lemma 2.2. For all measurable functions f on Rn,

(Mf)⋆(x) ≤ C
1

|B(0, |x|)|

∫
B(0,|x|)

f ⋆(y)dy

≤ CMf ⋆(x),

where C is a positive constant independent of f .

Proof. Recall the definition of the symmetric decreasing rearrangement and thus

(Mf)⋆(x) = sup{r > 0 : |B(0, |x|)| < |{z : Mf(z) ≥ r}|}.
Set r0 = (Mf)⋆(x). Then, using the covering property (see [12, Theorem 1.10.1])
and Lemma 2.1, we have for 0 < r < r0

|{z : Mf(z) ≥ r}| ≤ Cr−1

∫
{z:f(z)>r/2}

f(y)dy

≤ Cr−1

∫
{z:f⋆(z)>r/2}

f ⋆(y)dy.

If {z : f ⋆(z) > r/2} ⊂ B(0, |x|), then

r ≤ C
1

|B(0, |x|)

∫
B(0,|x|)

f ⋆(y)dy

≤ CM(f ⋆)(x).

If {z : f ⋆(z) > r/2} ⊃ B(0, |x|), then

|{z : f ⋆(z) > r/2}| ≤ 2

r

∫
{z:f⋆(z)>r/2}

f ⋆(y)dy.
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Noting that
1

|B(0, t)|

∫
B(0,t)

f ⋆(y)dy ≤ 1

|B(0, s)|

∫
B(0,s)

f ⋆(y)dy

when 0 < s < t, we obtain

r

2
≤ 1

|{z : f ⋆(z) > r/2}|

∫
{z:f⋆(z)>r/2}

f ⋆(y)dy

≤ 1

|B(0, |x|)|

∫
B(0,|x|)

f ⋆(y)dy

≤ CMf ⋆(x),

as required. □

The following is known as Riesz’ inequality (see Almut [1, §1.3]).

Lemma 2.3. For all nonnegative measurable functions f, g and h on Rn,∫
Rn

f(x)(g ∗ h)(x)dx ≤
∫
Rn

f ⋆(x)(g⋆ ∗ h⋆)(x)dx,

where

g ∗ h(x) =
∫
Rn

g(x− y)h(y)dy.

Lemma 2.4. For all nonnegative measurable functions f on Rn,

(Iαf)
⋆(x) ≤ C

∫
Rn

(|x|+ |y|)α−nf ⋆(y)dy

≤ C(Iαf
⋆)(x),

where C is a positive constant independent of f .

Proof. Set r0 = (Iαf)
⋆(x). For 0 < r < r0, write

|{z : Iαf(z) > r}| = |B(0, t)|.

We have

|B(0, t)| = |{z : Iαf(z) > r}|

≤ r−1

∫
{z:Iαf(z)>r}

Iαf(ζ)dζ

≤ r−1

∫
{z:(Iαf)⋆(z)>r}

Iαf
⋆(ζ)dζ (by Riesz’ inequality)

= r−1

∫
B(0,t)

Iαf
⋆(ζ)dζ

= r−1

∫
Rn

(∫
B(0,t)

|ζ − y|α−ndζ

)
f ⋆(y)dy

≤ Cr−1tn
∫
Rn

(t+ |y|)α−nf ⋆(y)dy,

so that

r ≤ C

∫
Rn

(t+ |y|)α−nf ⋆(y)dy.
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Since t ≥ |x|,

r ≤ C

∫
Rn

(|x|+ |y|)α−nf ⋆(y)dy,

which gives the required inequality. □
Remark 2.5. In case α = 0, Iα might be replaced by the singular intergal operator
(see [4] and [8, Theorem 3.14]).

3. Lorentz spaces of variable exponents

A function p on Rn is said to be log-Hölder continuous if

(P1) p is locally log-Hölder continuous, namely

|p(x)− p(y)| ≤ C0

log(1/|x− y|)
for |x− y| ≤ 1

e

with a constant C0 ≥ 0, and

(P2) p is log-Hölder continuous at infinity, namely

|p(x)− p(∞)| ≤ C∞

log(e+ |x|)
with constants C∞ ≥ 0 and p(∞). Let P(Rn) be the class of all log-Hölder
continuous functions p on Rn. If in addition p satisfies

(P3) 1 < p− := infx∈Rn p(x) ≤ supx∈Rn p(x) =: p+ < ∞,

then we write p ∈ P1(R
n).

Definition 3.1. For q ∈ P1(R
n) and t ∈ P(Rn), Lt,q(Rn) denotes the weighted

Lq(·) space of all functions f with

∥f∥Lt,q(Rn) = inf

{
λ > 0 :

∫
Rn

|f(x)/λ|q(x)|x|t(x)dx ≤ 1

}
< ∞.

We write L0,q(Rn) = Lq(·)(Rn) and

∥f∥L0,q(Rn) = ∥f∥Lq(·)(Rn).

Definition 3.2. For p, q ∈ P1(R
n), set t(x) = n

(
q(x)
p(x)

− 1
)
. Denote by Lp,q(Rn)

as the set of all measurable functions f such that

∥f∥Lp,q(Rn) = inf

{
λ > 0 :

∫
Rn

|f ⋆(x)/λ|q(x)|x|n(
q(x)
p(x)

−1)dx ≤ 1

}
< ∞.

We do not know whether Lq,q(Rn) = L0,q(Rn) or not, when q is a variable
exponent.

4. The boundedness of maximal operator in Lorentz spaces of
variable exponents

Throughout this paper, let C denote various constants independent of the vari-
ables in question. For functions f, g, we write f ∼ g if there is a constant C > 1
such that

C−1g ≤ f ≤ Cg.
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We first show the boundedness of the maximal operator in the weighted Lq(·)

space along the same lines as in [13], which is an extension of Diening [7] and
Cruz-Uribe, Fiorenza and Neugebauer [6].

Theorem 4.1. Let q ∈ P1(R
n) and t ∈ P(Rn). Suppose

(T1) −n < t(0) < n(q(0)− 1) and −n < t(∞) < n(q(∞)− 1) .

Then the maximal operator M : f −→ Mf is bounded from Lt,q(Rn) into itself,
namely, there is a constant C > 0 such that

∥Mf∥Lt,q(Rn) ≤ C∥f∥Lt,q(Rn)

for all f ∈ Lt,q(Rn).

With the aid of Lemma 2.2, we obtain the following result.

Corollary 4.2. Let p, q ∈ P1(R
n). Then the maximal operator M : f −→ Mf

is bounded from Lp,q(Rn) into itself, namely, there is a constant C > 0 such that

∥Mf∥Lp,q(Rn) ≤ C∥f∥Lp,q(Rn)

for all f ∈ Lp,q(Rn).

Our Theorem 4.1 is a special case of Theorem 1.1 in Hästö and Diening [9] (see
also Cruz-Uribe, Diening and Hästö [5]). For the reader’s convenience, we give a
proof of Theorem 4.1. To do so, we prepare several lemmas in the same way as in
[11] and [13].

5. Proof of Theorem 4.1

Let us begin the well-known fact for the boundedness of maximal operator; see
Diening [7] and Cruz-Uribe, Fiorenza and Neugebauer [6].

Lemma 5.1. Let q ∈ P1(R
n). Then∫

Rn

{Mf(x)}q(x)dx ≤ C

for all f with ∥f∥Lq(·)(Rn) ≤ 1.

To show this, we apply Diening’s trick with the aid of the following result (see
e.g. [11]).

Lemma 5.2. Let q ∈ P1(R
n). For a measurable function f on Rn, set

I =
1

|B(x, r)|

∫
B(x,r)

|f(y)|dy

and

J =

(
1

|B(x, r)|

∫
B(x,r)

g(y)dy

)1/q(x)

,

where g(y) = |f(y)|q(y). Then there exists a constant C > 0 such that

I ≤ CJ + C(1 + |x|)−n

for all x ∈ Rn and f such that ∥f∥Lq(·)(Rn) ≤ 1.

We next consider the weighted case.
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Lemma 5.3. Let q ∈ P1(R
n), t ∈ P(Rn) and 0 < r0 < 1. Suppose there exists a

constant q0 with 1 < q0 < q(0) such that

−n < t(0) < n(q0 − 1).

For a measurable function f on Rn, set

I =
1

|B(x, r)|

∫
B(x,r)

|f(y)|dy

and

J0 =

(
1

|B(x, r)|

∫
B(x,r)

g0(y)dy

)1/q0

,

where g0(y) = {|f(y)||y|t(y)/q(y)}q0 . Then

I ≤ C|x|−t(x)/q(x)J0 + CH(x)

for all x ∈ B(0, r0) and f such that f = 0 outside B(0, 2r0) and ∥f∥Lt,q(Rn) ≤ 1,
where

H(x) =

∫
Rn\B(0,|x|)

|f(y)||y|−ndy.

Proof. Let f be a nonnegative measurable function on Rn such that f = 0 outside
B(0, 2r0) and ∥f∥Lt,q(Rn) ≤ 1. By Hölder’s inequality we have

I ≤ J0

(
1

|B(x, r)|

∫
B(x,r)

|y|−t(y)q′0/q(y)dy

)1/q′0

.

If r ≤ |x|/2 < r0/2, then |y| ∼ |x|, and moreover

|y|p(y)−p(x) ≤ C|y|−C0/ log(1/|x−y|) ≤ C|x|−C0/ log(1/|x|) ≤ C,

so that

|y|p(y) ∼ |y|p(x) ∼ |x|p(x)

for x ∈ B(0, r0), y ∈ B(x, r) and p ∈ P(Rn) by (P1). Hence, in this case,

1

|B(x, r)|

∫
B(x,r)

|y|−t(y)q′0/q(y)dy ≤ C
1

|B(x, r)|

∫
B(x,r)

|x|−t(x)q′0/q(x)dy

≤ C|x|−t(x)q′0/q(x),

which gives

I ≤ C|x|−t(x)/q(x)J0.

If |x|/2 < r ≤ 2|x| < 2r0, then, since |y|p(y) ∼ |y|p(0) for y ∈ B(0, 3r0) and
p ∈ P(Rn) by (P1), we find

1

|B(x, r)|

∫
B(x,r)

|y|−t(y)q′0/q(y)dy ≤ C
1

|B(0, 3|x|)|

∫
B(0,3|x|)

|y|−t(0)q′0/q(0)dy

≤ C|x|−t(0)q′0/q(0)

≤ C|x|−t(x)q′0/q(x)

since t(0) < n(q0 − 1) and 1 < q0 < q(0).
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Finally, if r > 2|x| and |x| < r0, then

1

|B(x, r)|

∫
B(x,r)

|f(y)|dy ≤ 1

|B(x, r)|

∫
B(x,r)∩B(x,2|x|)

|f(y)|dy

+
1

|B(x, r)|

∫
B(x,r)\B(x,2|x|)

|f(y)|dy

≤ C|x|−t(x)/q(x)J0 + C

∫
Rn\B(0,|x|)

|f(y)||y|−ndy.

Now the present lemma is obtained. □

Corollary 5.4. Let q ∈ P1(R
n), t ∈ P(Rn), 0 < r0 < 1 and 1 < q0 < q(0) be as

in Lemma 5.3. Then there exists a constant C > 0 such that

Mf(x) ≤ C|x|−t(x)/q(x)Mg0(x)
1/p0 + CH(x)

for all x ∈ B(0, r0) and f such that f = 0 outside B(0, 2r0) and ∥f∥Lt,q(Rn) ≤ 1.

Remark 5.5. Let q ∈ P1(R
n) and t ∈ P(Rn). Suppose

−n < t(0) < n(q(0)− 1).

Then it is worth to see that ∫
B(0,1)

|f(y)|dy ≤ C

for all f with ∥f∥Lt,q(Rn) ≤ 1.

Next we treat the Hardy type operator H along the same manner as in [13].

Lemma 5.6. Let q ∈ P1(R
n) and t ∈ P(Rn). For a measurable function f on Rn

and β ≥ 0, set

Hβ,1 = Hβ,1(x) =

∫
B(0,1)\B(0,|x|)

|f(y)||y|β−ndy

and

Kβ,1 = Kβ,1(x) =

(
|x|ε

∫
B(0,1)\B(0,|x|)

g(y)|y|−εdy

)1/q(x)

,

where g(y) = |f(y)|q(y)|y|t(y). If 0 < δ < ε < (n+ t(0))/q(0)− β, then there exists
a constant C > 0 such that

Hβ,1 ≤ C|x|β−(t(x)+n)/q(x)Kβ,1 + C|x|β−(t(x)−δ+n)/q(x)

for all x ∈ B(0, 1) and f with ∥f∥Lt,q(Rn) ≤ 1.

Proof. Let f be a nonnegative measurable function on Rn with ∥f∥Lt,q(Rn) ≤ 1.
Set

E = {y : f(y) ≥ |y|−(t(y)+n)/q(y)}.
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Noting that |y|p(y) ∼ |y|p(0) when |y| < 1 and p ∈ P(Rn) by (P1), we have

Hβ,1,1 ≡
∫
E∩(B(0,1)\B(0,|x|))

f(y)|y|β−ndy

≤
∫
E∩(B(0,1)\B(0,|x|))

f(y)|y|β−n

(
f(y)

|y|−(t(y)+n)/q(y)

)q(y)−1

dy

=

∫
B(0,1)\B(0,|x|)

f(y)q(y)|y|t(y)−ε|y|β+ε−(t(y)+n)/q(y)dy

≤ |x|β−(t(0)+n)/q(0)|x|ε
∫
B(0,1)\B(0,|x|)

g(y)|y|−εdy

≤ C|x|β−(t(x)+n)/q(x)Kβ,1

since ε < (n+ t(0))/q(0)− β and Kβ,1 < 1.
Noting that |y|p(x) ∼ |y|p(y) ∼ |y|p(0) for y ∈ B(0, 1) \ B(0, |x|) and p ∈ P(Rn)

by (P1), we next obtain

Hβ,1,2 ≡
∫
(B(0,1)\B(0,|x|))\E

f(y)|y|β−ndy

≤
(∫

(B(0,1)\B(0,|x|))\E
|y|(β−(t(y)−ε)/q(x)−n)q′(x)dy

)1/q′(x)

×
(∫

(B(0,1)\B(0,|x|))\E
f(y)q(x)|y|t(y)−εdy

)1/q(x)

≤ C|x|β−(t(x)−ε+n)/q(x)

(∫
(B(0,1)\B(0,|x|))\E

f(y)q(x)|y|t(y)−εdy

)1/q(x)

.

Moreover, by taking 0 < δ < ε, we see that(∫
(B(0,1)\B(0,|x|))\E

f(y)q(x)|y|t(y)−εdy

)1/q(x)

=

(∫
(B(0,1)\B(0,|x|))\E

(f(y)|y|(t(x)+n)/q(x))q(x)|y|−ε−ndy

)1/q(x)

≤ C

(∫
(B(0,1)\B(0,|x|))\E

|y|δ|y|−ε−ndy

)1/q(x)

+ C

(∫
(B(0,1)\B(0,|x|))\E

f(y)q(y)|y|t(y)+n|y|−ε−ndy

)1/q(x)

≤ C|x|(δ−ε)/q(x) + C

(∫
(B(0,1)\B(0,|x|))\E

f(y)q(y)|y|t(y)−εdy

)1/q(x)

,

so that

Hβ,1,2 ≤ C|x|β−(t(x)−δ+n)/q(x) + C|x|β−(t(x)+n)/q(x)Kβ,1,

which completes the proof. □
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Corollary 5.7. Let q ∈ P1(R
n) and t ∈ P(Rn). If 0 < δ < ε < (n + t(0))/q(0),

then there exists a constant C > 0 such that∫
B(0,1)

H0,1(x)
q(x)|x|t(x)dx ≤ C

for all f with ∥f∥Lt,q(Rn) ≤ 1.

In fact, letting 0 < δ < ε < (n+ t(0))/q(0), we find from Lemma 5.6∫
B(0,1)

H0,1(x)
q(x)|x|t(x)dx ≤ C

∫
Rn

|x|−nK0,1(x)
q(x)dx+ C

∫
B(0,1)

|x|δ−ndx

≤ C

∫
B(0,1)

(∫
B(0,|y|)

|x|ε−ndx

)
g(y)|y|−εdy + C

≤ C

∫
B(0,1)

g(y)dy + C

≤ C

for all f with ∥f∥Lt,q(Rn) ≤ 1.

Collecting Corollaries 5.4, 5.7 and Lemma 5.1, we obtain the following result.

Lemma 5.8. Let q ∈ P1(R
n) and t ∈ P(Rn). If −n < t(0) < n(q(0) − 1), then

there exist constants r0 > 0 and C > 0 such that∫
B(0,r0)

{Mf(x)}q(x)|x|t(x)dx ≤ C

for all f with ∥f∥Lt,q(Rn) ≤ 1 such that f = 0 outside B(0, 2r0).

To show this, take r0 > 0 such that 1 < q0 < infx∈B(0,r0) q(x) and −n < t(0) <
n(q0 − 1), and apply Corollaries 5.4, 5.7 and Lemma 5.1.

Next we treat the behavior of maximal functions near the infinity. In the same
manner as Lemma 5.3, we can prove the following result.

Lemma 5.9. Let q ∈ P1(R
n), t ∈ P(Rn) and R0 > 1. Suppose there exists a

constant 1 < q0 < q(∞) such that

−n < t(∞) < n(q0 − 1).

Then there exists a constant C > 0 such that

I ≤ C|x|−t(x)/q(x)J0 + CH(x)

for all x ∈ Rn \B(0, 2R0) and f such that f = 0 on B(0, R0) and ∥f∥Lt,q(Rn) ≤ 1,
where I and J0 are given in Lemma 5.3.

Lemma 5.10. Let q ∈ P1(R
n) and t ∈ P(Rn). For a measurable function f on Rn

and β ≥ 0, set

Hβ,2 = Hβ,2(x) =

∫
Rn\B(0,|x|)

|f(y)||y|β−ndy

and

Kβ,2 = Kβ,2(x) =

(
|x|ε

∫
Rn\B(0,|x|)

g(y)|y|−εdy

)1/q(x)

,
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where g(y) = |f(y)|q(y)|y|t(y). If 0 < ε < {(n+ t(∞))/q(∞)− β}/q(∞), then there
exists a constant C > 0 such that

Hβ,2 ≤ C|x|β−(t(x)+n)/q(x)Kβ,2 + C|x|β−ε−(t(x)+n)/q(x)

for all x ∈ Rn \B(0, 1) and f with ∥f∥Lt,q(Rn) ≤ 1.

Proof. Let f be a nonnegative measurable function on Rn with ∥f∥Lt,q(Rn) ≤ 1.
Then note that

|x|ε
∫
Rn\B(0,|x|)

g(y)|y|−εdy < 1.

If |x|−ε < Kβ,2 < 1, then

K
p(x)−p(y)
β,2 ≤ K

−C/ log(e+|x|)
β,2 ≤ |x|εC/ log(e+|x|) ≤ C

and |y|p(y) ∼ |y|p(∞) when 1 < |x| < |y| and p ∈ P(Rn) by (P2), so that

Hβ,2 ≤
∫
Rn\B(0,|x|)

Kβ,2|y|−(t(y)+n)/q(y)|y|β−ndy

+

∫
Rn\B(0,|x|)

f(y)|y|β−n

(
f(y)

Kβ,2|y|−(t(y)+n)/q(y)

)q(y)−1

dy

≤ CKβ,2|x|β−(t(∞)+n)/q(∞)

+ CK
1−q(x)
β,2

∫
Rn\B(0,|x|)

g(y)|y|β−(t(y)+n)/q(y)dy

≤ CKβ,2|x|β−(t(x)+n)/q(x)

+ CK
1−q(x)
β,2 |x|β−(t(∞)+n)/q(∞)|x|ε

∫
B(0,1)\B(0,|x|)

g(y)|y|−εdy

≤ CKβ,2|x|β−(t(x)+n)/q(x)

since ε < (n+ t(∞))/q(∞)− β.
Next consider the case Kβ,2 ≤ |x|−ε. Then

Hβ,2 ≤
∫
Rn\B(0,|x|)

|y|−ε−(t(y)+n)/q(y)|y|β−ndy

+

∫
Rn\B(0,|x|)

f(y)|y|β−n

(
f(y)

|y|−ε−(t(y)+n)/q(y)

)q(y)−1

dy

≤ C|x|β−ε−(t(∞)+n)/q(∞)

+ C

∫
Rn\B(0,|x|)

g(y)|y|β+ε(q(y)−1)−(t(y)+n)/q(y)dy

≤ C|x|β−ε−(t(x)+n)/q(x)

+ C|x|β+ε(q(∞)−1)−(t(∞)+n)/q(∞)|x|ε
∫
Rn\B(0,|x|)

g(y)|y|−εdy

≤ C|x|β−ε−(t(x)+n)/q(x)

since ε < {(n+ t(∞))/q(∞)− β}/q(∞).
Thus the proof is completed. □
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Corollary 5.11. Let q ∈ P1(R
n) and t ∈ P(Rn). If 0 < ε < (n+ t(∞))/q(∞)2,

then there exists a constant C > 0 such that∫
Rn\B(0,1)

H0,2(x)
q(x)|x|t(x)dx ≤ C

for all f with ∥f∥Lt,q(Rn) ≤ 1.

In fact, letting 0 < ε < (n+ t(∞))/q(∞)2, we find from Lemma 5.10∫
Rn\B(0,1)

H0,2(x)
q(x)|x|t(x)dx ≤ C

∫
Rn\B(0,1)

|x|−nK0,2(x)
q(x)dx

+ C

∫
Rn\B(0,1)

|x|−εq(x)−ndx

≤ C

∫
Rn\B(0,1)

(∫
B(0,|y|)

|x|ε−ndx

)
g(y)|y|−εdy + C

≤ C

∫
Rn\B(0,1)

g(y)dy + C

≤ C

for all f with ∥f∥Lt,q(Rn) ≤ 1.

Remark 5.12. Let q ∈ P1(R
n) and t ∈ P(Rn). Suppose

−n < t(∞) < n(q(∞)− 1).

Then, as in Remark 5.5, it is worth to see that∫
Rn\B(0,1)

|f(y)||y|−ndy ≤ C

for all f with ∥f∥Lt,q(Rn) ≤ 1.

By Lemma 5.1, Lemma 5.9 and Corollary 5.11, we have the following result.

Lemma 5.13. Let q ∈ P1(R
n) and t ∈ P(Rn). If −n < t(∞) < n(q(∞)− 1), then

there exist constants R0 > 0 and C > 0 such that∫
Rn\B(0,2R0)

{Mf(x)}q(x)|x|t(x)dx ≤ C

for all f with ∥f∥Lt,q(Rn) ≤ 1 such that f = 0 on B(0, R0).

Proof of Theorem 4.1. We now show the boundedness of the maximal operator.
To do so, take a nonnegative measurable function f on Rn with ∥f∥Lt,q(Rn) ≤ 1.

Let r0 and R0 be as in Lemma 5.8 and Lemma 5.13.
By Lemma 5.8 we have∫

B(0,r0)

{M [fχB(0,2r0)](x)}q(x)|x|t(x)dx < C.

By Lemmas 5.6 and 5.10 we see that

M [fχRn\B(0,2r0)](x) ≤
∫
Rn\B(0,2r0)

|y|−nf(y)dy ≤ C

for x ∈ B(0, r0), so that ∫
B(0,r0)

{Mf(x)}q(x)|x|t(x)dx < C.
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Lemma 5.1 gives∫
B(0,2R0)\B(0,r0)

{M [fχB(0,4R0)\B(0,r0/2)](x)}q(x)dx < C,

so that ∫
B(0,2R0)\B(0,r0)

{M [fχB(0,4R0)\B(0,r0/2)](x)}q(x)|x|t(x)dx < C.

Further, noting from Remarks 5.5 and 5.12 that

M [fχB(0,r0/2)](x) ≤ C|x|−n

∫
B(0,r0/2)

f(y)dy ≤ C

and

M [fχRn\B(0,4R0)](x) ≤
∫
Rn\B(0,4R0)

|y|−nf(y)dy ≤ C

for x ∈ B(0, 2R0) \B(0, r0), we have∫
B(0,2R0)\B(0,r0)

{Mf(x)}q(x)|x|t(x)dx < C.

In view of Lemma 5.13, we find∫
Rn\B(0,2R0)

{M [fχRn\B(0,R0)](x)}q(x)|x|t(x)dx < C.

Noting that M [fχB(0,R0)](x) ≤ C|x|−n for x ∈ Rn \B(0, 2R0) by Lemmas 5.6 and
5.10, we establish∫

Rn\B(0,2R0)

{M [fχB(0,R0)]}q(x)|x|t(x)dx ≤ C

∫
Rn\B(0,2R0)

|x|−nq(x)+t(x)dx

≤ C

∫
Rn\B(0,2R0)

|x|−nq(∞)+t(∞)dx ≤ C

since t(∞) < n(q(∞)− 1). Now the proof is completed. □

6. Sobolev’s inequality in Lorentz spaces

As an application of Theorem 4.1, we establish the Sobolev type inequality for
Riesz potentials by use of Hedberg’s method in [10].
For q ∈ P1(R

n), set

1/q♯ = 1/q − α/n.

Theorem 6.1. Let q ∈ P1(R
n) and t ∈ P(Rn). Suppose q+ < n/α and

(T2) αq(0)− n < t(0) < n (q(0)− 1) and αq(∞)− n < t(∞) < n (q(∞)− 1) .

Then there exists a constant C > 0 such that

∥Iαf∥Ltq♯/q,q♯ (Rn)
≤ C∥f∥Lt,q(Rn)

for all f ∈ Lt,q(Rn).

With the aid of Lemma 2.4, we find the following result.
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Corollary 6.2. For p, q ∈ P1(R
n), set t(x) = n

(
q(x)
p(x)

− 1
)
. If p+ < n/α and

q+ < n/α, then there exists a constant C > 0 such that

∥Iαf∥Lp♯,q♯ (Rn)
≤ C∥f∥Lp,q(Rn)

for all f ∈ Lp,q(Rn).

To prove Theorem 6.1, we need several lemmas.

Lemma 6.3. Let q ∈ P1(R
n) and t ∈ P(Rn). If −n < t(0) < n(q(0) − 1) and

−n < t(∞) < n(q(∞)− 1), then there exists a constant C > 0 such that

1

|B(x, r)|

∫
B(x,r)

f(y)dy ≤ C|x|−t(x)/q(x)r−n/q(x) + C|x|−t(x)/q(x)(1 + |x|)−n

for all x ∈ Rn, 0 < r < 2|x| and f ≥ 0 with ∥f∥Lt,q(Rn) ≤ 1.

Proof. Let f be a nonnegative measurable function onRn such that ∥f∥Lt,q(Rn) ≤ 1.
Write

f = fχB(0,r0/2) + fχB(0,2R0)\B(0,r0/2) + fχRn\B(0,2R0)

= f1 + f2 + f3,

where r0 and R0, 0 < r0 < 1 < R0 < ∞, will be given soon.
For f1, take r0 > 0 such that 1 < q0 < infx∈B(0,r0) q(x) with −n < t(0) <

n(q0 − 1). As in the proof of Lemma 5.3, we have

1

|B(x, r)|

∫
B(x,r)

f1(y)dy

≤
(

1

|B(x, r)|

∫
B(x,r)∩B(0,r0/2)

|y|−t(y)q′0/q(y)dy

)1/q′0
(

1

|B(x, r)|

∫
B(x,r)

g1,0(y)dy

)1/q0

≤ C|x|−t(x)/q(x)

(
1

|B(x, r)|

∫
B(x,r)

g1,0(y)dy

)1/q0

for 0 < r < 2|x| < 2r0, where g1,0(y) = {f1(y)|y|t(y)/q(y)}q0 . By using [11, Lemmas
2.2 and 2.3], we obtain

1

|B(x, r)|

∫
B(x,r)

f1(y)dy ≤ C|x|−t(x)/q(x)

(
1

|B(x, r)|

∫
B(x,r)

g(y)dy

)1/q(x)

+ C|x|−t(x)/q(x)(1 + |x|)−n

≤ C|x|−t(x)/q(x)r−n/q(x) + C|x|−t(x)/q(x)(1 + |x|)−n

for 0 < r < 2|x| < 2r0. If |x| ≥ r0, then we see from Remark 5.5 that

1

|B(x, r)|

∫
B(x,r)

f1(y)dy ≤ C(1 + |x|)−n

≤ C|x|−t(x)/q(x)r−n/q(x)

when 0 < r < 2|x|.
For f3, take 1 < q0 < infx∈Rn\B(0,R0) q(x) with −n < t(∞) < n(q(0) − 1). We

have by the above arguments and the proof of Lemma 5.9

1

|B(x, r)|

∫
B(x,r)

f3(y)dy ≤ C|x|−t(x)/q(x)r−n/q(x) + C|x|−t(x)/q(x)(1 + |x|)−n
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for 0 < r < 2|x|. Finally, for f2, taking 1 < q0 < q−, we have by the above
arguments

1

|B(x, r)|

∫
B(x,r)

f2(y)dy ≤
(

1

|B(x, r)|

∫
B(x,r)∩(B(0,2R0)\B(0,r0/2))

|y|−t(y)q′0/q(y)dy

)1/q′0

×
(

1

|B(x, r)|

∫
B(x,r)

g2,0(y)dy

)1/q0

≤ C|x|−t(x)/q(x)

(
1

|B(x, r)|

∫
B(x,r)

g(y)dy

)1/q(x)

+ C|x|−t(x)/q(x)(1 + |x|)−n

for 0 < r < 2|x| < 8R0, where g2,0(y) = {f2(y)|y|t(y)/q(y)}q0 . If |x| ≥ 4R0, then we
see from Remark 5.5 that

1

|B(x, r)|

∫
B(x,r)

f2(y)dy ≤ C(1 + |x|)−n

≤ C|x|−t(x)/q(x)r−n/q(x)

when 0 < r < 2|x|.
Now the lemma is obtained. □

Lemma 6.4. Let q ∈ P1(R
n) and t ∈ P(Rn) satisfy −n < t(0) < n(q(0)−1),−n <

t(∞) < n(q(∞)− 1) and q+ < n/α. Then∫
B(x,2|x|)\B(x,δ)

|x− y|α−nf(y)dy ≤ C|x|−t(x)/q(x)δα−n/q(x)

+ C|x|α−t(x)/q(x)(1 + |x|)−n

for all x ∈ Rn, δ > 0 and f ≥ 0 with ∥f∥Lt,q(Rn) ≤ 1.

Proof. Let f be a nonnegative measurable function onRn such that ∥f∥Lt,q(Rn) ≤ 1.
We have by Lemma 6.3∫

B(x,2|x|)\B(x,δ)

|x− y|α−nf(y)dy

≤ C

∫ 2|x|

δ

(∫
B(x,r)

f(y)dy

)
rα−n−1dr

≤ C|x|−t(x)/q(x)

∫ 2|x|

δ

rα−n/q(x)−1dr + C|x|α−t(x)/q(x)(1 + |x|)−n

≤ C|x|−t(x)/q(x)δα−n/q(x) + C|x|α−t(x)/q(x)(1 + |x|)−n

for all δ > 0, as required. □
We are next concerned with the fractional Hardy type operator as in [13], which

are treated in the same manner as Corollaries 5.7 and 5.11.

Lemma 6.5. Let q ∈ P1(R
n) and t ∈ P(Rn) be as in Theorem 6.1. Then∫

B(0,1)

{
Hα,1(x)|x|t(x)/q(x)

}q♯(x)
dx ≤ C

for all f with ∥f∥Lt,q(Rn) ≤ 1.
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In fact, since Kα,1 ≤ 1,

Kα,1 ≤
(
|x|ε

∫
B(0,1)\B(0,|x|)

g(y)|y|−εdy

)1/q♯(x)

,

so that we have the required result as in the proof of Corollary 5.7.

Lemma 6.6. Let q ∈ P1(R
n) and t ∈ P(Rn) be as in Theorem 6.1. Then∫

Rn\B(0,1)

{
Hα,2(x)|x|t(x)/q(x)

}q♯(x)
dx ≤ C

for all f with ∥f∥Lt,q(Rn) ≤ 1.

We are now ready to prove Theorem 6.1.

Proof of Theorem 6.1. Let f be a nonnegative measurable function on Rn with
∥f∥Lt,q(Rn) ≤ 1. Then Lemma 6.4 yields

|x|t(x)/q(x)Iαf(x) = |x|t(x)/q(x)
∫
B(x,δ)

|x− y|α−nf(y)dy

+ |x|t(x)/q(x)
∫
Rn\B(x,δ)

|x− y|α−nf(y)dy

≤ C|x|t(x)/q(x)δαMf(x) + Cδα−n/q(x)

+ C|x|t(x)/q(x)Hα(x) + C(1 + |x|)α−n,

where

Hα(x) =

∫
Rn\B(0,|x|)

|y|α−nf(y)dy.

Letting δ = {Mf(x)|x|t(x)/q(x)}−n/q(x), we find

|x|t(x)/q(x)Iαf(x) ≤ C{|x|t(x)/q(x)Mf(x)}q(x)/q♯(x) + C|x|t(x)/q(x)Hα(x)

+ C(1 + |x|)α−n.

Now we obtain from Theorem 4.1 and Lemmas 6.5, 6.6,

∥Iαf∥Ltq♯/q,q♯ (Rn)
≤ ∥Iαf(x)|x|t(x)/q(x)∥Lq♯(·)(Rn)

≤ C∥Mf(x)|x|t(x)/q(x)∥Lq(·)(Rn) + C∥Hα(x)|x|t(x)/q(x)∥Lq♯(·)(Rn)

+ C∥(1 + |x|)α−n∥
Lq♯(·)(Rn)

≤ C

Since
∫
B(0,1)

|x|t(0)q♯(0)/q(0)dx ≤ C by αq(0) − n < t(0). Hence, we obtain the

required result. □
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