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Abstract. Our aim in this note is to deal with Sobolev’s inequal-
ity for Riesz potentials of order a for functions in Orlicz-Musielak
spaces LP() (log L)P()90)(R™) when p(-) and ¢(-) are variable expo-
nents satisfying the log-Ho6lder conditions; the exponent p(-) may
approach 1. For this purpose we prepare the boundedness prop-
erty of the Hardy-Littlewood maximal operator on Orlicz-Musielak
spaces.

1 Introduction

In recent years, the generalized Lebesgue spaces have attracted more
and more attention, in connection with the study of elasticity, fluid
mechanics and, more recently, image restoration; see Ruzicka [13]. The
generalized Lebesgue spaces were first introduced by Orlicz [12] and then
by Nakano [10]. After them, these spaces were systematically studied
by Musielak [9] and Kovécik and Rékosnik [5].

Following Cruz-Uribe and Fiorenza [1], let us consider two variable
exponents p(-) and ¢(-) on R satisfying:

TER™ TER™

< ¢ :
~ logle+1/|z —y|) ’

(P3) [p(z) —p(y) whenever |y| > |z|;

< -
< Togle + T2

(q1) 0< ¢~ = inf g(x) < sup g(x) = ¢ < oo;
TER" rER™
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C
< .
< log(e +log(e + 1/|z — y|))

(a2) lg(z) —q(y)

By (p3) one sees that p(z) has a finite limit po, at infinity and

C

(P3") [p(®) — po| < w-

For v € [0,00), z € R™ and t € [0, 00), set
By 00— (1) = {t(l0e + 1)1 (log(e + ¢ + 1))
if v =0, then we set @, o) for @, 4()0- Note that
(®1) Ppyq()(x,-) is convex on [0, 00) for fixed » € R™ ,

since ¢~ > 0 by our assumption.

For & = &, .., we define the quasi-norm by

[fla@n) = inf {A >0 /R O (z,|f(x)/A]) dx < 1}

and denote by ®(R"™) the space of all measurable functions f on R™ with

[ fllo®n) < 00; p( q0) (R™) is sometimes written as LP() (log L)PL40)(R™).
We denote by B(x,r) the ball with center x and of radius r > 0, and

by |B(z,r)| its Lebesgue measure, i.e. |B(x,r)| = o,r™, where o, is the

volume of the unit ball in R”. For a locally integrable function f on

R", we define the Hardy-Littlewood maximal function M f by

1
Mf(x) =sup ———
= B o

£ ()] dy.

First we prepare the boundedness property of the Hardy-Littlewood
maximal operator on Orlicz-Musielak spaces, as an extension of Diening

[2].
Theorem 1. For each v > 1, there exists a constant C' > 0 such that

”Mf”i’p(‘),q(%,,y(R”) < CHfoDP(.)’q(.)(R")

for all f € (I)p(,)’q(,)(Rn).
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If 1/p*(x) = 1/p(z) — a/n > 0, then we set

p*(z) Sy —
Dy a(e),(:t) = {tlogle+ )7L (log(e+t+¢71)) 7.

For 0 < a < n, we define the Riesz potential of order « for a locally
integrable function f on R™ by

Inf(@)i= [ o=y " ) dy,
Rn
Here it is natural to assume that
| sl iswldy < o

which is equivalent to the condition that I,|f| # oo (see [7, Theorem
1.1, Chapter 2]).

Our main aim in this note is to prove Sobolev’s inequality for Riesz
potentials of order a for functions in Orlicz—Musielak spaces, through
an application of Hedberg’s trick [4] and Theorem 1.

Theorem 2. For each v > 1, there exists a constant C' > 0 such that

HaFlloye ) g0, @) < Clf e, o0 @)
for all f € @,y 4 (R").

Remark 1. If p~ > 1, then Theorem 1 is true for v = 0 by Proposi-
tion 2.5 in [6], so that Theorem 2 can be derived by use of the bounded-
ness of the maximal operator. This article treats the case p~ = 1, and
the results obtained here are considerably weak; for this, we refer to the
paper by O’Neil [11].

Remark 2. Let p be an exponent of the form
p(z) =1+ c/log(e + |x[)
with ¢ > 0. If f =1 on B(0,1) and f = 0 elsewhere, then

Mf(z) > Clz|™™  for z € R*\ B(0,2).
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Hence one finds
/ M f ()P (log(e + M f(x)™")) " do = o0,
R"\B(0,2)
so that Theorem 1 fails to hold for v < 1.
Moreover,
Inf(z) > Clz|*™ for z € R™\ B(0,2),
so that

/ I f(2)?" @ (log(e + I f(z) 1))~ Ldz = oo,
R"\B(0,2)

where p(x)* = (1/p(z) — a/n)~! < n/(n — a) + C/log(e + |z|) for
x € R"\ B(0,rg) with large ro > 2, say a(1 + ¢/log(e +r9)) < n. This
implies that Theorem 2 fails to hold for v < 1.

2 Maximal functions
The next lemma is proved along the same lines as in Stein [14, Chapter
1]; see also [8, Lemma 4.2].

Lemma 3. Suppose v > 1. Then there exists a constant C' > 0 such
that

- Mg(x)(log(e + Mg(z) + Mg(z)™"))Vdz < Cllgll 1 (mn)

for all g € L*(R™).
Proof. For 1 <~ < 2, we see that t(log(y 4+t + 1/t))~7 is increasing on
(0,00) and

t(logle +t+1/t)) 7 < C(y)t(log(y +t+1/t)) .

Hence

[ Mg(w)(0(e + Mg(x) + Mo(x) ™)) da

Ct | Mg(a)(og(y + My(x) + Mg(a)™1))Vdzx

= C(v) /Doo A()d(t(log(y +t +171))77),

IN
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where A\(t) = |[{x € R": Mg(x) > t}|. Here we note from [14, Theorem
1, Chapter 1] that

(1) Mwsct{/ l9()] da

{zeR™:|g(z)|>t/2}

for t > 0. Now we obtain by Fubini’s Theorem

. Mg(z)(log(e + Mg(x) + Mg(z)~"))Vda

2lg()|
C |g(x)|{/0 ! t_ld(t(log(7+t+t_1))_7)}dx

IN

R”

< O ()] de,
Rn

as required. O

Lemma 4. For 0 <y < 1, there exists a constant C > 0 such that

/ Mg(z)(log(e+Mg(x))) "dz < C | |g()|(logle+lgw))) " Ldy
{zeR™":Mg(z)>1} Rn

for all g € L*(log L)~ "1(R™).
Proof. In view of (1), we have
L/“ Mg(x)(log(e + Mg(x)))"dz
{zeR™":Mg(z)>1}
g[,wmwmm+wrw
2|g(x)|
<c \mqu' t*am%@+wrw}m

Rn

<C - l9(y)|(log(e + lg(y)) "+ dy,

as required.
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Corollary 5. For v > 1, there exists a constant C' > 0 such that

- Mg(x)(log(e + Mg(z) ™)) dzx < C - l9(y)|(log(e + 9(y)]))dy

for all g € L*(log L)}(R™).

3 Proof of Theorem 1

For a proof of Theorem 1, the following result is essential (see [3, Lemmas
2.1-2.3]):

Lemma 6. If || f|o,. @ <1, then
M f(z) < € { Mg(x)" 7 (log(e + Mag(x)) ™" + (1 + Jal) /7))
for w € R", where g(y) = Pp(),q0) (: [f (H)])-

Proof of Theorem 1: Let f be a nonnegative function in @,y 5¢.(R")
such that

||f||¢‘p(.),q(.)(R”) S 1.
In view of Lemma 6, we find
Dy(),90) (@, M f(2)) < C{Mg(z) + (1 + |x])7"}

for x € R", where g(y) = @0y 4() (¥, f(y)). Hence, if v > 1, then we
have by Lemma 3

/ . Qp(.),q(.),v(x, Mf(ac))dx

IN

C’{ o Mg(z)(log(e + Mg(z) + Mg(z)™1)) Vdx

+/n(1 + |z]) " (log(e + |x))_'ydx}

C{/ng(y)dyﬂ}

< C,

IN

which proves Theorem 1. ]

With the aid of Lemma 4 we have the following result.
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Lemma 7. If G is a bounded open set in R™ and q— > 0, then there
exists a constant C > 0 such that

IM fll@, o)1) < Cllflloy o, @

forall f € (I)p(%q()(Rn)
Lemma 8. (cf. [6, Proposition 2.2]) If p~ > 1, then there exists a
constant C > 0 such that

|’Mf”<1>p(4),q(4)(Rn) < CHfH‘Pp(.),q(.)(R”)

for all f € (I)p(.)ﬂ(.)(R").
Theorem 9. If poo > 1 and q— > 0, then there exists a constant C' > 0
such that

IMfllo,y o a@m) < Cliflla,,@mm
for all f € @0y 4y (R").
Proof. For f € ®,) 4(y(R") with || fll,, @& < 1, write
I = IxBo,r + fxr\BO,R) = f1 + [f2.
If poo > 1, then we can find R > 1 such that

= i f 1.
PL= it o P>

Consider p(z) = max{p(x),p1}. Then
Hf2”<1>z;(4),q(4)(R”) <1,
so that Lemma 8 gives
”MfQHQI;(A),q(A)(R”) <,

which implies

1M follo, ) 4oy @) < C.

On the other hand, note from Lemma 7 that
IMfille, . o BO2R) < Cllfille,. @ < C

Since M fi(x) < Clz|™ for x € R™\ B(0,2R), we find

HMfl H(I)p(A)’q(A),_l(R") < C.
Thus Theorem 9 is obtained. O
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4 Proof of Theorem 2

To show Theorem 2, we write for § > 0

Lf@ = [ le-slt @ [ eyl )y
B(x,6) R™\B(,6)
= 11+ L.
By Lemmas 3.1 and 3.2 in [3], we have the following result.

Lemma 10. Suppose pt < n/a. Let f be a nonnegative measurable

function on R™ with | flle,, @ < 1. Then

I < C{6° "7 (log(e + 1/6)) 74 + (1 4 [z])* P}

for all z € R™ and § > 0.

Proof of Theorem 2: Since I} < CS“M f(z), we have by Lemma 10
I f(x) < C{6M f(x)+0°""/P®) (log(e41/8)) 1N 4+ C (1+ || /P),
Letting 6 = M f(z)P@/™(log(e + M f(x)))P@9=)/" we find

Laf(@) < O {MF@"7 O og(e + M f(a)) o}
+ C(1 4 |z])™/P" @),

so that

B (), g1 (@ Lo f () < OO g0y (x, M f(2))
+C(1+[a]) ™" (log(e + |z])) ™

Thus Theorem 1 proves the present theorem. O

Theorem 11. If pso > 1 and ¢~ > 0, then
oS @ gy @) < Cllf Mo, 00 @)

for all f € @0y 4y (R™).
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