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Abstract

In this paper, we consider the Herz-Morrey space Hp(·),q,ω
{x0} (G) of variable

exponent consisting of all measurable functions f on a bounded open set
G ⊂ Rn satisfying

∥f∥Hp(·),q,ω
{x0}

(G)
=

(∫ 2dG

0

(
ω(x0, r)∥f∥Lp(·)(B(x0,r)\B(x0,r/2))

)q
dr/r

)1/q

< ∞,

and set Hp(·),q,ω(G) =
∩

x0∈GHp(·),q,ω
{x0} (G).

Our first aim in this paper is to give the boundedness of the maximal
and Riesz potential operators in Hp(·),q,ω(G) when q = ∞.

In connection with Hp(·),q,ω
{x0} (G) and Hp(·),q,ω(G), let us consider the fami-

liesHp(·),q,ω
{x0} (G),Hp(·),q,ω(G),Hp(·),q,ω

{x0} (G) and H̃p(·),q,ω(G). Following Fiorenza-

Rakotoson [18], Di Fratta-Fiorenza [17] and Gogatishvili-Mustafayev [19], we
next discuss the duality properties among these Herz-Morrey spaces.

1 Introduction

Let Rn denote the n-dimensional Euclidean space. We denote by B(x, r) the open
ball centered at x of radius r, and by |E| the Lebesgue measure of a measurable
set E ⊂ Rn.

It is well known that the maximal operator is bounded in the Lebesgue space
Lp(Rn) if p > 1 (see [34]). In [12], the boundedness of the maximal operator is still
valid by replacing the Lebesgue space by several Morrey spaces; the original one
was introduced by Morrey [30] to estimate solutions of partial differential equations;
for Morrey spaces, we also refer to Peetre [32] and Nakai [31].

One of important applications of the boundedness of the maximal operator is
Sobolev’s inequality; in the classical case,

∥Iα ∗ f∥
Lp♯ (Rn)

≤ C∥f∥Lp(Rn)
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for f ∈ Lp(Rn), 0 < α < n and 1 < p < n/α, where Iα is the Riesz kernel of order
α and 1/p♯ = 1/p − α/n (see, e.g. [2, Theorem 3.1.4]). Sobolev’s inequality for
Morrey spaces was given by Adams [1] (also [12]). Further, Sobolev’s inequality
was also studied on generalized Morrey spaces (see [31]). This result was extended
to local and global Morrey type spaces by Burenkov, Gogatishvili, Guliyev and
Mustafayev [8] (see also [7, 9, 10]). The local Morrey type spaces are also called
Herz spaces introduced by Herz [23]. In our paper, those Morrey type spaces are
referred to as Herz-Morrey spaces.

In [13], Diening showed that the maximal operator is bounded on the variable
exponent Lebesgue space Lp(·)(Rn) if the variable exponent p(·), which is a constant
outside a ball, satisfies the locally log-Hölder condition and inf p(x) > 1 (see condi-
tion (P2) in Section 2). In the mean time, variable exponent Lebesgue spaces were
used to discuss nonlinear partial differential equations with non-standard growth
condition. These spaces have attracted more and more attention, in connection
with the study of elasticity and fluid mechanics; see [16], [33]. On the other hand,
variable exponent Morrey or Herz versions were discussed in [4, 5, 24, 26, 29].

Let G be a bounded open set in Rn, whose diameter is denoted by dG. Let
ω(·, ·) : G×(0,∞) → (0,∞) be a uniformly almost monotone function onG×(0,∞)
satisfying the uniformly doubling condition. For x0 ∈ G, 0 < q ≤ ∞ and a variable
exponent p(·), we consider the Herz-Morrey space Hp(·),q,ω

{x0} (G) of variable exponent
consisting of all measurable functions f on G satisfying

∥f∥Hp(·),q,ω
{x0}

(G)
=

(∫ 2dG

0

(
ω(x0, r)∥f∥Lp(·)(B(x0,r)\B(x0,r/2))

)q
dr/r

)1/q

< ∞;

when q = ∞,

∥f∥Hp(·),∞,ω
{x0}

(G)
= sup

0<r<dG

ω(x0, r)∥f∥Lp(·)(B(x0,r)\B(x0,r/2)) < ∞.

Set
Hp(·),q,ω(G) =

∩
x0∈G

Hp(·),q,ω
{x0} (G),

whose norm is defined by

∥f∥Hp(·),q,ω(G) = sup
x0∈G

∥f∥Hp(·),q,ω
{x0}

(G)
.

In connection with Hp(·),q,ω
{x0} (G), let us consider the families Hp(·),q,ω

{x0} (G) and

Hp(·),q,ω
{x0} (G) of all functions f on G satisfying

∥f∥Hp(·),q,ω
{x0}

(G)
=

(∫ 2dG

0

(
ω(x0, r)∥f∥Lp(·)(B(x0,r))

)q dr

r

)1/q

< ∞

and

∥f∥Hp(·),q,ω
{x0}

(G)
=

(∫ 2dG

0

(
ω(x0, r)∥f∥Lp(·)(G\B(x0,r))

)q dr

r

)1/q

< ∞,
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respectively. In the paper by Fiorenza and Rakotoson [18], the Herz-Morrey space

Hp(·),q,ω
{x0} (G) is referred to as the generalized Lorentz space denoted by GΓ(p, q, ω).
Note here that

Hp(·),q,ω
{x0} (G) ∪Hp(·),q,ω

{x0} (G) ⊂ Hp(·),q,ω
{x0} (G).

Similarly we consider the space

Hp(·),q,ω(G) =
∩
x0∈G

Hp(·),q,ω
{x0} (G),

whose norm is defined by

∥f∥Hp(·),q,ω(G) = sup
x0∈G

∥f∥Hp(·),q,ω
{x0}

(G)
.

Our first aim in this paper is to establish the boundedness of the maximal
operator and the Riesz potential operator in Hp(·),∞,ω(G); when q < ∞, we refer
to [27]. In the borderline case, Trudinger’s exponential integrability is discussed.

Next, following Di Fratta-Fiorenza [17] and Gogatishvili-Mustafayev [19] , we
study the duality properties among those Herz-Morrey spaces. In particular, we

show the associate spaces of Hp(·),∞,ω
{x0} (G) and Hp(·),∞,ω

{x0} (G), which give another

characterizations of Morrey spaces by Adams-Xiao [3] (see also [20]).

2 Preliminaries

Throughout this paper, let C denote various constants independent of the variables
in question. The symbol g ∼ h means that C−1h ≤ g ≤ Ch for some constant
C > 1. Set A(x, r) = B(x, r) \B(x, r/2).

Consider a function p(·) on G such that

(P1) 1 < p− := infx∈G p(x) ≤ supx∈G p(x) =: p+ < ∞
and

(P2) p(·) is log-Hölder continuous, namely

|p(x)− p(y)| ≤ cp
log(2dG/|x− y|)

for x, y ∈ G

with a constant cp ≥ 0; p(·) is referred to as a variable exponent.
We also consider the family Ω(G) of all positive functions ω(·, ·) : G× (0,∞) →

(0,∞) satisfying the following conditions:

(ω0) ω(x, 0) = limr→+0 ω(x, r) = 0 for all x ∈ G or ω(x, 0) = ∞ for all x ∈ G;

(ω1) ω(x, ·) is uniformly almost monotone on (0,∞), that is, there exists a con-
stant Q1 > 0 such that ω(x, ·) is uniformly almost increasing on (0,∞), that is,

ω(x, r) ≤ Q1ω(x, s) for all x ∈ G and 0 < r < s

or ω(x, ·) is uniformly almost decreasing on (0,∞), that is,

ω(x, s) ≤ Q1ω(x, r) for all x ∈ G and 0 < r < s;
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(ω2) ω(x, ·) is uniformly doubling on (0,∞), that is, there exists a constant Q2 > 0
such that

Q−1
2 ω(x, r) ≤ ω(x, 2r) ≤ Q2ω(x, r) for all x ∈ G and r > 0;

and

(ω3) there exists a constant Q3 > 0 such that

Q−1
3 ≤ ω(x, 1) ≤ Q3 for all x ∈ G.

Then one can find constants a, b > 0 and C > 1 such that

C−1ra ≤ ω(x, r) ≤ Cr−b (2.1)

for all x ∈ G and 0 < r ≤ dG.
For later use, it is convenient to note the following result, which is proved by

(P1), (P2) and (2.1).

Lemma 2.1. There exists a constant C > 0 such that

ω(x, r)p(x) ≤ Cω(x, r)p(y)

whenever |x− y| < r ≤ dG.

For a locally integrable function f on G, set

∥f∥Lp(·)(G) = inf

{
λ > 0 :

∫
G

(
|f(y)|
λ

)p(y)

dy ≤ 1

}
;

in what follows, set f = 0 outside G. We denote by Lp(·)(G) the family of locally
integrable functions f on G satisfying ∥f∥Lp(·)(G) < ∞.

Lemma 2.2. Let 0 < q < ∞. Then

(1)

∫ 2dG

0

(
ω(x, r)∥f∥Lp(·)(A(x,r))

)q
dr/r ∼

∞∑
j=1

(
ω(x, 2−j+1dG)∥f∥Lp(·)(A(x,2−j+1dG))

)q
;

(2)

∫ 2dG

0

(
ω(x, r)∥f∥Lp(·)(B(x,r))

)q
dr/r ∼

∞∑
j=1

(
ω(x, 2−j+1dG)∥f∥Lp(·)(B(x,2−j+1dG))

)q
;

and

(3)

∫ 2dG

0

(
ω(x, r)∥f∥Lp(·)(G\B(x,r))

)q
dr/r ∼

∞∑
j=1

(
ω(x, 2−jdG)∥f∥Lp(·)(G\B(x,2−jdG))

)q
for all x ∈ G and measurable functions f on G.
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Proof. We only prove (1), since the remaining assertions can be proved similarly.
Since A(x, r) ⊃ B(x, 3t/2) \ B(x, t) when 3t/2 < r < 2t ≤ 2dG, we have by (ω1)
and (ω2)∫ 2t

3t/2

(
ω(x, r)∥f∥Lp(·)(A(x,r))

)q
dr/r ≥ C

(
ω(x, t)∥f∥Lp(·)(B(x,3t/2)\B(x,t))

)q
and similarly, we have∫ 3t/2

t

(
ω(x, r)∥f∥Lp(·)(A(x,r))

)q
dr/r ≥ C

(
ω(x, t)∥f∥Lp(·)(B(x,t)\B(x,3t/4))

)q
.

Thus∫ 2t

t

(
ω(x, r)∥f∥Lp(·)(A(x,r))

)q
dr/r ≥ C

(
ω(x, t)∥f∥Lp(·)(B(x,3t/2)\B(x,3t/4))

)q
.

Therefore, letting 3t/2 = 2−j+1dG for a positive integer j, we see that∫ 2−j+2dG

2−jdG

(
ω(x, r)∥f∥Lp(·)(A(x,r))

)q
dr/r ≥ C

(
ω(x, 2−j+1dG)∥f∥Lp(·)(A(x,2−j+1dG))

)q
,

so that∫ 2dG

0

(
ω(x, r)∥f∥Lp(·)(A(x,r))

)q
dr/r ≥ 1

2

∞∑
j=1

∫ 2−j+2dG

2−jdG

(
ω(x, r)∥f∥Lp(·)(A(x,r))

)q
dr/r

≥ C
∞∑
j=1

(
ω(x, 2−j+1dG)∥f∥Lp(·)(A(x,2−j+1dG))

)q
.

The converse inequality is easily obtained.

Further, we obtain the next result.

Lemma 2.3. Suppose 0 < q ≤ ∞. If ∥f∥hp(·),q,ω(G) ≤ 1, then there exists a constant

C > 0 such that ∥f∥hp(·),∞,ω(G) ≤ C, for h = H{x0},H{x0},H{x0},H,H.

By Lemma 2.1, we have the following result.

Lemma 2.4. There is a constant C > 0 such that∫
B(x0,r)

|f(y)|p(y)dy ≤ Cω(x0, r)
−p(x0)

when x0 ∈ G, 0 < r < dG and ω(x0, r)∥f∥Lp(·)(B(x0,r)) ≤ 1.

Lemma 2.5. There is a constant C > 0 such that

1

|A(x0, r)|

∫
A(x0,r)

|f(y)|dy ≤ Cr−n/p(x0)ω(x0, r)
−1

when x0 ∈ G, 0 < r < dG and ω(x0, r)∥f∥Lp(·)(A(x0,r)) ≤ 1.
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Proof. Fix x0 ∈ G and 0 < r < dG. Let f be a nonnegative measurable function
on G satisfying ω(x0, r)∥f∥Lp(·)(A(x0,r)) ≤ 1. Then we have by (P2) and Lemmas
2.1 and 2.4,

1

|A(x0, r)|

∫
A(x0,r)

f(y)dy

≤ r−n/p(x0)ω(x0, r)
−1 +

1

|A(x0, r)|

∫
A(x0,r)

f(y)

(
f(y)

r−n/p(x0)ω(x0, r)−1

)p(y)−1

dy

≤ r−n/p(x0)ω(x0, r)
−1 + C

(
r−n/p(x0)ω(x0, r)

−1
)1−p(x0) 1

|A(x0, r)|

∫
A(x0,r)

f(y)p(y)dy

≤ Cr−n/p(x0)ω(x0, r)
−1,

as required.

3 Boundedness of the maximal operator for q =

∞
Let us consider the following conditions: let η ∈ Ω(G) and x0 ∈ G.

(ω3.1) There exists a constant Q > 0 such that∫ r

0

tn−n/p(x0)ω(x0, t)
−1dt

t
≤ Qrn−n/p(x0)η(x0, r)

−1

for all 0 < r ≤ dG; and

(ω3.2) there exists a constant Q > 0 such that∫ 2dG

r

t−n/p(x0)ω(x0, t)
−1dt

t
≤ Qr−n/p(x0)η(x0, r)

−1

for all 0 < r ≤ dG.
By the doubling condition on ω, one notes from (ω3.1) or (ω3.2) that

ω(x0, r)
−1 ≤ Cη(x0, r)

−1.

Lemma 3.1. If (ω3.1) and (ω3.2) hold for all x0 ∈ G with the same constant Q,
then there is a constant C > 0 such that∫

B(x,r)

|f(y)|dy ≤ Crn−n/p(x)η(x, r)−1

and ∫
G\B(x,r)

|f(y)||x− y|−ndy ≤ Cr−n/p(x)η(x, r)−1

for all x ∈ G, 0 < r ≤ dG and f with ∥f∥Hp(·),∞,ω(G) ≤ 1.
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Proof. Let f be a nonnegative measurable function on G satisfying ∥f∥Hp(·),∞,ω(G) ≤
1. By Lemma 2.5 and (ω3.1), we have∫

B(x,r)

f(y)dy =
∞∑
j=1

∫
A(x,2−j+1r)

f(y)dy

≤ C
∞∑
j=1

(2−jr)n−n/p(x)ω(x, 2−jr)−1

≤ Crn−n/p(x)η(x, r)−1.

Similarly, we obtain by use of Lemma 2.5 and (ω3.2)∫
G\B(x,r)

|f(y)||x− y|−ndy ≤ C
∑

j≥1,2j−1r≤dG

(2jr)−n

∫
A(x,2jr)

f(y)dy

≤ C
∑

j≥1,2j−1r≤dG

(2jr)−n/p(x)ω(x, 2jr)−1

≤ Cr−n/p(x)η(x, r)−1,

as required.

For a locally integrable function f on G, the Hardy-Littlewood maximal oper-
ator M is defined by

Mf(x) = sup
r>0

1

|B(x, r)|

∫
B(x,r)

|f(y)|dy;

recall that f = 0 outside G. Now we state the celebrated result by Diening [13].

Lemma 3.2. The maximal operator M is bounded in Lp(·)(G), that is, there exists
a constant C > 0 such that

∥Mf∥Lp(·)(G) ≤ C∥f∥Lp(·)(G).

Theorem 3.3. If (ω3.1) and (ω3.2) hold for all x0 ∈ G with the same constant Q,
then the maximal operator M is bounded from Hp(·),∞,ω(G) to Hp(·),∞,η(G).

Guliyev, Hasanov and Samko [21, 22] proved that if (ω3.2) holds for all x0 ∈
G with the same constant Q, then the maximal operator M is bounded from
Hp(·),∞,ω(G) to Hp(·),∞,η(G) and if (ω3.1) holds for x0 ∈ G, then the maximal

operator M is bounded from Hp(·),∞,ω

{x0} (G) to Hp(·),∞,η

{x0} (G).

Proof of Theorem 3.3. Let f be a nonnegative measurable function on G such that
∥f∥Hp(·),∞,ω(G) ≤ 1. For x ∈ G and 0 < r < dG, it suffices to show that

∥Mf∥Lp(·)(A(x,r)) ≤ Cη(x, r)−1.

For this purpose, set

f = fχG\B(x,2r) + fχB(x,2r)\B(x,r/4) + fχB(x,r/4) = f1 + f2 + f3,
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where χE denotes the characteristic function of E. We note from Lemma 3.2 that

∥Mf2∥Lp(·)(A(x,r)) ≤ C∥f2∥Lp(·)(G)

≤ C∥f2∥Lp(·)(B(x,2r)\B(x,r/4))

≤ C{∥f2∥Lp(·)(B(x,2r)\B(x,r)) + ∥f2∥Lp(·)(B(x,r)\B(x,r/2))

+ ∥f2∥Lp(·)(B(x,r/2)\B(x,r/4))}
≤ Cω(x, r)−1

≤ Cη(x, r)−1.

For z ∈ A(x, r), Lemma 3.1 gives

Mf3(z) ≤ Cr−n

∫
B(x,r/4)

f(y)dy ≤ Cr−n/p(x)η(x, r)−1,

so that

∥Mf3∥Lp(·)(A(x,r)) ≤ Cr−n/p(x)η(x, r)−1∥1∥Lp(·)(A(x,r)) ≤ Cη(x, r)−1.

Moreover, Lemma 3.1 again gives

Mf1(z) ≤ C

∫
G\B(x,2r)

f(y)|x− y|−ndy ≤ Cr−n/p(x)η(x, r)−1

and hence

∥Mf1∥Lp(·)(A(x,r)) ≤ Cr−n/p(x)η(x, r)−1∥1∥Lp(·)(A(x,r)) ≤ Cη(x, r)−1,

as required.

Remark 3.4. If the conditions on ω hold at x0 ∈ G only, then one can see that
M is bounded from Hp(·),∞,ω

{x0} (G) to Hp(·),∞,η
{x0} (G).

Corollary 3.5. For bounded functions ν(·) : G → (−∞,∞) and β(·) : G →
(−∞,∞), set ω(x, r) = rν(x)(log(2dG/r))

β(x). If−n/p+ < ν− ≤ ν+ < n (1− 1/p−),
then the maximal operator M is bounded in Hp(·),∞,ω(G).

Define

ω∗(x, r) =

(∫ r

0

ω(x, t)−1 dt

t

)−1

and

ω∗(x, r) =

(∫ 2dG

r

ω(x, t)−1 dt

t

)−1

for x ∈ G and 0 < r ≤ dG.

Theorem 3.6. (1) If ω∗(·, dG) is bounded inG, thenHp(·),∞,ω(G) ⊂ Hp(·)∞,ω∗(G).

(2) For each x0 ∈ G, Hp(·),∞,ω
{x0} (G) ⊂ Hp(·)∞,ω∗

{x0} (G).
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Proof. Let f be a measurable function on G such that ∥f∥Hp(·),∞,ω(G) ≤ 1. We show
only (1), because (2) can be proved similarly.

For (1) , we see that

∥f∥Lp(·)(B(x,r)) ≤
∞∑
j=1

∥f∥Lp(·)(A(x,2−j+1r)) ≤
∞∑
j=1

ω(x, 2−jr)−1 ≤ Cω∗(x, r)
−1

for all x ∈ G and 0 < r ≤ dG, as required.

Remark 3.7. Let ω(x, r) = (log(2dG/r))
β(x)+1 for a bounded function β(·) : G →

(−∞,∞).

(1) If ess infx∈G β(x) > 0, then

ω∗(x, r) ∼
(
log

2dG
r

)β(x)

for all x ∈ G and 0 < r < dG; and

(2) if β(x0) < 0 for x0 ∈ G, then

ω∗(x0, r) ∼
(
log

2dG
r

)β(x0)

for all 0 < r < dG.

Remark 3.8. Let ω(x, r) = rν(x) for a bounded function ν(·) : G → (−∞,∞).

(1) If ess supx∈G ν(x) < 0, then

ω∗(x, r) ∼ ω(x, r)

for all x ∈ G and 0 < r < dG; and

(2) if ν(x0) > 0 for x0 ∈ G, then

ω∗(x0, r) ∼ ω(x0, r).

for all 0 < r < dG.

Corollary 3.9. (1) Suppose (ω3.1) and (ω3.2) hold for all x0 ∈ G with the
same constant Q. If ω∗(·, dG) is bounded in G, then the maximal operator
M is bounded from Hp(·),∞,ω(G) to Hp(·),∞,ω∗(G).

(2) If (ω3.1) and (ω3.2) hold for x0 ∈ G, then the maximal operator M is

bounded from Hp(·),∞,ω
{x0} (G) to Hp(·),∞,ω∗

{x0} (G).

Remark 3.10. Let us consider a singular integral operator T associated with a
standard kernel k(x, y) in [15, Section 6.3] such that

|k(x, y)| ≤ K1|x− y|−n

for all x, y ∈ Rn and
∥Tf∥Lp(·)(Rn) ≤ K2∥f∥Lp(·)(Rn)

for all f ∈ Lp(·)(Rn).
If (ω3.1) and (ω3.2) hold for all x0 ∈ G with the same constant Q, then every

singular integral operator T is bounded from Hp(·),∞,ω(G) to Hp(·),∞,η(G).
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4 Sobolev’s inequality for q = ∞
We consider the following condition: let η ∈ Ω(G) and x0 ∈ G.

(ω4.1) For 0 < α < n, there exists a constant Q > 0 such that∫ 2dG

r

tα−n/p(x)ω(x, t)−1dt

t
≤ Qrα−n/p(x)η(x, r)−1

for all 0 < r < dG.
As in the proof of Lemma 3.1, we have the following result.

Lemma 4.1. If (ω4.1) holds for all x0 ∈ G with the same constant Q, then there
is a constant C > 0 such that∫

G\B(x,r)

|x− y|α−n|f(y)|dy ≤ Crα−n/p(x)η(x, r)−1

for all x ∈ G, 0 < r < dG and f with ∥f∥Hp(·),∞,ω(G) ≤ 1.

For 0 < α < n, the Riesz potential Iαf is defined by

Iαf(x) = Iα ∗ f(x) =
∫
G

|x− y|α−nf(y)dy

for measurable functions f on G; and define

1

p♯(x)
=

1

p(x)
− α

n
.

Let us begin with Sobolev’s inequality proved by Diening [14, Theorem 5.2]:

Lemma 4.2. If 0 < α < n/p+, then there exists a constant C > 0 such that

∥Iαf∥Lp♯(·)(G)
≤ C∥f∥Lp(·)(G)

for all f ∈ Lp(·)(G).

Our result is stated in the following:

Theorem 4.3. Let 0 < α < n/p+. If (ω3.1) and (ω4.1) hold for all x0 ∈ G with
the same constant Q, then there exists a constant C > 0 such that

∥Iαf∥Hp♯(·),∞,η(G)
≤ C∥f∥Hp(·),∞,ω(G)

for all f ∈ Hp(·),∞,ω(G).

In view of Guliyev, Hasanov and Samko [21, 22], if (ω4.1) holds for all x0 ∈ G
with the same constant Q, then there exists a constant C > 0 such that

∥Iαf∥Hp♯(·),∞,η(G)
≤ C∥f∥Hp(·),∞,ω(G)

for all f ∈ Hp(·),∞,ω(G) and if (ω3.1) holds for x0 ∈ G, then there exists a constant
C > 0 (which may depend on x0) such that

∥Iαf∥Hp♯(·),∞,η
{x0}

(G)
≤ C∥f∥Hp(·),∞,ω

{x0}
(G)

for all f ∈ Hp(·),∞,ω

{x0} (G).

10



Proof of Theorem 4.3. Let f be a nonnegative measurable function on G such that
∥f∥Hp(·),∞,ω(G) ≤ 1. For x ∈ G and 0 < r < dG, we have only to show the inequality

∥Iαf∥Lp♯(·)(A(x,r))
≤ Cη(x, r)−1.

Set

f = fχG\B(x,2r) + fχB(x,2r)\B(x,r/4) + fχB(x,r/4) = f1 + f2 + f3,

as before. We note from Lemma 4.2 that

∥Iαf2∥Lp♯(·)(A(x,r))
≤ C∥f2∥Lp(·)(G)

≤ C∥f2∥Lp(·)(B(x,2r)\B(x,r/4))

≤ Cω(x, r)−1

≤ Cη(x, r)−1.

If z ∈ A(x, r), then Lemma 3.1 gives

Iαf3(z) ≤ Crα−n

∫
B(x,r/4)

f(y)dy ≤ Crα−n/p(x)η(x, r)−1,

so that

∥Iαf3∥Lp♯(·)(A(x,r))
≤ Crα−n/p(x)η(x, r)−1∥1∥

Lp♯(·)(A(x,r))
≤ Cη(x, r)−1.

Moreover, Lemma 4.1 gives

Iαf1(z) ≤
∫
G\B(x,2r)

|x− y|α−nf(y)dy ≤ Crα−n/p(x)η(x, r)−1,

so that

∥Iαf1∥Lp♯(·)(A(x,r))
≤ Crα−n/p(x)η(x, r)−1∥1∥

Lp♯(·)(A(x,r))
≤ Cη(x, r)−1,

as required.

Corollary 4.4. Let 0 < α < n/p+ and let ν, β and ω be as in Corollary 3.5. If
α− n/p+ < ν− ≤ ν+ < n(1− 1/p−), then there exists a constant C > 0 such that

∥Iαf∥Hp♯(·),∞,ω(G)
≤ C∥f∥Hp(·),∞,ω(G)

for all f ∈ Hp(·),∞,ω(G).

Corollary 4.5. Assume that 0 < α < n/p+.

(1) Suppose (ω3.1) and (ω4.1) hold for all x0 ∈ G with the same constant Q. If
ω∗(·, dG) is bounded in G, then the operator Iα is bounded from Hp(·),∞,ω(G)

to Hp♯(·),∞,ω∗
(G).

(2) If (ω3.1) and (ω4.1) hold for x0 ∈ G, then the operator Iα is bounded from

Hp(·),∞,ω
{x0} (G) to Hp♯(·),∞,ω∗

{x0} (G).
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5 Exponential integrability for q = ∞
Set

E1(x, t) = exp
(
tq(x)

)
− 1,

where 1/p(x) + 1/q(x) = 1. For a locally integrable function f on G, set

∥f∥LE1(G) = inf

{
λ > 0 :

∫
G

E1

(
x,

|f(y)|
λ

)
dy ≤ 1

}
.

We denote by LE1(G) the class of locally integrable functions f on G satisfying
∥f∥LE1 (G) < ∞.

In connection with Hp(·),q,ω(G), let us consider HE1,q,ω(G) of all functions f
satisfying

∥f∥HE1,q,ω(G) = sup
x0∈G

(∫ 2dG

0

(
ω(x0, r)∥f∥LE1 (A(x0,r))

)q dr

r

)1/q

< ∞.

Similarly, we define HE1,q,ω(G) and HE1,q,ω

{x0} (G).

Lemma 5.1.
∥1∥LE1 (B(x,r)) ∼ (log(1 + 1/r))−1/q(x)

for all x ∈ G and 0 < r < dG.

Lemma 5.2 ([28, Theorem 4.1, Corollary 4.2]). If α ≥ n/p−, then there exists a
constant C > 0 such that

∥Iαf∥LE1 (G) ≤ C∥f∥Lp(·)(G)

for all f ∈ Lp(·)(G).

Our result is stated in the following:

Theorem 5.3. Let α ≥ n/p−.

(1) If (ω3.1) and (ω4.1) hold for all x0 ∈ G with the same constant Q, then there
exists a constant C > 0 such that

∥Iαf∥HE1,∞,η(G) ≤ C∥f∥Hp(·),∞,ω(G)

for all f ∈ Hp(·),∞,ω(G).

(2) If (ω4.1) holds for all x0 ∈ G with the same constant Q, then there exists a
constant C > 0 such that

∥Iαf∥HE1,∞,η(G) ≤ C∥f∥Hp(·),∞,ω(G)

for all f ∈ Hp(·),∞,ω(G).
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(3) If (ω3.1) holds for x0 ∈ G, then there exists a constant C > 0 (which may
depend on x0) such that

∥Iαf∥HE1,∞,η

{x0}
(G)

≤ C∥f∥Hp(·),∞,ω
{x0}

(G)

for all f ∈ Hp(·),∞,ω

{x0} (G).

Proof. We give only a proof of assertion (1). Let f be a nonnegative measurable
function on G such that ∥f∥Hp(·),∞,ω(G) ≤ 1. We have only to show the inequality

∥Iαf∥LE1 (A(x,r)) ≤ Cη(x, r)−1

for all x ∈ G and 0 < r < dG. Set

f = fχG\B(x,2r) + fχB(x,2r)\B(x,r/4) + fχB(x,r/4) = f1 + f2 + f3,

as before. We note from Lemma 5.2 that

∥Iαf2∥LE1(A(x,r)) ≤ C∥f2∥Lp(·)(B(x,2r)\B(x,r/4)) ≤ Cη(x, r)−1.

If z ∈ A(x, r), then Lemma 3.1 gives

Iαf3(z) ≤ Crα−n

∫
B(x,r/4)

f(y)dy ≤ Cη(x, r)−1

since α ≥ n/p−, so that

∥Iαf3∥LE1 (A(x,r)) ≤ Cη(x, r)−1∥1∥LE1 (A(x,r)) ≤ Cη(x, r)−1

by Lemma 5.1. Moreover, Lemma 4.1 gives

Iαf1(z) ≤ C

∫
G\B(x,2r)

|x− y|α−nf(y)dy ≤ Cη(x, r)−1

since α ≥ n/p−, so that

∥Iαf1∥LE1 (A(x,r)) ≤ Cη(x, r)−1∥1∥LE1 (A(x,r)) ≤ Cη(x, r)−1,

as required.

Corollary 5.4. Let α ≥ n/p− and let ν, β and ω be as in Corollary 3.5.

(1) When α − n/p+ < ν− ≤ ν+ < n(1 − 1/p−), there exists a constant C > 0
such that

∥Iαf∥HE1,∞,ω(G) ≤ C∥f∥Hp(·),∞,ω(G)

for all f ∈ Hp(·),∞,ω(G).

(2) When α− n/p+ < ν−, there exists a constant C > 0 such that

∥Iαf∥HE1,∞,ω(G) ≤ C∥f∥Hp(·),∞,ω(G)

for all f ∈ Hp(·),∞,ω(G).

(3) When ν(x0) < n(1 − 1/p(x0)) for x0 ∈ G, there exists a constant C > 0
(which may depend on x0) such that

∥Iαf∥HE1,∞,ω

{x0}
(G)

≤ C∥f∥Hp(·),∞,ω
{x0}

(G)

for all f ∈ Hp(·),∞,ω

{x0} (G).
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6 Associate spaces of Hp(·),∞,ω

{x0} (G)

Recall that for x0 ∈ G and measurable functions f on G,

∥f∥Hp(·),∞,ω
{x0}

(G)
= sup

0<t<dG

ω(x0, t)∥f∥Lp(·)(G\B(x0,t))

and

∥f∥Hp(·),1,ω
{x0}

(G)
=

∫ 2dG

0

ω(x0, t)∥f∥Lp(·)(B(x0,t))

dt

t
.

Remark 6.1. Let x0 ∈ G. Note here that if ω(x0, 0) = ∞, then ∥f∥Hp(·),∞,ω
{x0}

(G)
< ∞

if and only if f = 0 a.e.. Hence we may assume that ω(x0, 0) = 0 and then ω(x0, ·)
is uniformly almost increasing on (0,∞) when ∥f∥Hp(·),∞,ω

{x0}
(G)

< ∞.

By the above remark, in this section, suppose

ω(x, 0) = 0 for all x ∈ G.

For x ∈ G and 0 < t < dG, we set

p+(B(x, t)) = sup
y∈B(x,t)

p(y),

as before. We define 1/q(x) = 1− 1/p(x).
Following Di Fratta and Fiorenza [17], we have the following Hölder type in-

equality for log-type weights.

Theorem 6.2. For x0 ∈ G, suppose

(ω6.1) there exist constants b,Q > 0 such that∫ t

0

(
log

2dG
r

)−bp(x0)−1

ω(x0, r)
−p+(B(x0,t))

dr

r
≤ Q

(
log

2dG
t

)−bp(x0)

ω(x0, t)
−p(x0)

for all 0 < t < dG.

Then there exists a constant C > 0 such that∫
G

|f(x)g(x)|dx ≤ C∥f∥Hq(·),1,η
{x0}

(G)
∥g∥Hp(·),∞,ω

{x0}
(G)

for all measurable functions f and g on G, where

η(x0, r) =

(
log

2dG
r

)−1

ω(x0, r)
−1.
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Proof. Let x0 ∈ G. Let f and g be nonnegative measurable functions on G such
that ∥f∥Hq(·),1,η

{x0}
(G)

≤ 1 and ∥g∥Hp(·),∞,ω
{x0}

(G)
≤ 1. We have by Fubini’s theorem and

Hölder’s inequality∫
G

f(x)g(x)dx

=

∫
G

f(x)g(x)

(
b

(
log

2dG
|x− x0|

)−b ∫ 2dG

|x−x0|

(
log

2dG
t

)b−1
dt

t

)
dx

= b

∫ 2dG

0

(∫
B(x0,t)

f(x)g(x)

(
log

2dG
|x− x0|

)−b

dx

)(
log

2dG
t

)b−1
dt

t

≤ C

∫ 2dG

0

∥f∥Lq(·)(B(x0,t))

∥∥∥∥∥g
(
log

2dG
| · −x0|

)−b
∥∥∥∥∥
Lp(·)(B(x0,t))

(
log

2dG
t

)b−1
dt

t
.

Here it suffices to show∥∥∥∥∥g
(
log

2dG
| · −x0|

)−b
∥∥∥∥∥
Lp(·)(B(x0,t))

≤ C

(
log

2dG
t

)−b

ω(x0, t)
−1 = C

(
log

2dG
t

)−b+1

η(x0, t)

for 0 < t < dG. In fact, we obtain

∫
B(x0,t)

(
g(x)

(log(2dG/t))
−b ω(x0, t)−1

)p(x)(
log

2dG
|x− x0|

)−bp(x)

dx

≤ C

∫
B(x0,t)

(
g(x)

(log(2dG/t))
−b ω(x0, t)−1

)p(x)(
log

2dG
|x− x0|

)−bp(x0)

dx

≤ C

∫
B(x0,t)

(
g(x)

(log(2dG/t))
−b ω(x0, t)−1

)p(x)(∫ |x−x0|

0

(
log

2dG
r

)−bp(x0)−1
dr

r

)
dx

≤ C

∫ t

0

(∫
B(x0,t)\B(x0,r)

g(x)p(x)
(
log

2dG
t

)bp(x)

ω(x0, t)
p(x)

(
log

2dG
r

)−bp(x0)−1

dx

)
dr

r

≤ C

(
log

2dG
t

)bp(x0)

ω(x0, t)
p(x0)

∫ t

0

(
log

2dG
r

)−bp(x0)−1

×

(∫
B(x0,t)\B(x0,r)

(
g(x)

∥g∥Lp(·)(G\B(x0,r))

)p(x)

∥g∥p(x)
Lp(·)(G\B(x0,r))

dx

)
dr

r

≤ C

(
log

2dG
t

)bp(x0)

ω(x0, t)
p(x0)

∫ t

0

(
log

2dG
r

)−bp(x0)−1

ω(x0, r)
−p+(B(x0,t))

dr

r

≤ C

by (P2), Lemma 2.1 and (ω6.1).

Power weights can be treated simpler than Theorem 6.2 in the following manner.

Theorem 6.3. For x0 ∈ G, suppose
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(ω6.2) there exist constants b,Q > 0 such that∫ t

0

rbω(x0, r)
−1dr

r
≤ Qtbω(x0, t)

−1

for all 0 < t < dG.

Then there exists a constant C > 0 such that∫
G

|f(x)g(x)|dx ≤ C∥f∥Hq(·),1,η
{x0}

(G)
∥g∥Hp(·),∞,ω

{x0}
(G)

for all measurable functions f and g on G, where η(x0, r) = ω(x0, r)
−1.

Proof. Let x0 ∈ G. Let f and g be nonnegative measurable functions on G such
that ∥f∥Hq(·),1,η

{x0}
(G)

≤ 1 and ∥g∥Hp(·),∞,ω
{x0}

(G)
≤ 1. For b > 0, we have by Fubini’s

theorem and Hölder’s inequality∫
G

f(x)g(x)dx ≤ C

∫ 2dG

0

(∫
B(x0,t)

f(x)g(x)|x− x0|bdx
)
t−bdt

t

≤ C

∫ 2dG

0

∥f∥Lq(·)(B(x0,t))

∥∥g| · −x0|b
∥∥
Lp(·)(B(x0,t))

t−bdt

t
.

First, we show that∥∥g| · −x0|b
∥∥
Lp(·)(B(x0,2s)\B(x0,s))

≤ Csbω(x0, s)
−1 ≤ Csbη(x0, s)

for all 0 < s < dG. In fact, we obtain∫
B(x0,2s)\B(x0,s)

(
g(x)

sbω(x0, s)−1

)p(x)

|x− x0|bp(x)dx

≤ C

∫
B(x0,2s)\B(x0,s)

(
g(x)

∥g∥Lp(·)(B(x0,2s)\B(x0,s))

)p(x) (
ω(x0, s)∥g∥Lp(·)(B(x0,2s)\B(x0,s))

)p(x)
dx

≤ C

by (P2) and Lemma 2.1, which gives

∥∥g| · −x0|b
∥∥
Lp(·)(B(x0,t))

≤
∞∑
j=1

∥∥g| · −x0|b
∥∥
Lp(·)(B(x0,2−j+1t)\B(x0,2−jt))

≤ C

∫ t

0

rbω(x0, r)
−1dr

r

≤ Ctbω(x0, t)
−1

by (ω6.2). Thus we obtain the required result.

Theorem 6.4. Let η(·, ·) ∈ Ω(G). For x0 ∈ G, suppose
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(ω6.3) there exists a constant Q > 0 such that∫ 2dG

t

η(x0, r)
dr

r
≤ Qω(x0, t)

−1

for all 0 < t < dG.

Then there exists a constant C > 0 such that

∥f∥Hq(·),1,η
{x0}

(G)
≤ C sup

g

∫
G

|f(x)g(x)|dx

for all measurable functions f on G, where the supremum is taken over all mea-

surable functions g on G such that ∥g∥X ≤ 1 with X = Hp(·),∞,ω

{x0} (G).

Proof. Let x0 ∈ G. Let f be a nonnegative measurable function on G. To show
the claim, we may assume that

sup
g

∫
G

|f(x)g(x)|dx ≤ 1,

where the supremum is taken over all measurable functions g on G such that
∥g∥X ≤ 1. Take a compact set K ⊂ G \ {x0}. Since Lp(·)(K) = {gχK : g ∈
Lp(·)(G)} ⊂ X, fχK ∈ Lq(·)(G), in view of [25] or [16, Theorem 3.2.13]. By (ω6.3),
we find

∥fχK∥Hq(·),1,η
{x0}

(G)
< ∞

and, moreover, we have by Lemma 2.2∑
j∈N0

η(x0, 2
−j+1dG)Fj ∼ ∥fχK∥Hq(·),1,η

{x0}
(G)

,

where Fj = ∥fj∥Lq(·)(G), fj = fχK∩B(x0,2−j+1dG) and N0 is the set of positive integers
j such that Fj > 0. Set

g(x) =
∑
j∈N0

η(x0, 2
−j+1dG)|fj(x)/Fj|q(x)−2fj(x)/Fj.

Then we see that

∥g∥Lp(·)(G\B(x0,r)) ≤
∑

j∈N0,2−j+1dG>r

η(x0, 2
−j+1dG)∥|fj/Fj|q(·)−2fj/Fj∥Lp(·)(G)

≤
∑

j≥1,2−j+1dG>r

η(x0, 2
−j+1dG)

≤ Cω(x0, r)
−1

for all 0 < r < dG by (ω6.3) and hence

∥g∥Hp(·),∞,ω
{x0}

(G)
≤ C.
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Consequently it follows that∫
G

f(x)g(x)dx =
∑
j∈N0

η(x0, 2
−j+1dG)

∫
G

f(x)|fj(x)/Fj|q(x)−2fj(x)/Fjdx

=
∑
j∈N0

η(x0, 2
−j+1dG)Fj

≥ C∥fχK∥Hq(·),1,η
{x0}

(G)
.

Hence, by the monotone convergence theorem, we have

sup
g

∫
G

f(x)g(x)dx ≥ C∥f∥Hq(·),1,η
{x0}

(G)
,

which gives the required inequality.

Let X be a family of measurable functions on G with a norm ∥ · ∥X . Then the
associate space X ′ of X is defined as the family of all measurable functions f on
G such that

∥f∥X′ = sup
g∈X:∥g∥X≤1

∫
G

|f(x)g(x)|dx < ∞.

Theorems 6.2, 6.3 and 6.4 give the following result.

Corollary 6.5. For x0 ∈ G, suppose (ω6.1) and (ω6.3) hold. Then(
Hp(·),∞,ω

{x0} (G)
)′

= Hq(·),1,η
{x0} (G),

where η(x0, r) =
(
log 2dG

r

)−1
ω(x0, r)

−1. If (ω6.2) and (ω6.3) hold, then the same
conclusion is fulfilled with η(x0, r) = ω(x0, r)

−1.

For 0 < q ≤ ∞, set

H̃p(·),q,ω(G) =
∑
x0∈G

Hp(·),q,ω
{x0} (G),

whose quasi-norm is defined by

∥f∥H̃p(·),q,ω(G) = inf
|f |=

∑
j |fj |,{xj}⊂G

∑
j

∥fj∥Hp(·),q,ω
{xj}

(G)
.

The Hölder type inequality in Theorem 6.2 or 6.3, under the same assumptions,
implies ∫

G

|f(x)g(x)|dx =
∑
j

∫
G

|f(x)gj(x)|dx

≤ C∥f∥Hq(·),1,η(G)

∑
j

∥gj∥Hp(·),∞,ω
{xj}

(G)
,

so that ∫
G

|f(x)g(x)|dx ≤ C∥f∥Hq(·),1,η(G)∥g∥H̃p(·),∞,ω(G).

Theorem 6.4 gives the converse inequality.
Theorems 6.2, 6.3 and 6.4 give the following result.
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Corollary 6.6. If (ω6.1) and (ω6.3) hold for all x0 ∈ G with the same constant
Q, then (

H̃p(·),∞,ω(G)
)′

= Hq(·),1,η(G),

where η(x0, r) =
(
log 2dG

r

)−1
ω(x0, r)

−1. If (ω6.2) and (ω6.3) hold for all x0 ∈ G
with the same constant Q, then the same conclusion is fulfilled with η(x0, r) =
ω(x0, r)

−1.

Remark 6.7. For 0 < q ≤ ∞, set

Hp(·),q,ω
(G) =

∩
x0∈G

Hp(·),q,ω
{x0} (G)

and define the norm

∥f∥Hp(·),q,ω
(G)

= sup
x0∈G

∥f∥Hp(·),q,ω
{x0}

(G)
,

as usual. Then note that

Hp(·),∞,ω
(G) =

{
Lp(·)(G) ω(x, 0) = 0 for all x ∈ G;
{0} ω(x, 0) = ∞ for all x ∈ G.

For related results, we refer the reader to the paper by Di Fratta and Fiorenza
[17] with logarithmic weights, and the paper by Gagatishvili and Mustafayev [19]
with general weights.

Remark 6.8. If ω(t) = (log(2dG/t))
−a with a > 0, then (ω6.1) and (ω6.3) hold for

η(t) = (log(2dG/t))
a−1; and if ω(t) = ra with a > 0, then (ω6.2) and (ω6.3) hold

for η(t) = t−a.

7 Associate spaces of Hp(·),∞,ω
{x0} (G)

Recall that for x0 ∈ G and measurable functions f on G,

∥f∥Hp(·),∞,ω
{x0}

(G)
= sup

0<t<dG

ω(x0, t)∥f∥Lp(·)(B(x0,t))

and

∥f∥Hp(·),1,ω
{x0}

(G)
=

∫ 2dG

0

ω(x0, t)∥f∥Lp(·)(G\B(x0,t))

dt

t
.

We have the Hölder type inequality for log type weights ω.

Theorem 7.1. For x0 ∈ G, suppose

(ω7.1) there exist constants r0, b, Q > 0 such that∫ 2r0

t

((
log

2dG
t

)b

ω(x0, t)
−1

)cp/ log(2dG/r)((
log

2dG
r

)b

ω(x0, r)
−1

)p(x0)

×
(
log

2dG
r

)−1
dr

r
≤ Q

((
log

2dG
t

)b

ω(x0, t)
−1

)p(x0)

for all 0 < t < r0.
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Then there exists a constant C > 0 such that∫
G

|f(x)g(x)|dx ≤ C∥f∥Hq(·),1,η
{x0}

(G)
∥g∥Hp(·),∞,ω

{x0}
(G)

for all measurable functions f , g on G, where η(x0, r) =
(
log 2dG

r

)−1
ω(x0, r)

−1.

Proof. Let x0 ∈ G. Let f and g be nonnegative measurable functions on G such
that ∥f∥Hq(·),1,η

{x0}
(G)

≤ 1 and ∥g∥Hp(·),∞,ω
{x0}

(G)
≤ 1. For b > 0 we have by Fubini’s

theorem and Hölder’s inequality∫
G

f(x)g(x)dx ≤ C

∫ dG

0

∥f∥Lq(·)(G\B(x0,t))

∥∥∥∥∥g
(
log

2dG
| · −x0|

)b
∥∥∥∥∥
Lp(·)(G\B(x0,t))

×
(
log

2dG
t

)−b−1
dt

t
,

as in the proof of Theorem 6.2. It suffices to show∥∥∥∥∥g
(
log

2dG
| · −x0|

)b
∥∥∥∥∥
Lp(·)(G\B(x0,t))

≤ C

(
log

2dG
t

)b

ω(x0, t)
−1 = C

(
log

2dG
t

)b+1

η(x0, t)

for all 0 < t < dG. In fact, we obtain for 0 < r0 < dG∫
B(x0,r0)\B(x0,t)

(
g(x)

(log(2dG/t))
b ω(x0, t)−1

)p(x)(
log

2dG
|x− x0|

)bp(x)

dx

≤ C

∫
B(x0,r0)\B(x0,t)

(
g(x)

(log(2dG/t))
b ω(x0, t)−1

)p(x)(
log

2dG
|x− x0|

)bp(x0)

dx

≤ C

∫
B(x0,r0)\B(x0,t)

(
g(x)

(log(2dG/t))
b ω(x0, t)−1

)p(x)(∫ 2r0

|x−x0|

(
log

2dG
r

)bp(x0)−1
dr

r

)
dx

≤ C

∫ 2r0

t

∫
B(x0,r)\B(x0,t)

g(x)p(x)

((
log

2dG
t

)−b

ω(x0, t)

)p(x)(
log

2dG
r

)bp(x0)−1

dx

 dr

r

≤ C

(
log

2dG
t

)−bp(x0)

ω(x0, t)
p(x0)

∫ 2r0

t

((
log

2dG
t

)b

ω(x0, t)
−1

)cp/ log(2dG/r)

×
(
log

2dG
r

)bp(x0)−1(∫
B(x0,r)

g(x)p(x)dx

)
dr

r

≤ C

(
log

2dG
t

)−bp(x0)

ω(x0, t)
p(x0)

∫ 2r0

t

((
log

2dG
t

)b

ω(x0, t)
−1

)cp/ log(2dG/r)

×

((
log

2dG
r

)b

ω(x0, r)
−1

)p(x0)(
log

2dG
r

)−1
dr

r

≤ C

(
log

2dG
t

)−bp(x0)

ω(x0, t)
p(x0)

((
log

2dG
t

)b

ω(x0, t)
−1

)p(x0)

≤ C
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by (P2), condition (ω7.1) and Lemmas 2.1 and 2.4, which gives∥∥∥∥∥g
(
log

2dG
| · −x0|

)b
∥∥∥∥∥
Lp(·)(B(x0,r0)\B(x0,t))

≤ C

(
log

2dG
t

)b

ω(x0, t)
−1

for all 0 < t < r0. Moreover,∥∥∥∥∥g
(
log

2dG
| · −x0|

)b
∥∥∥∥∥
Lp(·)(G\B(x0,r0))

≤ C ∥g∥Lp(·)(G\B(x0,r0))
≤ C,

which completes the proof.

Remark 7.2. We show that ω(t) = (log(2dG/t))
a with a > 0 satisfies (ω7.1). To

show this, for b, c > 0 one can find constants r0, Q > 0 such that∫ 2r0

t

(
log

2dG
t

)c/ log(2dG/r)(
log

2dG
r

)b−1
dr

r
≤ Q

(
log

2dG
t

)b

for all 0 < t < r0 and x0 ∈ G. In fact, first find 0 < r0 < dG/e such that

ε = 1/ log(dG/r0) < b/2c, and note for t̃ = 2dGe
−(log(2dG/t))1/2∫ t̃

t

(
log

2dG
t

)c/ log(2dG/r)(
log

2dG
r

)b−1
dr

r
≤ C

∫ 2dG

t

(
log

2dG
r

)b−1
dr

r

≤ Q

(
log

2dG
t

)b

since (log(2dG/t))
c/ log(2dG/r) ≤ C for all t < r < t̃ and∫ 2r0

t̃

(
log

2dG
t

)c/ log(2dG/r)(
log

2dG
r

)b−1
dr

r
≤ C

(
log

2dG
t

)cε ∫ 2r0

t̃

(
log

2dG
r

)b−1
dr

r

≤ Q

(
log

2dG
t

)cε+b/2

≤ Q

(
log

2dG
t

)b

,

as required.

For power weights ω, we obtain the following result.

Theorem 7.3. For x0 ∈ G, suppose

(ω7.2) there exist constants b,Q > 0 such that∫ 2dG

t

r−bω(x0, r)
−1dr

r
≤ Qr−bω(x0, t)

−1

for all 0 < t < dG.

Then there exists a constant C > 0 such that∫
G

|f(x)g(x)|dx ≤ C∥f∥Hq(·),1,η
{x0}

(G)
∥g∥Hp(·),∞,ω

{x0}
(G)

for all measurable functions f , g on G, where η(x0, r) = ω(x0, r)
−1.
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As in the proof of Theorem 6.4, we have the following result.

Theorem 7.4. Let η(·, ·) ∈ Ω(G). For x0 ∈ G, suppose

(ω7.3) there exists a constant Q > 0 such that∫ t

0

η(x0, r)
dr

r
≤ Qω(x0, t)

−1

for all 0 < t < dG.

Then there exists a constant C > 0 such that

∥f∥H{x0}
q(·),1,η(G)

≤ C sup
g

∫
G

|f(x)g(x)|dx

for all measurable functions f on G, where the supremum is taken over all mea-
surable functions g on G such that ∥g∥X ≤ 1 with X = Hp(·),∞,ω

{x0} (G).

Theorems 7.1, 7.3 and 7.4 give the following result.

Corollary 7.5. If (ω7.1) and (ω7.3) hold for x0 ∈ G, then(
Hp(·),∞,ω

{x0} (G)
)′

= Hq(·),1,η
{x0} (G),

where η(x0, r) =
(
log 2dG

r

)−1
ω(x0, r)

−1. If (ω7.2) and (ω7.3) hold for x0 ∈ G, then
the same conclusion is fulfilled with η(x0, r) = ω(x0, r)

−1.

Remark 7.6. If ω(t) = (log(2dG/t))
a with a > 0, then (ω7.1) and (ω7.3) hold for

η(t) = (log(2dG/t))
−a−1; and if ω(t) = t−a with a > 0, then (ω7.2) and (ω7.3) hold

for η(t) = ta.

For 0 < q ≤ ∞, we may consider

H
∼

p(·),q,ω(G) =
∑
x0∈G

Hp(·),q,ω
{x0} (G),

whose quasi-norm is defined by

∥f∥H
∼

p(·),q,ω(G) = inf
|f |=

∑
j |fj |,{xj}⊂G

∑
j

∥fj∥Hp(·),q,ω
{xj}

(G)
.

One can show that
H
∼

p(·),q,ω(G) = Lp(·)(G).

For this, we only show the inclusion Lp(·)(G) ⊂ H
∼

p(·),q,ω(G). Take f ∈ Lp(·)(G)

and x1, x2 ∈ G (x1 ̸= x2). Write

f = fχB(x2,|x1−x2|/2) + fχG\B(x2,|x1−x2|/2) = f1 + f2.
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Then

∥f1∥Hp(·),q,ω
{x1}

(G)
≤

(∫ 2dG

|x1−x2|/2

(
ω(x1, r)∥f1∥Lp(·)(B(x1,r))

)q
dr/r

)1/q

≤ ∥f1∥Lp(·)(G)

(∫ 2dG

|x1−x2|/2
ω(x1, r)

qdr/r

)1/q

= A∥f1∥Lp(·)(G)

and

∥f2∥Hp(·),q,ω
{x2}

(G)
≤

(∫ 2dG

|x1−x2|/2

(
ω(x2, r)∥f2∥Lp(·)(B(x2,r))

)q
dr/r

)1/q

≤ ∥f2∥Lp(·)(G)

(∫ 2dG

|x1−x2|/2
ω(x2, r)

qdr/r

)1/q

= B∥f2∥Lp(·)(G).

Hence

∥f∥H
∼

p(·),q,ω(G) ≤ ∥f1∥Hp(·),q,ω
{x1}

(G)
+ ∥f2∥Hp(·),q,ω

{x2}
(G)

≤ A∥f1∥Lp(·)(G) +B∥f2∥Lp(·)(G)

≤ (A+B)∥f∥Lp(·)(G) < ∞,

as required.

8 Associate spaces of Hp(·),1,ω
{x0} (G)

Theorem 8.1. Let η(·, ·) ∈ Ω(G), x0 ∈ G and X = Hp(·),1,ω
{x0} (G). Suppose

(ω8.1) there exists a constant Q > 0 such that∫ 2dG

t

ω(x0, r)
dr

r
≤ Qη(x0, t)

−1

for all 0 < t < dG.

Then there exists a constant C > 0 such that

∥f∥Hq(·),∞,η
{x0}

(G)
≤ C∥f∥X′

for all measurable functions f on G.

Proof. Let x0 ∈ G. First we show∫
G\B(x0,R)

f(x)g(x)dx ≤ Cη(x0, R)−1∥g∥Lp(·)(G\B(x0,R))∥f∥X′ (8.1)

for 0 < R < dG and nonnegative measurable functions f, g on G. To show this, we
consider

h = η(x0, R)gχG\B(x0,R)/∥g∥Lp(·)(G\B(x0,R))
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when 0 < ∥g∥Lp(·)(G\B(x0,R)) < ∞. Then we have by (ω8.1)∫ 2dG

0

ω(x0, t)∥h∥Lp(·)(B(x0,t))

dt

t
≤ η(x0, R)

∫ 2dG

R

ω(x0, t)
dt

t
≤ C,

and hence ∫
G\B(x0,R)

f(x)h(x)dx ≤ C∥f∥X′ .

Now we obtain∫
G\B(x0,R)

f(x)g(x)dx ≤ Cη(x0, R)−1∥g∥Lp(·)(G\B(x0,R))∥f∥X′ .

If we take g(x) = |f(x)/∥f∥Lq(·)(G\B(x0,R))|q(x)−1χG\B(x0,R) when 0 < ∥f∥Lq(·)(G\B(x0,R)) <
∞, then we have by (8.1)

1 =

∫
G\B(x0,R)

{f(x)/∥f∥Lq(·)(G\B(x0,R))}q(x)dx

≤ Cη(x0, R)−1∥{f/∥f∥Lq(·)(G\B(x0,R))}q(·)−1∥Lp(·)(G\B(x0,R))∥f/∥f∥Lq(·)(G\B(x0,R))∥X′

≤ Cη(x0, R)−1
{
∥f∥Lq(·)(G\B(x0,R))

}−1 ∥f∥X′ ,

which shows

η(x0, R)∥f∥Lq(·)(G\B(x0,R)) ≤ C∥f∥X′ .

Thus it follows that

∥f∥Hq(·),∞,η
{x0}

(G)
≤ C∥f∥X′ ,

as required.

Corollary 8.2. If (ω8.1) holds for x0 ∈ G and (ω6.1) holds for x0 ∈ G, η and
q(·), then (

Hp(·),1,ω
{x0} (G)

)′
= Hq(·),∞,η

{x0} (G),

where η(x0, r) =
(
log 2dG

r

)−1
ω(x0, r)

−1. If (ω8.1) holds for x0 ∈ G and (ω6.2)
holds for x0 ∈ G, η and q(·), then the same conclusion is fulfilled with η(x0, r) =
ω(x0, r)

−1.

As in Fiorenza-Rakotoson [18, Corollary 1], we see that the associate and dual

spaces of Hp(·),1,ω
{x0} (G) coincides with each other.

Remark 8.3. If ω(t) = (log(2dG/t))
−1/a with a > 1, then (ω8.1) holds for η(t) =

(log(2dG/t))
−1/a′ ; and if ω(t) = t−a with a > 0, then (ω8.1) holds for η(t) = ta.
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9 Associate space of Hp(·),1,ω
{x0} (G)

As in the proof of Theorem 8.1, we have the following result.

Theorem 9.1. Let η(·, ·) ∈ Ω(G), x0 ∈ G and X = Hp(·),1,ω
{x0} (G). Suppose

(ω9.1) there exists a constant Q > 0 such that∫ t

0

ω(x0, r)
dr

r
≤ Qη(x0, t)

−1

for all 0 < t < dG.

Then there exists a constant C > 0 such that

∥f∥Hq(·),∞,η
{x0}

(G)
≤ C∥f∥X′

for all measurable functions f on G.

Corollary 9.2. If (ω9.1) holds for x0 ∈ G and (ω7.1) holds for x0 ∈ G, η and
q(·), then (

Hp(·),1,ω
{x0} (G)

)′
= Hq(·),∞,η

{x0} (G),

where η(x0, r) =
(
log 2dG

r

)−1
ω(x0, r)

−1. If (ω9.1) holds for x0 ∈ G and (ω7.2)
holds for x0 ∈ G, η and q(·), then the same conclusion is fulfilled with η(x0, r) =
ω(x0, r)

−1.

Corollary 9.3. If (ω9.1) holds for all x0 ∈ G with the same constant Q and
(ω7.1) holds for η, q(·) and all x0 ∈ G with the same constant Q, then(

H̃p(·),1,ω(G)
)′

= Hq(·),∞,η(G),

where η(x0, r) =
(
log 2dG

r

)−1
ω(x0, r)

−1. If (ω9.1) holds for all x0 ∈ G with the same
constant Q and (ω7.2) holds for η, q(·) and all x0 ∈ G with the same constant Q,
then the same conclusion is fulfilled with η(x0, r) = ω(x0, r)

−1.

This corollary gives a characterization of Morrey spaces of variable exponents;
see also the paper by Gogatishvili and Mustafayev [19] for constant exponents.

Remark 9.4. If ω(t) = (log(2dG/t))
−a−1 with a > 0, then (ω9.1) holds for η(t) =

(log(2dG/t))
a; and if ω(t) = ta with a > 0, then (ω9.1) holds for η(t) = t−a.

10 Grand and small Lebesgue spaces

Following Capone-Fiorenza [11], for 0 < θ < 1 and measurable functions f on the
unit ball B = B(0, 1), we define the norm

∥f∥Hp(·),∞,θ
{0} (B)

= sup
0<t<1

(
log

2

t

)−θ/p(0)

∥f∥Lp(·)(B\B(0,t))

and
∥f∥Lp(·)−0,θ(B) = sup

0<ε<p−−1

εθ/p(0)∥f∥Lp(·)−ε(B).
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Theorem 10.1. There exists a constant C > 0 such that

∥f∥Lp(·)−0,θ(B) ≤ C∥f∥Hp(·),∞,θ
{0} (B)

for all measurable functions f on B.

Proof. Let f be a nonnegative measurable function on B such that ∥f∥Hp(·),∞,θ
{0} (B)

≤
1 or ∫

B\B(0,t)

((
log

2

t

)−θ/p(0)

f(x)

)p(x)

dx ≤ 1 (10.1)

for all 0 < t < 1. For 0 < ε < p− − 1, we take 0 < s < 1 such that ε =
(p− − 1)(log 2)/ log(2/s). We have∫

B\B(0,s)

(
εθ/p(0)f(x)

)p(x)−ε
dx ≤

∫
B\B(0,s)

1 dx+

∫
B\B(0,s)

(
εθ/p(0)f(x)

)p(x)
dx

≤ C.

By multiplying (10.1) by (log(2/t))−b−1 for (large) b > 1, integration gives

∫ r

0

(
log

2

t

)−b−1
dt

t
≥

∫ r

0

(
log

2

t

)−b−1
∫

B(0,r)\B(0,t)

((
log

2

t

)−θ/p(0)

f(x)

)p(x)

dx

 dt

t

≥
∫ r

0

(
log

2

t

)−b−1
(∫

B(0,r)\B(0,t)

(
log

2

t

)−θ−cp/ log(2/|x|)

f(x)p(x)dx

)
dt

t

=

∫
B(0,r)

f(x)p(x)

(∫ |x|

0

(
log

2

t

)−b−1−θ−cp/ log(2/|x|) dt

t

)
dx

≥ C

∫
B(0,r)

f(x)p(x)
(
log

2

|x|

)−b−θ

dx,

or ∫
B(0,r)

f(x)p(x)
(
log

2

|x|

)−b−θ

dx ≤ C

(
log

2

r

)−b

for 0 < r < 1.
First consider the case when

A =

∫
B(0,s)

(
log

2

|x|

)(p(0)−ε)(θ+b)/ε

dx ≥ 1.
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For k > 1, we obtain∫
B(0,s)

(
εθ/p(0)f(x)

)p(x)−ε
dx

≤
∫
B(0,s)

(
εkA−1/p(0)

(
log

2

|x|

)(θ+b)/ε
)p(x)−ε

dx

+

∫
B(0,s)

(
εθ/p(0)f(x)

)p(x)−ε

(
εθ/p(0)f(x)

εkA−1/p(0) (log(2/|x|))(θ+b)/ε

)ε

dx

≤ C

{
εkp(0)

∫
B(0,s)

A−(p(x)−ε)/p(0)

(
log

2

|x|

)(p(0)−ε)(θ+b)/ε

dx

+ εθAε/p(0)

∫
B(0,s)

f(x)p(x)
(
log

2

|x|

)−(θ+b)

dx

}
since εp(x)−ε ≤ Cεp(0) by (P2) for all x ∈ B(0, s). Since log(2/t) ≤ (2a/a)t−a for
0 < t < 1 and a = ε/{2(p(0)− ε)(θ + b)}, we find

A ≤
∫
B(0,s)

(
2a

a
|x|−a

)1/(2a)

dx ≤
(
2a

a

)1/(2a) ∫
B

|x|−1/2dx ≤ Ca−1/(2a),

so that we have by (P2)

A−p(x)/p(0) ≤ CA−1+cε/p(0) for x ∈ B(0, s) and some constant c > 0

and
Aε/p(0) ≤ Cε−(b+θ).

Hence we have∫
B(0,s)

(
εθ/p(0)f(x)

)p(x)−ε
dx

≤ C

{
εkp(0)A−(p(0)−(1+c)ε)/p(0)

∫
B(0,s)

(
log

2

|x|

)(p(0)−ε)(θ+b)/ε

dx

+ εθAε/p(0)

∫
B(0,s)

f(x)p(x)
(
log

2

|x|

)−(θ+b)

dx

}
≤ C

{
εkp(0)Aε(1+c)/p(0) + εθAε/p(0)

∫
B(0,s)

f(x)p(x)
(
log

2

|x|

)−(θ+b)

dx

}
≤ C

{
εkp(0)Aε(1+c)/p(0) + εθ+bAε/p(0)

}
≤ C

{
εkp(0)−(b+θ)(1+c) + 1

}
.

If we take b and k such that kp(0) − (b + θ)(1 + c) ≥ 0, then the present case
is obtained.
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If A ≤ 1, then we obtain by (P2)∫
B(0,s)

(
εθ/p(0)f(x)

)p(x)−ε
dx ≤

∫
B(0,s)

(
log

2

|x|

)(θ+b)(p(x)−ε)/ε

dx

+

∫
B(0,s)

(
εθ/p(0)f(x)

)p(x)−ε

(
εθ/p(0)f(x)

(log(2/|x|))(θ+b)/ε

)ε

dx

≤ C +

∫
B(0,s)

(
εθ/p(0)f(x)

)p(x)(
log

2

|x|

)−(θ+b)

dx

≤ C

{
1 + εθ

∫
B(0,s)

f(x)p(x)
(
log

2

|x|

)−(θ+b)

dx

}

≤ C

{
1 + εθ

(
log

2

s

)−b
}

≤ C,

which completes the proof.

Given f on Rn, recall the definition of the symmetric decreasing rearrangement
of f by

f ⋆(x) =

∫ ∞

0

χEf (t)⋆(x)dt,

where E⋆ = {x : |B(0, |x|)| < |E|} and Ef (t) = {y : |f(y)| > t}; see Burchard [6].

Theorem 10.2. There exists a constant C > 0 such that

∥f ⋆∥Hp(·),∞,θ
{0} (B)

≤ C∥f ⋆∥Lp(·)−0,θ(B)

for all measurable functions f on B.

Proof. Let f be a nonnegative measurable function onB such that ∥f ⋆∥Lp(·)−0,θ(B) ≤
1. Note that ∫

B\B(0,t/2)

(
ε−θ/p(0)f ⋆(x)

)p(x)−ε
dx ≤ 1 (10.2)

for all 0 < t < 1 and ε = (p− − 1)(log 2)/ log(2/t). We have∫
B\B(0,t)

(
ε−θ/p(0)f ⋆(x)

)p(x)
dx ≤ C

(
1

|B(0, t) \B(0, t/2)|

∫
B(0,t)\B(0,t/2)

f ⋆(x)dx

)ε

×
∫
B\B(0,t)

ε−θp(x)/p(0)f ⋆(x)p(x)−εdx

since f ⋆ is radially decreasing. Set

I =
1

|B(0, t) \B(0, t/2)|

∫
B(0,t)\B(0,t/2)

f ⋆(x)dx

and

J =

(
1

|B(0, t) \B(0, t/2)|

∫
B(0,t)\B(0,t/2)

f ⋆(x)p(x)−εdx

)1/(p(0)−ε)

.
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If J ≥ 1, then we have by (10.2)

I ≤ J + C
1

|B(0, t) \B(0, t/2)|

∫
B(0,t)\B(0,t/2)

f ⋆(x)

(
f ⋆(x)

J

)p(x)−ε−1

dx

≤ J + CJ−p(0)+ε+1 1

|B(0, t) \B(0, t/2)|

∫
B(0,t)\B(0,t/2)

f ⋆(x)p(x)−εdx

≤ CJ

by (P2) since J ≤ Ct−n/p(0) for all 0 < t < 1 and if J ≤ 1, then

I ≤ 1 +
1

|B(0, t) \B(0, t/2)|

∫
B(0,t)\B(0,t/2)

f ⋆(x)p(x)−εdx ≤ C.

Hence

Iε ≤ C
(
t−nε/p(0) + 1

)
≤ C,

so that∫
B\B(0,t)

(
ε−θ/p(0)f ⋆(x)

)p(x)
dx ≤ C

∫
B\B(0,t/2)

(
ε−θ/p(0)f ⋆(x)

)p(x)−ε
dx ≤ C,

which completes the proof.
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