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Abstract

In this paper, we consider the Herz-Morrey space H?C(ngw(G) of variable
exponent consisting of all measurable functions f on a bounded open set
G C R" satisfying

2dg q 1/q
HfHHI{j(zg,}q’W(G) = (/0 (w(x07T)||f”LP(‘)(B(:ro,r)\B(zg,r/Q))) d’l"/?“) < 00,

and set Hp(')’q""(G) = ﬂxoeG H?gif’w((}).
Our first aim in this paper is to give the boundedness of the maximal

and Riesz potential operators in H?():%“ (@) when ¢ = occ.
In connection with H?go)f’w(G) and HP()2 (@), let us consider the fami-

lies ﬂ?gg’}q’w(G), HPL99(@), ﬂ’{’g’}q’“(G) and HP()4¢(@). Following Fiorenza-
Rakotoson [18], Di Fratta-Fiorenza [17] and Gogatishvili-Mustafayev [19], we

next discuss the duality properties among these Herz-Morrey spaces.

1 Introduction

Let R™ denote the n-dimensional Euclidean space. We denote by B(z,r) the open
ball centered at = of radius r, and by |F| the Lebesgue measure of a measurable
set ' C R™.

It is well known that the maximal operator is bounded in the Lebesgue space
LP(R™) if p > 1 (see [34]). In [12], the boundedness of the maximal operator is still
valid by replacing the Lebesgue space by several Morrey spaces; the original one
was introduced by Morrey [30] to estimate solutions of partial differential equations;
for Morrey spaces, we also refer to Peetre [32] and Nakai [31].

One of important applications of the boundedness of the maximal operator is
Sobolev’s inequality; in the classical case,

1o * fHLpﬁ(Rn) < C’”JCHLP(R")
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for f e LP(R"), 0 < a<nand 1 < p<n/a, where I, is the Riesz kernel of order
a and 1/pf = 1/p — a/n (see, e.g. [2, Theorem 3.1.4]). Sobolev’s inequality for
Morrey spaces was given by Adams [1] (also [12]). Further, Sobolev’s inequality
was also studied on generalized Morrey spaces (see [31]). This result was extended
to local and global Morrey type spaces by Burenkov, Gogatishvili, Guliyev and
Mustafayev [8] (see also [7, 9, 10]). The local Morrey type spaces are also called
Herz spaces introduced by Herz [23]. In our paper, those Morrey type spaces are
referred to as Herz-Morrey spaces.

In [13], Diening showed that the maximal operator is bounded on the variable
exponent Lebesgue space LP()(R™") if the variable exponent p(-), which is a constant
outside a ball, satisfies the locally log-Holder condition and inf p(x) > 1 (see condi-
tion (P2) in Section 2). In the mean time, variable exponent Lebesgue spaces were
used to discuss nonlinear partial differential equations with non-standard growth
condition. These spaces have attracted more and more attention, in connection
with the study of elasticity and fluid mechanics; see [16], [33]. On the other hand,
variable exponent Morrey or Herz versions were discussed in [4, 5, 24, 26, 29].

Let G be a bounded open set in R™, whose diameter is denoted by dg. Let

w(+ ) Gx(0,00) — (0, 00) be a uniformly almost monotone function on G x (0, 00)
satisfying the uniformly doubling condition. For xq € G 0 < ¢ < oo and a variable
exponent p(-), we consider the Herz-Morrey space ’Hf{’ f’ (G) of variable exponent
consisting of all measurable functions f on G satlsfylng

2dg 1/q
||f||;_[;{)g())}q,w(0) = (/0 (w(l'm )Hf”Lp( ) (B(xo,r)\B(x0,r/2)) ) dT’/?“) < 005
when g = oo,

||f||Hz{>i-(>)}oo»w(G) = 05&% w(o, )”f”LP() B(zo,r)\B(zo,r/2)) < O
G

Set

= () HL(@),

oG

whose norm is defined by

HfHHpr(G) = wsoue% Hf||Hz{w;g,}q,w(G).

In connection with ’Hfgxf’w(G), let us consider the families ﬂ?gg’}%w(G) and
g?;g’}q’w(G) of all functions f on G satisfying

2dc dr 1/q
q
g = ([ @il L) <o
“Hazo} 0 r

and

2dc . dr 1/q
’|f|’ﬁ?('>}qv“’(g) = (A (w(x()?T)HfHLP(')(G\B(Io,T‘))) _> < o0,
0



respectively. In the paper by Fiorenza and Rakotoson [18], the Herz-Morrey space

_?gg’}q’w(G) is referred to as the generalized Lorentz space denoted by GT'(p, q,w).

Note here that

W )sq,w -),q,w
HIO(G) U (G) © M (G).

Similarly we consider the space

= () HL(@).

oG

whose norm is defined by
),q,w = su 9,0 .
Hf”ﬂp()q (@) xoe%Hf“Hﬁ;g}q @

Our first aim in this paper is to establish the boundedness of the maximal
operator and the Riesz potential operator in H?)>>*(G); when ¢ < oo, we refer
to [27]. In the borderline case, Trudinger’s exponential integrability is discussed.

Next, following Di Fratta-Fiorenza [17] and Gogatishvili-Mustafayev [19] , we
study the duality properties among those Herz- Morrey spaces. In particular, we
show the associate spaces of ﬂ?gg’}oo’w(G) and H{IO} “(@), which give another
characterizations of Morrey spaces by Adams-Xiao [3] (see also [20]).

2 Preliminaries

Throughout this paper, let C' denote various constants independent of the variables
in question. The symbol g ~ h means that C~'h < g < Ch for some constant
C > 1. Set A(z,r) = B(z,r) \ B(z,r/2).
Consider a function p(-) on G such that

(P1) 1<p =infieqp(z) <sup,eqp(z) = pt < oo
and
(P2) p(-) is log-Holder continuous, namely

%
log(2dg/|z — yl)
with a constant ¢, > 0; p(-) is referred to as a variable exponent.

We also consider the family 2(G) of all positive functions w(-,-) : G x (0,00) —
(0, 00) satisfying the following conditions:

Ip(z) —p(y)| < forz,y € G

(w0) w(x,0) =lim, ,,ow(z,r) =0 for all z € G or w(z,0) = co for all x € G;

(wl) w(z,-) is uniformly almost monotone on (0, c0), that is, there exists a con-
stant ()1 > 0 such that w(z,-) is uniformly almost increasing on (0, 00), that is,

w(z,r) < Qw(z,s) forallze Gand0<r<s
or w(x,-) is uniformly almost decreasing on (0, 00), that is,

w(z,s) < Qw(x,r) forallz € Gand 0 <7r < s;



(w2) w(x,-) is uniformly doubling on (0, 00), that is, there exists a constant Qo > 0
such that

Q5 w(z,r) < w(z,2r) < Qow(x,r) forall x € G and r > 0;
and
(w3) there exists a constant Q3 > 0 such that
Q3 <w(x,1) < Q3 forall x € G.
Then one can find constants a,b > 0 and C' > 1 such that
Cre <w(w,r) < Cr? (2.1)

forall z € G and 0 < r < dg.
For later use, it is convenient to note the following result, which is proved by
(P1), (P2) and (2.1).

LEMMA 2.1. There exists a constant C > 0 such that
w(z, r)p(””) < Cuw(x, r)p(y)
whenever |z —y| <r < dg.

For a locally integrable function f on G, set

p(y)
||f||Lp<.)<G):mf{bo;/(}(@) dygl};

in what follows, set f = 0 outside G. We denote by LP*)(G) the family of locally
integrable functions f on G satisfying || f| »¢)(q) < oc.

LEMMA 2.2. Let 0 < ¢ < oo. Then

2d¢g e .
(1) /0 (@@, I F oo agoay) * dr/r > (@@, 277 de) || fll oo aa-r+1a0y) '
7j=1
2dg ] ;
(2) /0 (w(a, )Nl ) dr/r ~ Z (2, 277 )| f | o (Ba2-s+1a6))) 5

and
2d¢ .
(3) / (w(x T)HfHLP() G\Bwr dr/r ~ Z w(z,277dg) HfHLP< ) (G\B(z,2~ Jdc)))
0

for all z € G and measurable functions f on G.



Proof. We only prove (1), since the remaining assertions can be proved similarly.
Since A(z,r) D B(x,3t/2) \ B(x,t) when 3t/2 < r < 2t < 2dg, we have by (wl)
and (w2)

2t
/ (W(=’75 )| f1l ot V(A(z,r)) ) dr/r > C( (xvt)Hf||LP(')(B(:c,3t/2)\B(z,t)))q
3

t/2

and similarly, we have
3t/2
q
| @l an)” e/ 2 © (@l |l astasnsan)
t
Thus
2t
q q
/ (w(xvT)HfHLP(')(A(a:,r))) dr/r>C (w(ﬂ%75)||f||LPM(B(x,st/z)\B(a;,3t/4))) .
t

Therefore, letting 3t/2 = 279t 1dg for a positive integer j, we see that

279124, ]
/2 (w(a, M) Fll oo a@ay)” dr/r = C (w(@, 277 de) |l o (a@a-s+1de))

so that
2dg 1 o0 2-I+24
q
/ (w(@, Moo aery)” dr/r > 52/ ’ (W, Il oo agay) dr/r
0 j=1v27dg

> (@, 27 ) |1l oo aa-seagy)
j=1

The converse inequality is easily obtained. ]
Further, we obtain the next result.

LEMMA 2.3. Suppose 0 < q < oco. If Hf“hp(.),q,w(g) < 1, then there exists a constant
C > 0 such that || f||ppe)c0w(q) < C, for h = H{xo},ﬂ{xo},ﬁ{xo},ﬂ,ﬂ.

By Lemma 2.1, we have the following result.

LEMMA 2.4. There is a constant C' > 0 such that
/ |f ()P dy < Cuw (g, r) 7P+
B(zo,r)

when zg € G, 0 <1 < dg and w(zo, )| fl e (5 <1

B(zo,r))

LEMMA 2.5. There is a constant C > 0 such that
|A(zo,7)| / y)ldy < Cr="Pe0u (g, r) !
) A(zo,r)

when zg € G, 0 <1 < dg and w(zo, 7)|| f|l o) (Ao < 1-

A(zo,r)



Proof. Fix zyp € G and 0 < r < dg. Let f be a nonnegative measurable function
on G satisfying w(zo, )| fl| 1p) (Ao < 1. Then we have by (P2) and Lemmas
2.1 and 2.4,

1
|A(ZL‘0, T)| A(zo,r)

! L, OB
< p—n/p(w0) 1 d
=T (A)(.ZU(),’I“) + |A(I‘0,T)| /A(xom) f(y) (T_n/p(xo)u}(l‘o,’l")_l Yy

) 1 / ()
T [y dy
|A(IO7 T)| A(zo,r)

f(y)dy

< r*”/ﬁ(wo)w(xo’ 7,)71 +C (rfn/p(xo)w(xo’ 7,)71)1—17(10
< C’T_”/p(”m)w(mo, r)

as required. O

3 Boundedness of the maximal operator for ¢ =
00

Let us consider the following conditions: let n € Q(G) and zy € G.
(w3.1) There exists a constant ) > 0 such that

" dt
/ t"—n/p(wo)w(xo’t)—l? < an—n/p(xo)n(xo’ 7“)_1
0

for all 0 < r < dg; and
(w3.2) there exists a constant ) > 0 such that

2de dt
/ I, )75 < Qr Iy g, )

for all 0 < r < dg.
By the doubling condition on w, one notes from (w3.1) or (w3.2) that

w(xo,r)_l < Cn(xg,r)_l.

LEMMA 3.1. If (w3.1) and (w3.2) hold for all zy € G with the same constant @,
then there is a constant C' > 0 such that

/ Wy < Oy
B(x,r

and
/ |fW)||lz — y|"dy < Cr~ Pz, r) 7!
G\B(z,r)

forallz € G, 0 <r < dg and f with || f|l3pe).c0w(qy < 1.



Proof. Let f be a nonnegative measurable function on G satisfying || f{|3p().00.0(q) <
1. By Lemma 2.5 and (w3.1), we have

[ sy = %;[;gﬁwfwMy

< C Z(Q’jr)"’"/p(’”)w(x, 27 Ip)~t

=1
< C’r"’"/p(””)n(x, 7’)’1.

Similarly, we obtain by use of Lemma 2.5 and (w3.2)

— C J.\—n
Lo e =sia < ¢ S @n [

j>1,2i71r<dg

< C Z (2j7’)’”/p(z)w(:c, 2]'7“)’1

212~ 1r<dg
< Cr (e, )7

as required. O

For a locally integrable function f on G, the Hardy-Littlewood maximal oper-
ator M is defined by

Miw) = sp e [ 1wy

recall that f = 0 outside G. Now we state the celebrated result by Diening [13].

LEMMA 3.2. The maximal operator M is bounded in LP")(G), that is, there exists
a constant C' > 0 such that

IMFllror ey < ClFllro6)-

THEOREM 3.3. If (w3.1) and (w3.2) hold for all xy € G with the same constant (),
then the maximal operator M is bounded from HP)>«(G) to HPL)=on(G).

Guliyev, Hasanov and Samko [21, 22| proved that if (w3.2) holds for all z, €
G with the same constant (), then the maximal operator M is bounded from
HPOw (@) to HPON(G) and if (w3.1) holds for zy € G, then the maximal

operator M is bounded from ﬁl{)iz}oow(G) to ﬁ?iz}oon(G)

Proof of Theorem 3.3. Let f be a nonnegative measurable function on G such that
[ fll3400).000(y < 1. For x € G and 0 < r < dg, it suffices to show that

IMFll oo Ay < Cnlz, )~

For this purpose, set
[ = fxe\B@2r) + [XB@2)\B@r/a) + [XB@ra = fi + fa+ fs,

7



where xg denotes the characteristic function of E. We note from Lemma 3.2 that

IMfallroa@ry < Cllfallro@
< Cllfall o) (B 2\ B /a))
< C{llfallroy B @) T 12lleo (B B@r2)
+ 1 f2ll o) (B 20\ B a0
< Cuw(z,r)™!
< On(z,r)™

For z € A(x,r), Lemma 3.1 gives

Mfy(z) < Crm / F)dy < Cr P (e, vy,
B(z,r/4)

so that
M 3]l v (a@ry) < Cr_n/p(m)n(xaT)_1||1||LP(')(A(ac,r)) < C(z,r)~".

Moreover, Lemma 3.1 again gives

Mfi(z) < C fy)lz —y|dy < CrPOy(z,r)~
G\B(z,2r)

and hence
M1l oo agery < CrP (@, ) 1 oo (aery < Cnla,r) ™,
as required. O

REMARK 3.4. If the condltlons on w hold at xg € G only, then one can see that
M is bounded from Hp )OOW(G) to Hpgg’}oo’n(G).

COROLLARY 3.5. For bounded functions v(-) : G — (—o0,00) and () : G —
(—00,00), set w(x,r) = 1@ (log(2dg/r))?®). If — n/p <v - <vt<n(l-1/p7),
then the maximal operator M is bounded in HPO»><(G).

(1) = (/Orw(m,t)_l %)1
W (r) = ([dcw(x,t)—l %) h

forx e Gand 0 <r <dg.

Define

and

THEOREM 3.6. (1) Ifw,(-,dg) is bounded in G, then HP0)>#(G) C HPW®w(q),

(2) For each xy € G, ’Hp( ) Oow(G) C ﬂ?g?w*(G)-



Proof. Let f be a measurable function on G such that || f||3p().00 () < 1. We show
only (1), because (2) can be proved similarly.
For (1) , we see that

o0

1 F 1 o) By < Z £l o)A@ 2-+17)) < Zw(%?_jr)_l < Cw,(z,7)"
j=1 j=1

for all z € G and 0 < r < dg, as required. ]

REMARK 3.7. Let w(z,r) = (log(2dg/r))? ™™ for a bounded function 8(:) : G —
(—00, 00).

(1) If essinf,cq S(z) > 0, then

wi(z, 1) ~ (log —G)
”

forall z € G and 0 < r < dg; and
(2) if B(zo) < 0 for zp € G, then

2 /B(ID)
w*(xg, 1) ~ (log %)

forall 0 < r < dg.
REMARK 3.8. Let w(z,r) = 7"® for a bounded function v(-) : G — (—00, c0).
(1) If esssup,eq v(z) < 0, then
wi(z, 1) ~w(z,T)
forall z € G and 0 < r < dg; and
(2) if v(xg) > 0 for z¢ € G, then
w*(zo, 1) ~ w(xo, ).
for all 0 < r < dg.
COROLLARY 3.9. (1) Suppose (w3.1) and (w3.2) hold for all o € G with the

same constant Q). If w.(-,dg) is bounded in G, then the maximal operator
M is bounded from HP)(G) to HP 0w ().
(2) If (w3.1) and (w3.2) hold for xy € G, then the maximal operator M is
+),00,w a7 (')7007“)*
bounded from H?i,z} (G) to H?mo} (G).
REMARK 3.10. Let us consider a singular integral operator 7" associated with a
standard kernel k(x,y) in [15, Section 6.3] such that
k2, y)] < Kilo —y[™"
for all x,y € R™ and
1T fll ey ey < Kall fll o) ey
for all f € LPO(R™).
If (w3.1) and (w3.2) hold for all xy € G with the same constant (), then every
singular integral operator T is bounded from H?()>«(G) to HPO)>1(G).



4 Sobolev’s inequality for ¢ = oo

We consider the following condition: let n € Q(G) and z( € G.
(w4.1) For 0 < a < n, there exists a constant ¢ > 0 such that

2da dt
/ (o (a, 1) < Qren Iy ()
for all 0 < r < dg.

As in the proof of Lemma 3.1, we have the following result.
LEMMA 4.1. If (w4.1) holds for all xo € G with the same constant ), then there
is a constant C' > 0 such that

[ el wldy < Cr )
G\B(z,r)

forallz € G, 0 <1 < dg and f with || f|l3p().000(q) < 1.

For 0 < a < n, the Riesz potential I, f is defined by

If(2) = L * f(2) = /G & — y° " F(y)dy

for measurable functions f on G; and define
1 1 o}

p(x)  plx) n
Let us begin with Sobolev’s inequality proved by Diening [14, Theorem 5.2]:
LEMMA 4.2. If 0 < o < n/p", then there exists a constant C > 0 such that

H[afHLpM)(G) < CHfHLP(A)(G)
for all f € LPO(G).
Our result is stated in the following:

THEOREM 4.3. Let 0 < a < n/p*. If (w3.1) and (w4.1) hold for all zqg € G with
the same constant (), then there exists a constant C' > 0 such that

Mo llsger ey < Cllf ey

for all f € HPO>o(@).

In view of Guliyev, Hasanov and Samko [21, 22|, if (w4.1) holds for all zy € G
with the same constant (), then there exists a constant C' > 0 such that

"Iaf"ﬂpu('),oo,n(g) S CHfHﬂP(‘)#”M(G)

for all f € HP**(@) and if (w3.1) holds for =y € G, then there exists a constant
C' > 0 (which may depend on () such that
< 7p(+),00,w
||Iaf||ﬂ?ii);oon(a) — CH‘f”H?;g} “(@)

(+),00,w
zo}

for all f € ﬂz{) (G).

10



Proof of Theorem 4.3. Let f be a nonnegative measurable function on GG such that
[ fll34p0).00.0(y < 1. For z € G and 0 < r < dg, we have only to show the inequality

Hjaf”[,pﬁ(-)(A(x,r)) < 077(1’77“)_1-
Set
[ = fXa\B@2r) T [XB@2\B@r/a) * [XB@ra) = f1 + fa+ f3,
as before. We note from Lemma 4.2 that

Cll fall Lror ()

CHf2 HLP(')(B(:E,2T)\B(90,T/4))
Cw(z,7)~!
Cn(z,r)" .

1 1o fo ||Lpﬁ<->(A(x,r))

IAIA N DA

If z € A(z,r), then Lemma 3.1 gives

zgawscwn/“ Fy)dy < CromP@p(z, )1,

B(z,r/4)
so that
||[af3||Lpﬁ<<>(A(x,r)) < Ora_n/p(x)n(fﬂvr)_lHl”Lpﬂ(J(A(x,r)) < 077(557T)_1~

Moreover, Lemma 4.1 gives

hﬁ@)é/‘ 2 — " fy)dy < CroP@n (e, ),
G\B(z,2r)

so that
Hfaleme(A(x,r)) < Cra_n/p(x)n(xvT)_lHl”Lpﬂ(J(A(m«)) < 077(5577’)_1a
as required. O

COROLLARY 4.4. Let 0 < o < n/p* and let v, § and w be as in Corollary 3.5. If
a—n/pt <v™ <vt <n(l—1/p7), then there exists a constant C' > 0 such that

”IafHHpﬁ(»),oo,w(@ < CHnyp(-)mw(g)
for all f € HPO>o(@).
COROLLARY 4.5. Assume that 0 < o < n/p™.

(1) Suppose (w3.1) and (w4.1) hold for all xy € G with the same constant Q). If
wy(-,dg) is bounded in G, then the operator I, is bounded from HP()*< (@)

to H oo (G).

(2) If (w3.1) and (w4.1) hold for xy € G, then the operator I, is bounded from
(~),oo,w _pﬁ(')uoou‘*)*
H?:ro} (G) to H{mo} (G)

11



5 Exponential integrability for ¢ = oo

Set
Ei(z,t) = exp (tq(w)) -1,

where 1/p(z) 4+ 1/q(x) = 1. For a locally integrable function f on G, set

£l e ) :inf{/\ >0: /GE1 (x,@) dy < 1},

We denote by LP1(G) the class of locally integrable functions f on G satisfying

||f||LE1(G) < 0.
In connection with HP()%¢(@G), let us consider HF9(G) of all functions f
satisfying

2dg . dr 1/q
iy = 5w ([ @loon)flniun)’ ) <o

zo€EG

F7E1,9.w

Similarly, we define #*"%*(G) and Hizgr (G).

LEMMA 5.1.
L1l 121 ey ~ (log(L + 1/r)) 1@
forallx € G and 0 < r < dg.

LEMMA 5.2 ([28, Theorem 4.1, Corollary 4.2]). If & > n/p~, then there exists a
constant C' > 0 such that

o fllLer @) < Cllflleor e
for all f € LPO(G).
Our result is stated in the following:
THEOREM 5.3. Let a > n/p~.

(1) If (w3.1) and (w4.1) hold for all zy € G with the same constant ), then there
exists a constant C' > 0 such that

[ o fllzrcony < Cllfllaroroow )
for all f € HPO>o(@).

(2) If (w4.1) holds for all xy € G with the same constant (), then there exists a
constant C' > 0 such that

o fllzgmroen@y < Cllfllapo o

for all f € HPO>o(@).

12



(3) If (w3.1) holds for oy € G, then there exists a constant C' > 0 (which may
depend on xy) such that

for all f € H{I)MW(G).

Proof. We give only a proof of assertion (1). Let f be a nonnegative measurable
function on G such that || f{|3pc).c00(q) < 1. We have only to show the inequality

1 Lafll e (a@ry < Cnla, )"
forallx € Gand 0 < r < dg. Set
[ = fxe\B@2r) + [XB@2)\B@r/a) + [XB@ra = f1 + fo+ fs,
as before. We note from Lemma 5.2 that
e follLzr agery) < Cllfoll oo (B2 By < Cnlz, )7t
If z € A(x,r), then Lemma 3.1 gives

Tofa(z) < Crom / F(y)dy < Cnlar,r)™
B(z,r/4)

since a > n/p~, so that
1 TafsllLer aeryy < On(a,m) I Lo agny < Colz,r)™

by Lemma 5.1. Moreover, Lemma 4.1 gives
LAGSC [ o=y fudy < Cnfa,r)
G\ B(z,2r)

since a > n/p~, so that

HIOéfll‘LEl(A(a:,r)) < 077<5U:7”) H1HLE1 A(z,r)) < 077@ T) 17
as required. O
COROLLARY 5.4. Let « > n/p~ and let v, 5 and w be as in Corollary 3.5.

(1) When o« — n/pt < v- < vt < n(l—1/p™), there exists a constant C' > 0
such that

HIafH?-LEl*‘”’W(G) < C”f”?-{p(-),oo,w((;)
for all f € HPO>o(@).

(2) When o — n/p*t < v~, there exists a constant C' > 0 such that
o fllagmrocn@y < Cllfllagperem )
for all f € HPO>o(@).

(3) When v(xg) < n(l — 1/p(xg)) for zqg € G, there exists a constant C' > 0
(which may depend on xq) such that

||]af||ﬁleo‘;°w(cr) S OHfHﬁ?{’ié*}"O’W(G)

for all f € H{x)oow(G).
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6 Associate spaces of ’Hz{oi)ioo’w(G)

Recall that for zy € G and measurable functions f on G,

||f‘|ﬁ1{7237}°"7w(g) = 0<Stu<%c w(o, t)”fHLP(‘)(G\B(xO,t))

and

dt

2da
iy = [ 60O o senn 3

REMARK 6.1. Let g € G. Note here that if w(xg, 0) = oo, then || f||~ < 00

if and only if f = 0 a.e.. Hence we may assume that w(xg, 0) =0 and then w(xo, )
is uniformly almost increasing on (0, 00) when || f H < o0.

By the above remark, in this section, suppose

w(z,0)=0 for all x € G.

For z € G and 0 < t < dg, we set

pT(B(z,t)) = sup p(y),
yEB(x,t)

as before. We define 1/¢q(z) =1 — 1/p(z).
Following Di Fratta and Fiorenza [17], we have the following Holder type in-
equality for log-type weights.

THEOREM 6.2. For xy € GG, suppose

(w6.1) there exist constants b, ) > 0 such that

t 2d —bp(zo)—1 d 2d —bp(zo)
/ (log _) w(xo’r)—pﬂB(:co,t))?r <Q (log _G) w(xo, t) "PE0)
0

forall 0 <t < dg.

Then there exists a constant C' > 0 such that

[ 1@t < U lygos ol

for all measurable functions f and g on GG, where

n(xe, 1) = (log%) w(zo, 7)1

14



Proof. Let zy € G. Let f and g be nonnegative measurable functions on G such
that Hf“ﬂ‘{zgg‘}l’"(G) < 1 and HgH#{;gg,}oo,w(G) < 1. We have by Fubini’s theorem and

Holder’s inequality

| 1@gtwyie
_ /Gf(x)g(x) (b (log |$2_df60|>_b/:: <1og %)b 1 ‘it> da
- /0 e ( /B @@ (log |x2f‘;0|>_b da:) (log M_G)b 1%

2d 2 \° 2d\ "t dt
o ] log =< =,
C/o Hf”L()(B(a:Ot <0g| —:p0|) (og 7 ) 7

Here it suffices to show
2dc 2do\ T
< C (lOg T) w(x(bt)il =C (lOg _G) 77(950:75)

( 2dg )—b
g | log
|+ —o]
for 0 < t < dg. In fact, we obtain
/ g(x) p(z) ( 2%, )—bp(;r)
— log dx
B(zo,t) \ (log(2dg/t)) " w(wo,t)~? |z — @0

p(z) —bp(z0)
2d P(To
C’/ :1:2 <log e ) dx
B(zo,t) (10g(2d0/t W(ZL‘(), )_1 ‘1} - -TO‘

(
)
p(x) _ —bp(z0)—1
() / m( ZdG) Pt dy
C’/ log — — | dx
B <<1og<2dc/t>> = o 1)1 0 i :
t 2d ) 2d *bp("fo)*l d
C / / g(z)Pt) (log —G) w(g, t)P® (1 g—G) dr | &
0 B(w0,t)\B(zo,r) i r
2 bp(zo) t 2 —bp(zo)—1
C’(logi> (xo,t)p(“)/ (logi)
0

<\ G )p( e e
Boot\Bor) \ NIl Lre) @\ B(zo) LPO(G\B(zo,m)) r

2d bp(zo) t 2d —bp(z0)—1 d
) e ) tma e
0 T

< C

IN

LrO) (B(xo b))

Lr() (B(zo,1))

=

IN

~—

S

IN

IN

IN

IN

by (P2), Lemma 2.1 and (w6.1). O
Power weights can be treated simpler than Theorem 6.2 in the following manner.

THEOREM 6.3. For xy € G, suppose

15



(w6.2) there exist constants b, Q > 0 such that

- _ydr b -1
r’w(ze, ) — < Qt’w(xo, t)
0 r

for all 0 <t < dg.

Then there exists a constant C' > 0 such that
| Ir@st@lde < Cllygnn ol

for all measurable functions f and g on G, where 1(xg,7) = w(zg,7)""

Proof. Let o € G. Let f and g be nonnegative measurable functions on G such
that Hf”ﬁ‘fig’}l’"(G) < 1 and Hgﬂﬂﬁé,}m,w(@ < 1. For b > 0, we have by Fubini’s

theorem and Holder’s inequality

[tuas < ¢ [T ([ st -apar) ol

= C/o 1l a0 N9l - =0l Hm(-)(B(xO,t))t t

First, we show that
b b - b
ol =208 Loy < Cl0:8)" < O,

for all 0 < s < dg. In fact, we obtain

p(z)
/ (%) Iz — 2o |P@ dix
Blz0.25)\B(z0,5) \5°W(To,5)7!

()

g(z) g (2)

C/ ( ) (w(z0, )91l 20 (Bao 25N Blwos)) AT
B(z0,25)\B(z0,s) ||g||LP(')(B(a:0,2s)\B(zo,s))

< C

IN

by (P2) and Lemma 2.1, which gives

Hg! ' _xoybHLP(?(B(xo,t)) = Z Hg! ' _:UO’b"LP(')(B(xo,2—J'+1t)\B(:c0,2—jt))
j=1

t
C’/ rPw(zg, r)_lﬁ
0 r

< Ct'w(zo,t) ™

IA

by (w6.2). Thus we obtain the required result. O

THEOREM 6.4. Let n(-,-) € Q(G). For xy € G, suppose

16



(w6.3) there exists a constant () > 0 such that

2dg dr
/ 77(1’0,7’)7 < Qu(zo, )"
t

forall 0 <t < dg.

Then there exists a constant C' > 0 such that
g0y < Csup [ 1 @)gla)idr
for all measurable functions f on GG, where the supremum is taken over all mea-

surable functions g on G such that ||g||x <1 with X = ﬂﬁg’}‘”’“((}).

Proof. Let xy € G. Let f be a nonnegative measurable function on G. To show
the claim, we may assume that

s /G F@)g()lde < 1,

where the supremum is taken over all measurable functions g on G such that
lgllx < 1. Take a compact set K C G\ {zo}. Since LPO(K) = {gxkx : g €
LPO(G)} € X, fxkx € L1(G), in view of [25] or [16, Theorem 3.2.13]. By (w6.3),
we find
aql-),L;m < 0.9}
HfXKHﬂ{ig}l (G)

and, moreover, we have by Lemma 2.2
Z 1 (o, 2_j+1dG>Fj ~ ||fXK||ﬂ§;;’}1”’(G)’
JE€ENo

where F; = HfjHLq@(G), Ji = [XKnB(zo,2-7+1ds) and Ny is the set of positive integers
J such that F; > 0. Set

g(x) = Z n(wo, 277 de) | £;(2) / F3| 072 fi(w) ] F.

Then we see that

191l ey @ Baory) < > n(zo, 277 ) 3/ F517O72 £/ Fjll 1o e

JENQ, 2= It dg>r

S Z n(mOa 2_j+1dG)

j>1,2-i+1dg>r
—1
S Cw (I'07 T)

for all 0 < r < dg by (w6.3) and hence

17



Consequently it follows that

Dalx)dr = To, —j+1 iz a@)=2 £ (o dx
/Gf( @iz = Y n(w,2 dG>/Gf< )15 () |12 £, () / Fyd

JENo

= Z (0,277 dg) F;

J€No
> O||fXK||ﬂ‘{1;())}1,n(G)‘

Hence, by the monotone convergence theorem, we have

SUP/ f(z)g(z)dx > CHqu.Lq()l"( Gy

which gives the required inequality. O

Let X be a family of measurable functions on G with a norm || - ||x. Then the
associate space X’ of X is defined as the family of all measurable functions f on
G such that

Il = sup / 1 (@)g(@)|dz < oo.

geX:llgllx <1

Theorems 6.2, 6.3 and 6.4 give the following result.
COROLLARY 6.5. For xy € G, suppose (w6.1) and (w6.3) hold. Then

()oow ) )L
(™ (@) ==t @),
where n(zo,7) = (log 22¢)~ Yw(z, )7L, If (w6.2) and (w6.3) hold, then the same
conclusion is fulfilled with n(zg,r) = w(zg,r)""
For 0 < g < oo, set

Q) =S HL@G),

oG

whose quasi—norm is defined by
/ Eae inf ill37p().axc
H H PO (@) |]| 25 1fild{= ]}CG; HfJHHZ{?i;}q (©)

The Holder type inequality in Theorem 6.2 or 6.3, under the same assumptions,
implies

/ f@g@ldr = Y /G 1 (@)g;(x)|dz
7
< Clifllgsorray 2 195l
j J

so that
| Ir@gtelde < Cllnne oo ey

Theorem 6.4 gives the converse inequality.
Theorems 6.2, 6.3 and 6.4 give the following result.
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COROLLARY 6.6. If (w6.1) and (w6.3) hold for all xy € G with the same constant
@, then

(ﬁp(-),oo,w((;)y — ﬂq(-),l,n(G)7

where n(zo,r) = (log 2ch)*1 w(xg, )"t If (w6.2) and (w6.3) hold for all xg € G
with the same constant (), then the same conclusion is fulfilled with n(zo,7) =

w(zg, )7t

REMARK 6.7. For 0 < ¢ < o0, set
H (@) = () Hy ™ (@)
ToEG

and define the norm

I/ llzg0 ) = e 1)

as usual. Then note that

ﬂp('),oo,w(G) [ LPO(G) w(z,0) =0 for all z € G
] {0} w(z,0) = oo for all x € G.

For related results, we refer the reader to the paper by Di Fratta and Fiorenza
[17] with logarithmic weights, and the paper by Gagatishvili and Mustafayev [19]
with general weights.

REMARK 6.8. If w(t) = (log(2dg/t))” " with a > 0, then (w6.1) and (w6.3) hold for
n(t) = (log(2de/t))* " and if w(t) = r* with a > 0, then (w6.2) and (w6.3) hold
for n(t) =t

7  Associate spaces of ﬂ?gz’}oo’w(G)

Recall that for zy € G and measurable functions f on G,

HfHﬂ?;g,}oo,w(@ = O<S;1<I;GW($07t)||f“Lp<~)(B(zo,t))

and
2d dt
Hf”ﬁf{’(m‘gv}lvw(g) = /0 w(x(bt)HfHLP(')(G\B(:sO,t))7'

We have the Holder type inequality for log type weights w.
THEOREM 7.1. For xq € G, suppose

(w7.1) there exist constants ro,b, ) > 0 such that

cp/ log(2dc: /7)
2r0 2d:\° 2d:\"°
[ () )" (62
‘ t r
2de\ " dr 2de\ " plo)
X (log —G) —<Q ((log TG) w(xo,t)1>
T T

for all 0 <t < rg.

p(0)
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Then there exists a constant C' > 0 such that

[ @@l < C g 9o~

for all measurable functions f, g on G, where 1(zo,7) = (log @)_1 w(xg, )7L

Proof. Let xy € GG. Let f and g be nonnegative measurable functions on G such
that || flle000m < 1 and |lgllpe)00 o < 1. For b > 0 we have by Fubini’s
Hizgy (@) Hiao)

(e))
theorem and Holder’s inequality
( 2d¢ )b
g | log
|+ =)

e
/G f@)g(a)de < C / T

« (1op20e) "
gt 0

as in the proof of Theorem 6.2. It suffices to show

2de \" 2dc\° 2dc\ "
g9 (log B _Z |> <C (log TG) w(zg,t) " = C (log TG) n(wo, t)
OV o @\Bot)

for all 0 < t < dg. In fact, we obtain for 0 < ry < dg

b 1 log dx
B(z0,r0)\B(z0,t) (10g<2dg/t)) (.1'0, t)f |$ — I‘()l

LrO)(G\B(xo.1))

p(z) bp(xo)
< C’/ g(a;) <log 2dg ) dx
B(zo0,r0)\B(zo,t) (10g(2d(;/t)) w(xo, ) |LU — .To‘
p() 2ro bp(zo)—1
2d d
< C’/ g(xb) / (log —G) i
B(zor0)\B(zo,t) \ (10g(2dg/t))” w(xg,t)~1 lz—o| T r
p(@) bp(0)—1
2d 2de\ P d
< C/ / g(z)P®) <log _G> w(zo,1) (log —) de | &
B(zo,r)\B(zo,t) t r
—bp(zo) 20 9 b cp/log(2dg /)
< C <1 g — > (x()at)p(w))/ ((log %) w(l‘()?t)_l)
t
p(xo)—1
()" (] o)
B(zo,r) r
—bp(zo) 2o 9d\ " cp/log(2da /)
< C’<lo > w(q:o,t)p(“)/ ((log TG) w(:cg,t)l)
t
p($0) -1
2d d
((l 0g =< (xo,r)l) (1 g—G> o
r r
—bp(zo) 2 b p(x0)
< (10 ) w(xg, )P ((log TG) W(ﬂfo,t)_l)
<
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by (P2), condition (w7.1) and Lemmas 2.1 and 2.4, which gives

( 2dc )*’
g | log
\'—330\

for all 0 < t < ry. Moreover,

( 2d )”
g | log
| : —5170|

which completes the proof. ]

2de\"
<C (log TG> w(xo, 1)~

LP(')(B(xo,To)\B(x07t))

<C |Ig||LP(‘>(G\B(x07TO)) =G,
L) (G\B(z0,70))

REMARK 7.2. We show that w(t) = (log(2d¢/t))* with a > 0 satisfies (w7.1). To
show this, for b,c¢ > 0 one can find constants ry, ) > 0 such that

2ro 2d c/log(2dg/r) 2d b—1 d 2d b
[ () ™ ) o)
' T T t

for all 0 < t < 19 and zg € G. In fact, first find 0 < ry < dg/e such that
e = 1/log(de/ro) < b/2¢, and note for i = 2dge(los2de/D)"/?

t 2d ¢/ log(2dg/r) 2d b—1 d 2d¢ 2d b—1 d
[ ™ (28 2 o[ (2
‘ t T r ‘ r T
2de\"
< Q (log TG)
since (log(2dg /1)) 5?9/ < C for all t < r < { and

2rg 2 c/log(2dg/T) 9 b—1 9 ce 20 9 b1
i r r t ; r ,

2d ce+b/2 2d b
Q (log TG) <Q (1og TG) ,

IN

as required.
For power weights w, we obtain the following result.
THEOREM 7.3. For xg € GG, suppose

(w7.2) there exist constants b, ) > 0 such that

2a b _ydr b —1
rw(z, )T — < Qrw(xg, t)
; r

for all 0 <t < dg.

Then there exists a constant C' > 0 such that
| @)(@)ds < Cllllggoso91goo e
for all measurable functions f, g on G, where n(xg,7) = w(xo, 7)™ .
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As in the proof of Theorem 6.4, we have the following result.
THEOREM 7.4. Let n(-,-) € Q(G). For xy € G, suppose

(w7.3) there exists a constant () > 0 such that

t/Mmﬂﬁﬁmeﬁ”
0 T

for all 0 <t < dg.
Then there exists a constant C' > 0 such that
gty o < Csuw [ |F@hg(o)lds
q(),
for all measurable functions f on G, where the supremum is taken over all mea-
surable functions g on G such that ||g||x <1 with X = ﬂ?gg’}oo’w(G).

Theorems 7.1, 7.3 and 7.4 give the following result.

COROLLARY 7.5. If (w7.1) and (w7.3) hold for x¢ € G, then
! _Q(’)vlfn
(25(@) = Hiey (G,
where n(zo,7) = (log 242~ lw(xo,r)_l. If (w7.2) and (w7.3) hold for xq € G, then

the same conclusion is fulfilled with n(zg,7) = w(zg, ) .

REMARK 7.6. If w(t ) = (log(2dg/t))* with a > 0, then (w7.1) and (w7.3) hold for
n(t) = (log(2dg/t)) ™" and if w(t) = ¢t~ with a > 0, then (w7.2) and (w7.3) hold
for n(t) = t°.

For 0 < ¢ < 0o, we may consider

= HEH(G),

ro€EG

whose quasi—norm is defined by
(; H )W 7 w
H ||Np( 29(G) |f| Z |f]|{ ]}CGZH ]H'Hp()q

One can show that

”H”(')’q’w(G) — Lp(-)(g)_

~

For this, we only show the inclusion LPO)(G) € HPW4<(G). Take f € LPO(G)
and 1,9 € G (r1 # x5). Write

f = fXB(x2,|JJ1—$2|/2) + fXG\B($2,|$1—062|/2) = fl + f2-
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Then

2dc 1/q
q
Hf1||ﬂ1{’;‘1)*}q’“’(g) S (/ ( ($1, )“leLP() B(z1 T))) d?”/?")

T1—x2|/2

2dg 1/q
< 1Almoe < [ e, >dr/r) — Alfilow,

lz1—22]/2

and

2dc 1/q
q
gy < ([ (lmo M liomen) a7

$1—$2|/2

2dg 1/q
< 1hlwoe (/ w<x2,r>qdr/r) — Bl o

x1—x2|/2

Hence

I llporas@ < Ifillpoms g + 1 Fallypomee

Al fillror @) + Bl f2ll oo @
(A+ B[ llzrtr @) < oo,

as required.

8 Associate spaces of ’Hp 0, 1’W(G)

THEOREM 8.1. Let n(-,-) € Q(G), g € G and X = ﬂpg’}l’w(G). Suppose

(w8.1) there exists a constant () > 0 such that

2dg dr
/ W(l"oﬂ“)7 < Qn(xo, 1)~
t
for all 0 <t < dg.
Then there exists a constant C' > 0 such that
1100 < I
for all measurable functions f on G.

Proof. Let xy € G. First we show
/ f(@)g(@)dz < Cn(zo, R) gl oseom 1 flx (81)
G\B(zo,R)

for 0 < R < dg and nonnegative measurable functions f, g on GG. To show this, we
consider
h = n(xo, R)gxa\B(o.R)/ 19l Lre) @\ B(wo, R))
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when 0 < ||gl o0) (B, r)) < ©0- Then we have by (w8.1)

2dg dt

<o B) [ wan )T <,

R

2dg dt
R

and hence
| r@hade < Ol
G\B(z0,R)
Now we obtain

/ f(@)g(x)dz < Cn(wo, R) |9l oo\ Bao,my | 1 x7-
G\B(z0,R)

A

If we take g(x) = | £ () /1 /]| Lo\ Bwo,m) | *™ ™ X\ Bao.r) When O < || fl| Lt B(ao, my)
00, then we have by (8.1)

L= [ @I s} s
G\B(zo,R)

< Cn(o, )71”{f/Hf“L‘1<> (G\B(z0,R)) }q(‘)ilHLP(‘)(G\B(xo,R))Hf/HfHLq(')(G\B(a:O,R))HX’
< Cn(zo, R {HfHLq( )(G\B(z0,R)) } £l x,

which shows

n(o, R)”fHL‘I(')(G\B(mO,R)) < O f[lx-

Thus it follows that
—q(-).00 < ’
”f”H%EL'())} ’W(G) — O”fHX )

as required. O

COROLLARY 8.2. If (w8.1) holds for xy € G and (w6.1) holds for oy € G, n and
(), then

1

where 1(z,7) = (log 242) " w(xg,r)~ . If (w8.1) holds for xy € G and (w6.2)

holds for o € G, n and q(+), then the same conclusion is fulfilled with n(zo,r) =

w(xg, )"

As in Fiorenza-Rakotoson [18, Corollary 1], we see that the associate and dual
spaces of HY ;3}1“’(G) coincides with each other.

(7 (@) =A™ (O
)
(

REMARK 8.3. If w(t) = (log(2d¢/t)) " with a > 1, then (w8.1) holds for n(t) =
(log(2de/t)) ™", and if w(t) = ¢~ with a > 0, then (w8.1) holds for n(t) = t°.
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9 Associate space of ’Hp( ) 1’w(G)

As in the proof of Theorem 8.1, we have the following result.
THEOREM 9.1. Let n(-,-) € Q(G), 20 € G and X = ﬁ?ﬁcz}lw((}) Suppose

(w9.1) there exists a constant () > 0 such that

/ CU(;EO,T)Q < Qn(x(bt)il
0 r

for all 0 <t < dg.
Then there exists a constant C' > 0 such that

115y < Cll L

for all measurable functions f on G.

COROLLARY 9.2. If (w9.1) holds for zy € G and (w7.1) holds for zy € G, n and

q(-), then

< zo} ) H?ﬂfo} (G)7
where n(zg,7) = (log2%e)" Yw(z,m)"L. If (w9.1) holds for my € G and (w7.2)
holds for xy € G n and q(-), then the same conclusion is fulfilled with n(xg,r) =
w(wg, )L

COROLLARY 9.3. If (w9.1) holds for all xy € G with the same constant () and
(w7.1) holds for n, q(-) and all xy € G with the same constant (), then

<ﬁp(')71,w(g)) ' _ ﬂq(')voom((;)7

where n(zo,r) = (log %)_1 w(xg, )"t If (w9.1) holds for all zy € G with the same
constant () and (w7.2) holds for n, q(-) and all xo € G with the same constant @),
then the same conclusion is fulfilled with n(zg,r) = w(zg,r)"".

This corollary gives a characterization of Morrey spaces of variable exponents;
see also the paper by Gogatishvili and Mustafayev [19] for constant exponents.

REMARK 9.4. If w(t) = (log(2dg/t)) ™" with a > 0, then (w9.1) holds for n(t) =
(log(2dg/t))"; and if w(t) = ¢t* with @ > 0, then (w9.1) holds for n(t) = ¢t~

10 Grand and small Lebesgue spaces

Following Capone-Fiorenza [11], for 0 < § < 1 and measurable functions f on the
unit ball B = B(0, 1), we define the norm

9\ ~0/2(0)
||f||ﬁ1{>(()~;,oo,9(B) = OS<1£1 <log ;) “f”LP(')(B\B(O,t))

and

I fllzoer-00my = sup PO fll oo (m)-

O<e<p——1
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THEOREM 10.1. There exists a constant C' > 0 such that
1 rcr-00) < Cllf I e

for all measurable functions f on B.

Proof. Let f be a nonnegative measurable function on B such that ||f||ﬁp(4),oo,e(B) <
{0}

9\ —0/p(0) p(e)
/ (log —) f(z) dr <1 (10.1)
B\B(0,1) t

forall 0 < ¢t < 1. For 0 < e < p —1, we take 0 < s < 1 such that ¢ =
(p~ — 1)(log2)/log(2/s). We have

/ (89/p(0)f(x))17(50)—8 dr S / 1 dIL‘—f—/ (59/p(0)f($))p(x) dr
B\ B(0,s) B\ B(0,s) B\ B(0,s)

< C.

1 or

By multiplying (10.1) by (log(2/t))"""" for (large) b > 1, integration gives

b b _ (z)
v\ g v g\ ! 2\ ~0/P) . dt
/ (log —) — > / (log —) / <log —> f(z) dr | —
0 t t 0 t B0\ B(0,0) t t
r 9\ ~b-1 9\ ~0—cn/log(2/Iz)) dt
[ [ ) )2
0 t B(0,m)\B(0,¢) t t
|| 2 —b—1—0—cp/log(2/|z|) dt
= / ()P / (log —> — | dx
B(0,r 0 t t

)
9\ b?
> o gere (g ) an
B(0,r) |z

9\ ? 9\ "
/ f(z)P® (log —) de < C (log —)
B(0,r) |$! T
for 0 <r < 1.

First consider the case when

9\ (PO)—e)(+b)/e
A= / (log —) dr > 1.
B(0,s) 7]

v

or
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For k£ > 1, we obtain

/ (89/p(0)f<x>)p($)_5 dx
B(0,s)

9 \ (+b)/=\ P~
< / gk A=1/P(0) (log—) dx
B(0,s) ||
0/p(0) :
8/5(0 p(z)—e e?PO f ()
+/ (770 f(x)) k A—1/p(0 ae | 4
B(0,s) ek A=1/P(0) (log(2/[z]))

5 \ PO -)(0-0)/2
o {gkmm / A= (6@)=2)/5(0) (log _>
B(0,s) ||

—(6+b)
2

+ £945/P0) / f(z)P® <log —) dx}
B(0,s) |z

since eP(®—¢ < CePO) by (P2) for all x € B(0,s). Since log(2/t) < (2¢/a)t™* for
0<t<landa=c¢e/{2(p(0)—e)(0+b)}, we find

50 1/(20) ga\ 1/(20)
A< / (—\x|_“) dx < (—) / 2|7 2dx < Ca™V/ ),
B(0,s) \ @ a B

so that we have by (P2)

IA

dx

ATP@/PO) < 0 A=He/PO) for 2 € B(0,5) and some constant ¢ > 0

and
As/P0) < O (0+0)

Hence we have

/ (89/p(0)f<x))p(x)_5 dx
B(0,s)

C{gkp(m A=(0—(1+0)2)/p(0) /

B(0,s
—(0+b)
+ &% A=/PO) / f(x)P@ <log i) dx}
B(0,s) ||

C{gkp(m /(0 | 0 fe/p(0) /

B
C {5kp(0)A6(1+6)/p(0) + 50+6A€/p(0)}
C {gkp((])f(b+9)(1+c) + 1} )

IN

IA

(0,5)

VARVAN

If we take b and k such that kp(0) — (b+ 6)(1 + ¢) > 0, then the present case
is obtained.
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If A <1, then we obtain by (P2)

p(z)—e 9\ (0+0)(p(2)—e)/e
/ (77O f(x)) dr < / (log _) de
502) B(0,s) ||

8/p(0) p(x)—e PO f () )
+/B<o,s> (701 @) ((log(2/|w|>>(9+b)/5 dgc

(@) 9 —(0+b)
C+/ (e (O)f(a:))p (log —) dx
B(0,s)

IA
>
~Z
b~

]

9 —(6+b)
C<1+ 59/ f(z)P® (10g —) dx
B(0,s) ||
—b
C {1 + & (logz) }

c,

IN

IN

IN

which completes the proof. ]

Given f on R", recall the definition of the symmetric decreasing rearrangement
of f by

P = [ e @
0
where E* = {z : |B(0, |z])| < |E|} and E¢(t) = {y : |f(y)| > t}; see Burchard [6].
THEOREM 10.2. There exists a constant C' > 0 such that
£y S Ol uscr-ose

for all measurable functions f on B.

Proof. Let f be a nonnegative measurable function on B such that || f*[| js)-0.0(m) <
1. Note that

/ (Efe/p(o)f*(w))p(r)_e dr S 1 (102)
B\B(0,t/2)
forall 0 <t <1lande=(p~ —1)(log2)/log(2/t). We have

x 1 ©
e=0/PO) (4 i )da: < C’( f (x dx)
/B\B(O,t) ( (x)) - 1B(0,2) \ B(0,t/2)] Jp0.1\B(0:/2) (=)

« / 6—6’17(3:)/17(0)]0*(x)p(w)—scw
B\B(0,t)

since f* is radially decreasing. Set

1
I= f*(x)dx
1B(0,t) \ B(0,t/2)| J50.\B(0.1/2) (

and

1 - 1/(p(0)—¢)
J = ( / [ (z)P® _sdx> :
1B(0,t) \ B(0,t/2)| J0.\B(0./2)
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If J > 1, then we have by (10.2)

| /() )”‘@‘5‘1
|B(0,2) \ B(0,t/2)| Jp(0,0\B0:/2) @ 4

1
J+ CJ*p(O)+€+1 *( p(x)fedx
|B(0,t) \ B(0,t/2)| B(O,t)\B(O,t/Q)f (@)

IN

< CJ

by (P2) since J < Ct7"/P0) for all 0 < t < 1 and if J < 1, then

1
I<1+ fA(x)P@de < C.
|B(0,t) \ B(0,t/2)] JB0.0\B0.4/2)
Hence
F<o@mer041) <o,
so that
/ (S—G/p(O)f*<w))P(w) dx S C/ (8—9/p(0)f*(x))l’(w)*€ du S C,
B\B(0,t) B\B(0,t/2)
which completes the proof. O
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