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Abstract. Our aim in this note is to deal with Sobolev’s inequal-

ity for Riesz potentials of order α for functions in Orlicz-Musielak

spaces Lp(·)(logL)p(·)q(·)(Rn) when p(·) and q(·) are variable expo-
nents satisfying the log-Hölder conditions; the exponent p(·) may

approach 1. For this purpose we prepare the boundedness prop-

erty of the Hardy-Littlewood maximal operator on Orlicz-Musielak

spaces.

1 Introduction

In recent years, the generalized Lebesgue spaces have attracted more
and more attention, in connection with the study of elasticity, fluid

mechanics and, more recently, image restoration; see R
◦
užička [13]. The

generalized Lebesgue spaces were first introduced by Orlicz [12] and then
by Nakano [10]. After them, these spaces were systematically studied
by Musielak [9] and Kováčik and Rákosńık [5].

Following Cruz-Uribe and Fiorenza [1], let us consider two variable
exponents p(·) and q(·) on Rn satisfying:

(p1) 1 ≤ p− ≡ inf
x∈Rn

p(x) ≤ sup
x∈Rn

p(x) ≡ p+ < ∞;

(p2) |p(x)− p(y)| ≤ C

log(e+ 1/|x− y|)
;

(p3) |p(x)− p(y)| ≤ C

log(e+ |x|)
whenever |y| ≥ |x|;

(q1) 0 ≤ q− ≡ inf
x∈Rn

q(x) ≤ sup
x∈Rn

q(x) ≡ q+ < ∞;
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(q2) |q(x)− q(y)| ≤ C

log(e+ log(e+ 1/|x− y|))
.

By (p3) one sees that p(x) has a finite limit p∞ at infinity and

(p3’) |p(x)− p∞| ≤ C

log(e+ |x|)
.

For γ ∈ [0,∞), x ∈ Rn and t ∈ [0,∞), set

Φp(·),q(·),−γ(x, t) = {t(log(e+ t))q(x)}p(x)(log(e+ t+ t−1))−γ ;

if γ = 0, then we set Φp(·),q(·) for Φp(·),q(·),0. Note that

(Φ1) Φp(·),q(·)(x, ·) is convex on [0,∞) for fixed x ∈ Rn ,

since q− ≥ 0 by our assumption.
For Φ = Φp(·),q(·),γ , we define the quasi-norm by

∥f∥Φ(Rn) = inf

{
λ > 0 :

∫
Rn

Φ(x, |f(x)/λ|) dx ≤ 1

}
and denote by Φ(Rn) the space of all measurable functions f on Rn with
∥f∥Φ(Rn) < ∞; Φp(·),q(·)(R

n) is sometimes written as Lp(·)(logL)p(·)q(·)(Rn).
We denote by B(x, r) the ball with center x and of radius r > 0, and

by |B(x, r)| its Lebesgue measure, i.e. |B(x, r)| = σnr
n, where σn is the

volume of the unit ball in Rn. For a locally integrable function f on
Rn, we define the Hardy-Littlewood maximal function Mf by

Mf(x) = sup
r>0

1

|B(x, r)|

∫
B(x,r)

|f(y)| dy.

First we prepare the boundedness property of the Hardy-Littlewood
maximal operator on Orlicz-Musielak spaces, as an extension of Diening
[2].

Theorem 1. For each γ > 1, there exists a constant C > 0 such that

∥Mf∥Φp(·),q(·),−γ(R
n) ≤ C∥f∥Φp(·),q(·)(Rn)

for all f ∈ Φp(·),q(·)(R
n).
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If 1/p∗(x) = 1/p(x)− α/n > 0, then we set

Φp∗(x),q(x),−γ(x, t) =
{
t(log(e+ t))q(x)

}p∗(x)
(log(e+ t+ t−1))−γ .

For 0 < α < n, we define the Riesz potential of order α for a locally
integrable function f on Rn by

Iαf(x) :=

∫
Rn

|x− y|α−nf(y) dy.

Here it is natural to assume that∫
Rn

(1 + |y|)α−n|f(y)| dy < ∞,

which is equivalent to the condition that Iα|f | ̸≡ ∞ (see [7, Theorem
1.1, Chapter 2]).

Our main aim in this note is to prove Sobolev’s inequality for Riesz
potentials of order α for functions in Orlicz–Musielak spaces, through
an application of Hedberg’s trick [4] and Theorem 1.

Theorem 2. For each γ > 1, there exists a constant C > 0 such that

∥Iαf∥Φp∗(·),q(·),−γ(R
n) ≤ C∥f∥Φp(·),q(·)(Rn)

for all f ∈ Φp(·),q(·)(R
n).

Remark 1. If p− > 1, then Theorem 1 is true for γ = 0 by Proposi-
tion 2.5 in [6], so that Theorem 2 can be derived by use of the bounded-
ness of the maximal operator. This article treats the case p− = 1, and
the results obtained here are considerably weak; for this, we refer to the
paper by O’Neil [11].

Remark 2. Let p be an exponent of the form

p(x) = 1 + c/ log(e+ |x|)

with c > 0. If f = 1 on B(0, 1) and f = 0 elsewhere, then

Mf(x) ≥ C|x|−n for x ∈ Rn \B(0, 2).
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Hence one finds∫
Rn\B(0,2)

Mf(x)p(x)(log(e+Mf(x)−1))−1dx = ∞,

so that Theorem 1 fails to hold for γ ≤ 1.
Moreover,

Iαf(x) ≥ C|x|α−n for x ∈ Rn \B(0, 2),

so that ∫
Rn\B(0,2)

Iαf(x)
p∗(x)(log(e+ Iαf(x)

−1))−1dx = ∞,

where p(x)∗ = (1/p(x) − α/n)−1 ≤ n/(n − α) + C/ log(e + |x|) for
x ∈ Rn \B(0, r0) with large r0 > 2, say α(1 + c/ log(e+ r0)) < n. This
implies that Theorem 2 fails to hold for γ ≤ 1.

2 Maximal functions

The next lemma is proved along the same lines as in Stein [14, Chapter
1]; see also [8, Lemma 4.2].

Lemma 3. Suppose γ > 1. Then there exists a constant C > 0 such
that ∫

Rn

Mg(x)(log(e+Mg(x) +Mg(x)−1))−γdx ≤ C∥g∥L1(Rn)

for all g ∈ L1(Rn).

Proof. For 1 < γ ≤ 2, we see that t(log(γ + t+ 1/t))−γ is increasing on
(0,∞) and

t(log(e+ t+ 1/t))−γ ≤ C(γ)t(log(γ + t+ 1/t))−γ .

Hence ∫
Rn

Mg(x)(log(e+Mg(x) +Mg(x)−1))−γdx

≤ C(γ)

∫
Rn

Mg(x)(log(γ +Mg(x) +Mg(x)−1))−γdx

= C(γ)

∫ ∞

0
λ(t)d(t(log(γ + t+ t−1))−γ),
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where λ(t) = |{x ∈ Rn : Mg(x) > t}|. Here we note from [14, Theorem
1, Chapter 1] that

(1) λ(t) ≤ Ct−1

∫
{x∈Rn:|g(x)|>t/2}

|g(x)| dx

for t > 0. Now we obtain by Fubini’s Theorem∫
Rn

Mg(x)(log(e+Mg(x) +Mg(x)−1))−γdx

≤ C

∫
Rn

|g(x)|

{∫ 2|g(x)|

0
t−1d(t(log(γ + t+ t−1))−γ)

}
dx

≤ C

∫
Rn

|g(x)| dx,

as required.

Lemma 4. For 0 ≤ γ < 1, there exists a constant C > 0 such that∫
{x∈Rn:Mg(x)>1}

Mg(x)(log(e+Mg(x)))−γdx ≤ C

∫
Rn

|g(y)|(log(e+|g(y)|))−γ+1dy

for all g ∈ L1(logL)−γ+1(Rn).

Proof. In view of (1), we have∫
{x∈Rn:Mg(x)>1}

Mg(x)(log(e+Mg(x)))−γdx

≤
∫ ∞

1
λ(t)d(t(log(e+ t))−γ)

≤ C

∫
Rn

|g(x)|

{∫ 2|g(x)|

1
t−1d(t(log(e+ t))−γ)

}
dx

≤ C

∫
Rn

|g(y)|(log(e+ |g(y)|))−γ+1dy,

as required.
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Corollary 5. For γ > 1, there exists a constant C > 0 such that∫
Rn

Mg(x)(log(e+Mg(x)−1))−γdx ≤ C

∫
Rn

|g(y)|(log(e+ |g(y)|))dy

for all g ∈ L1(logL)1(Rn).

3 Proof of Theorem 1

For a proof of Theorem 1, the following result is essential (see [3, Lemmas
2.1–2.3]):

Lemma 6. If ∥f∥Φp(·),q(·)(Rn) ≤ 1, then

Mf(x) ≤ C
{
Mg(x)1/p(x)(log(e+Mg(x)))−q(x) + (1 + |x|)−n/p(x)

}
for x ∈ Rn, where g(y) = Φp(·),q(·)(y, |f(y)|).

Proof of Theorem 1: Let f be a nonnegative function in Φp(·),q(·)(R
n)

such that
∥f∥Φp(·),q(·)(Rn) ≤ 1.

In view of Lemma 6, we find

Φp(·),q(·)(x,Mf(x)) ≤ C{Mg(x) + (1 + |x|)−n}

for x ∈ Rn, where g(y) = Φp(·),q(·)(y, f(y)). Hence, if γ > 1, then we
have by Lemma 3∫

Rn

Φp(·),q(·),γ(x,Mf(x))dx

≤ C

{∫
Rn

Mg(x)(log(e+Mg(x) +Mg(x)−1))−γdx

+

∫
Rn

(1 + |x|)−n(log(e+ |x|))−γdx

}
≤ C

{∫
Rn

g(y)dy + 1

}
≤ C,

which proves Theorem 1.

With the aid of Lemma 4 we have the following result.
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Lemma 7. If G is a bounded open set in Rn and q− > 0, then there
exists a constant C > 0 such that

∥Mf∥Φp(·),q(·),−1(G) ≤ C∥f∥Φp(·),q(·)(Rn)

for all f ∈ Φp(·),q(·)(R
n).

Lemma 8. (cf. [6, Proposition 2.2]) If p− > 1, then there exists a
constant C > 0 such that

∥Mf∥Φp(·),q(·)(Rn) ≤ C∥f∥Φp(·),q(·)(Rn)

for all f ∈ Φp(·),q(·)(R
n).

Theorem 9. If p∞ > 1 and q− > 0, then there exists a constant C > 0
such that

∥Mf∥Φp(·),q(·),−1(R
n) ≤ C∥f∥Φp(·),q(·)(Rn)

for all f ∈ Φp(·),q(·)(R
n).

Proof. For f ∈ Φp(·),q(·)(R
n) with ∥f∥Φp(·),q(·)(Rn) ≤ 1, write

f = fχB(0,R) + fχRn\B(0,R) = f1 + f2.

If p∞ > 1, then we can find R > 1 such that

p1 = inf
x∈Rn\B(0,R)

p(x) > 1.

Consider p̃(x) = max{p(x), p1}. Then

∥f2∥Φp̃(·),q(·)(Rn) ≤ 1,

so that Lemma 8 gives

∥Mf2∥Φp̃(·),q(·)(Rn) ≤ C,

which implies

∥Mf2∥Φp(·),q(·),−1(R
n) ≤ C.

On the other hand, note from Lemma 7 that

∥Mf1∥Φp(·),q(·),−1(B(0,2R)) ≤ C∥f1∥Φp(·),q(·)(Rn) ≤ C.

Since Mf1(x) ≤ C|x|−n for x ∈ Rn \B(0, 2R), we find

∥Mf1∥Φp(·),q(·),−1(R
n) ≤ C.

Thus Theorem 9 is obtained.
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4 Proof of Theorem 2

To show Theorem 2, we write for δ > 0

Iαf(x) =

∫
B(x,δ)

|x− y|α−nf(y)dy +

∫
Rn\B(x,δ)

|x− y|α−nf(y)dy

= I1 + I2.

By Lemmas 3.1 and 3.2 in [3], we have the following result.

Lemma 10. Suppose p+ < n/α. Let f be a nonnegative measurable
function on Rn with ∥f∥Φp(·),q(·)(Rn) ≤ 1. Then

I2 ≤ C{δα−n/p(x)(log(e+ 1/δ))−q(x) + (1 + |x|)α−n/p(x)}

for all x ∈ Rn and δ > 0.

Proof of Theorem 2: Since I1 ≤ CδαMf(x), we have by Lemma 10

Iαf(x) ≤ C{δαMf(x)+δα−n/p(x)(log(e+1/δ))−q(x)}+C(1+|x|)α−n/p(x).

Letting δ = Mf(x)−p(x)/n(log(e+Mf(x)))−p(x)q(x)/n, we find

Iαf(x) ≤ C
{
Mf(x)1/p

∗(x)(log(e+Mf(x)))−αq(x)/n
}p(x)

+ C(1 + |x|)−n/p∗(x),

so that

Φp∗(·),q(·),γ(x, Iαf(x)) ≤ CΦp(·),q(·),γ(x,Mf(x))

+ C(1 + |x|)−n(log(e+ |x|))−γ .

Thus Theorem 1 proves the present theorem.

Theorem 11. If p∞ > 1 and q− > 0, then

∥Iαf∥Φp∗(·),q(·),−1(R
n) ≤ C∥f∥Φp(·),q(·)(Rn)

for all f ∈ Φp(·),q(·)(R
n).
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