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Abstract

Our aim in this paper is to treat Hardy’s inequalities for Musielak-Orlicz-
Sobolev functions on proper open subset of RN .

1 Introduction

The higher dimensional Hardy’s inequality of the form∫
Ω

|u(x)|pδ(x)−p+βdx ≤ C

∫
Ω

|∇u(x)|pδ(x)βdx, u ∈ C∞
0 (Ω)

appeared in [12] for bounded Lipschitz domains Ω ⊂ RN , 1 < p < ∞ and β < p−1,
where δ(x) = dist(x, ∂Ω). For related results, we refer to [1], [2], [6], [7], [8] and
[13].

Variable exponent Lebesgue spaces and Sobolev spaces were introduced to dis-
cuss nonlinear partial differential equations with non-standard growth conditions.
Harjulehto-Hästö-Koskenoja [4] proved Hardy’s inequality for Sobolev functions

u ∈ W
1,p(·)
0 (Ω) when Ω is bounded and p(·) is a variable exponent satisfying the

log-Hölder conditions on Ω, as an extension of [2]. In fact they proved the following:

Theorem A. Let Ω be an open and bounded subset of RN . Suppose 1 < p− ≤
p+ < ∞, where p− := infx∈RN p(x) and p+ := supx∈RN p(x). Assume that Ω
satisfies the measure density condition, that is, there exists a constant k > 0 such
that

|B(z, r) ∩ Ωc| ≥ k|B(z, r)| (1.1)

for every z ∈ ∂Ω and r > 0 (see [3]). Then there exist positive constants C and b0
such that the inequality

∥δb−1u∥Lp(·)(Ω) ≤ C∥δb|∇u|∥Lp(·)(Ω) (1.2)
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holds for all u ∈ W
1,p(·)
0 (Ω) and all 0 ≤ b < b0, where δ(x) = dist(x, ∂Ω).

In the case when b = 0, Hästö [5, Theorem 3.2] proved Theorem A without the
assumption that Ω is bounded. It is also shown in [4] that if p− > N then (1.2)
holds without the measure density condition (1.1).

Recently, these results have been extended to the two variable exponents Sobolev

spaces W
1,Φp(·),q(·)
0 (Ω) in [10], where Φp(·),q(·)(x, t) =

(
t(log(c0 + t))q(x)

)p(x)
with p(·)

as above and a measurable bounded function q(·). In fact, the following results are
shown in [10]:

Theorem B ([10, Theorem 1.1]). Let Ω ̸= RN be an open set. Suppose 1 <
p− ≤ p+ < ∞ and Ω satisfies the measure density condition (1.1). Then, for
0 < A < N/p+, A ≤ 1, there exist positive constants C and b0 such that the
inequality

∥δα+b−1u∥Φpα(·),q(·)(Ω) ≤ C∥δb|∇u|∥Φp(·),q(·)(Ω)

holds for all u ∈ W
1,Φp(·),q(·)
0 (Ω), 0 ≤ α ≤ A and 0 ≤ b < b0, where 1/pα(x) =

1/p(x) − α/N .

Theorem B′ ([10, Theorem 1.2]). If N < p− ≤ p+ < ∞, then the same conclusion
as in Theorem B holds without the measure density condition (1.1).

Our aim in this paper is to extend these results to functions in general Musielak-
Orlicz-Sobolev spaces W 1,Φ

0 (Ω) defined by a general function Φ(x, t) satisfying cer-
tain conditions (see Section 2 for the definitions of Φ and W 1,Φ

0 (Ω)). Corresponding
to the functions Φpα(·),q(·)(x, t) in [10], we shall introduce functions Ψα(x, t) to state
our main results Theorem 4.4 and Theorem 5.2, which are extensions of Theorem
B and Theorem B′, respectively.

2 Preliminaries

Throughout this paper, let C denote various constants independent of the variables
in question and C(a, b, · · · ) be a constant that depends on a, b, · · · .

We consider a function

Φ(x, t) = tϕ(x, t) : RN × [0,∞) → [0,∞)

satisfying the following conditions (Φ1) – (Φ4):

(Φ1) ϕ( · , t) is measurable on RN for each t ≥ 0 and ϕ(x, · ) is continuous on
[0,∞) for each x ∈ RN ;

(Φ2) there exists a constant A1 ≥ 1 such that

A−1
1 ≤ ϕ(x, 1) ≤ A1 for all x ∈ RN ;

(Φ3) ϕ(x, ·) is uniformly almost increasing, namely there exists a constant A2 ≥ 1
such that

ϕ(x, t) ≤ A2ϕ(x, s) for all x ∈ RN whenever 0 ≤ t < s;
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(Φ4) there exists a constant A3 ≥ 1 such that

ϕ(x, 2t) ≤ A3ϕ(x, t) for all x ∈ RN and t > 0.

Note that (Φ2), (Φ3) and (Φ4) imply

0 < inf
x∈RN

ϕ(x, t) ≤ sup
x∈RN

ϕ(x, t) < ∞

for each t > 0.
If Φ(x, ·) is convex for each x ∈ RN , then (Φ3) holds with A2 = 1; namely

ϕ(x, ·) is non-decreasing for each x ∈ RN .

Let ϕ̄(x, t) = sup0≤s≤t ϕ(x, s) and

Φ(x, t) =

∫ t

0

ϕ̄(x, r) dr

for x ∈ RN and t ≥ 0. Then Φ(x, ·) is convex and

1

2A3

Φ(x, t) ≤ Φ(x, t) ≤ A2Φ(x, t)

for all x ∈ RN and t ≥ 0.
By (Φ3), we see that

Φ(x, at)

{
≤ A2aΦ(x, t) if 0 ≤ a ≤ 1

≥ A−1
2 aΦ(x, t) if a ≥ 1.

(2.1)

We shall also consider the following conditions:

(Φ5) for every γ > 0, there exists a constant Bγ ≥ 1 such that

ϕ(x, t) ≤ Bγϕ(y, t)

whenever |x− y| ≤ γt−1/N and t ≥ 1;

(Φ6) there exist a function g ∈ L1(RN) and a constant B∞ ≥ 1 such that 0 ≤
g(x) < 1 for all x ∈ RN and

B−1
∞ ϕ(x, t) ≤ ϕ(x′, t) ≤ B∞ϕ(x, t)

whenever |x′| ≥ |x| and g(x) ≤ t ≤ 1.

Example 2.1. Let p(·) and qj(·), j = 1, . . . , k, be measurable functions on RN

such that

(P1) 1 ≤ p− := infx∈RN p(x) ≤ supx∈RN p(x) =: p+ < ∞

and

(Q1) −∞ < q−j := infx∈RN qj(x) ≤ supx∈RN qj(x) =: q+j < ∞
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for all j = 1, . . . , k.
Set Lc(t) = log(c+t) for c ≥ e and t ≥ 0, L

(1)
c (t) = Lc(t), L

(j+1)
c (t) = Lc(L

(j)
c (t))

and

Φ(x, t) = tp(x)
k∏

j=1

(L(j)
c (t))qj(x).

Then, Φ(x, t) satisfies (Φ1), (Φ2) and (Φ4). It satisfies (Φ3) if there is a constant
K ≥ 0 such that K(p(x) − 1) + qj(x) ≥ 0 for all x ∈ G and j = 1, . . . , k; in
particular if p− > 1 or q−j ≥ 0 for all j = 1, . . . , k.

Moreover, we see that Φ(x, t) satisfies (Φ5) if

(P2) p(·) is log-Hölder continuous, namely

|p(x) − p(y)| ≤ Cp

Le(1/|x− y|)

with a constant Cp ≥ 0 and

(Q2) qj(·) is (j + 1)-log-Hölder continuous, namely

|qj(x) − qj(y)| ≤
Cqj

L
(j+1)
e (1/|x− y|)

with constants Cqj ≥ 0, j = 1, . . . k.
Finally, we see that Φ(x, t) satisfies (Φ6) with g(x) = 1/(1 + |x|)N+1 if p(·) is

log-Hölder continuous at ∞, namely if it satisfies

(P3) |p(x) − p(x′)| ≤ Cp,∞

Le(|x|)
whenever |x′| ≥ |x| with a constant Cp,∞ ≥ 0.

In fact, if 1/(1 + |x|)N+1 < t ≤ 1, then t−|p(x)−p(x′)| ≤ e(N+1)C∞ for |x′| ≥ |x|
and L

(j)
c (t)|qj(x)−qj(x

′)| ≤ L
(j)
c (1)q

+
j −q−j .

Example 2.2. Let p1(·), p2(·), q1(·) and q2(·) be measurable functions on RN

satisfying (P1) and (Q1).
Then,

Φ(x, t) = (1 + t)p1(x)(1 + 1/t)−p2(x)Lc(t)
q1(x)Lc(1/t)

−q2(x)

satisfies (Φ1), (Φ2) and (Φ4). It satisfies (Φ3) if p−j > 1, j = 1, 2 or q−j ≥ 0,
j = 1, 2. As a matter of fact, it satisfies (Φ3) if and only if pj(·), qj(·) satisfies the
following conditions:

(1) qj(x) ≥ 0 at points x where pj(x) = 1, j = 1, 2;

(2) supx:pj(x)>1

{
min(qj(x), 0) log(pj(x) − 1)

}
< ∞, j = 1, 2.

Moreover, we see that Φ(x, t) satisfies (Φ5) if p1(·) is log-Hölder continuous and
q1(·) is 2-log-Hölder continuous.

Finally, we see that Φ(x, t) satisfies (Φ6) with g(x) = 1/(1 + |x|)N+1 if p2(·) is
log-Hölder continuous at ∞ and

4



(Q3) q2(·) is 2-log-Hölder continuous at ∞, namely

|q2(x) − q2(x
′)| ≤ Cq2,∞

L
(2)
c (|x|)

whenever |x′| ≥ |x|

with a constant Cq2,∞ ≥ 0.

In fact, if 1/(1 + |x|)N+1 < t ≤ 1, then (1 + t)|p1(x)−p1(x′)| ≤ 2p+1 −1,

(1 + 1/t)|p2(x)−p2(x′)| ≤ e(N+1)Cp,∞ , (log(e + t))|q1(x)−q1(x′)| ≤ (log(e + 1))q
+
1 −q−1

and (log(e + 1/t))|q2(x)−q2(x′)| ≤ C(N,Cq,∞) for |x′| ≥ |x|.

Let Ω be an open set in RN . Given Φ(x, t) as above, the associated Musielak-
Orlicz space

LΦ(Ω) =

{
f ∈ L1

loc(Ω) ;

∫
Ω

Φ
(
y, |f(y)|

)
dy < ∞

}
is a Banach space with respect to the norm

∥f∥LΦ(Ω) = inf

{
λ > 0 ;

∫
Ω

Φ
(
y, |f(y)|/λ

)
dy ≤ 1

}
(cf. [11]). Further, we define the Musielak-Orlicz-Sobolev space by

W 1,Φ(Ω) = {u ∈ LΦ(Ω) : |∇u| ∈ LΦ(Ω)}.

The norm
∥u∥W 1,Φ(Ω) = ∥u∥LΦ(Ω) + ∥|∇u|∥LΦ(Ω)

makes W 1,Φ(Ω) a Banach space. We denote the closure of C∞
0 (Ω) in W 1,Φ(Ω) by

W 1,Φ
0 (Ω). As usual, let W 1,Φ

loc (RN) denote the set of functions u on RN such that
u|Ω ∈ W 1,Φ(Ω) for every bounded open set Ω. By (Φ2) and (Φ3), W 1,Φ

loc (RN) ⊂
W 1,1

loc (RN).

3 Lemmas

We denote by B(x, r) the open ball centered at x of radius r. For a measurable
set E, we denote by |E| the Lebesgue measure of E.

For a locally integrable function f on Ω, the Hardy-Littlewood maximal func-
tion Mf is defined by

Mf(x) = sup
r>0

1

|B(x, r)|

∫
B(x,r)∩Ω

|f(y)| dy.

We know the following boundedness of maximal operator on LΦ(Ω).

Lemma 3.1 ([9, Corollary 4.4]). Suppose that Φ(x, t) satisfies (Φ5), (Φ6) and
further assume:
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(Φ3∗) t 7→ t−ε0ϕ(x, t) is uniformly almost increasing on (0,∞) for some ε0 > 0,
namely there is a constant A2,ε0 ≥ 1 such that

t−ε0ϕ(x, t) ≤ A2,ε0s
−ε0ϕ(x, s) for all x ∈ RN whenever 0 < t < s.

Then the maximal operator M is bounded from LΦ(Ω) into itself, namely, there is
a constant C > 0 such that

∥Mf∥LΦ(Ω) ≤ C∥f∥LΦ(Ω)

for all f ∈ LΦ(Ω).

For λ ≥ 1, x ∈ RN and t ≥ 0, set

Φλ(x, t) = Φ(x, t1/λ) = tϕλ(x, t),

where ϕλ(x, t) = t1/λ−1ϕ(x, t1/λ).

Lemma 3.2. (1) Φλ(x, t) satisfies the conditions (Φ2) and (Φ4).
(2) Suppose Φ(x, t) satisfies (Φ3∗). Then Φλ(x, t) satisfies (Φ1) and (Φ3) when

λ ≤ 1+ε0, and it satisfies (Φ3∗) when λ < 1+ε0 (with ε0 replaced by (1+ε0−λ)/λ).
(3) If Φ(x, t) satisfies (Φ5), then so does Φλ(x, t).
(4) If Φ(x, t) satisfies (Φ6), then so does Φλ(x, t).

Proof. (1) (Φ2) for Φ immediately implies that for Φλ. For (Φ4), note that
ϕλ(x, 2t) ≤ 21/λ−1A2A3ϕλ(x, t).

(2) The assertions of (2) follow from (Φ3∗) and the equality

ϕλ(x, t) = t(1+ε0)/λ−1(t1/λ)−ε0ϕ(x, t1/λ).

(3) It is enough to note that t−λ/N ≤ t−1/N for t ≥ 1.
(4) It is enough to note that g(x) ≤ g(x)1/λ when 0 ≤ g(x) < 1.

From Lemma 3.1 and the above lemma, we obtain

Corollary 3.3. Suppose that Φ(x, t) satisfies (Φ5), (Φ6) and (Φ3∗). Then the
maximal operator M is bounded from LΦλ(Ω) into itself for 1 ≤ λ < 1 + ε0.

Set
Φ−1(x, s) = sup{t > 0 ; Φ(x, t) < s}

for x ∈ RN and s > 0.

Lemma 3.4 (cf. [9, Lemma 5.1]). Φ−1(x, ·) is non-decreasing,

Φ(x,Φ−1(x, t)) = t

and
A−1

2 t ≤ Φ−1(x,Φ(x, t)) ≤ A2
2t (3.1)

for all x ∈ RN and t > 0.

We shall consider the following condition:
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(Φ6∗) Φ(x, t) satisfies (Φ6) with g(x) ≤ (1 + |x|)−β for some β > N .

Lemma 3.5. If Φ(x, t) satisfies (Φ6∗), then there exists 0 < λ < 1 such that

Φ(x, λg∗(x)) ≤ (2|x|)−N for all x ∈ RN ,

where g∗(x) = max
(
g(x), Mg(x)

)
.

Proof. Since g(x) ≤ (1 + |x|)−β with β > N , Mg(x) ≤ C(1 + |x|)−N , so that
g∗(x) ≤ C(1 + |x|)−N . Hence

Φ(x, λg∗(x)) ≤ λC(1 + |x|)−NA2ϕ(x, λC) ≤ 2NλCA2(2|x|)−Nϕ(x, λC).

Thus, the required inequality holds if λ ≤ (2NCA1A
2
2)

−1.

Lemma 3.6. r 7→ rσ0Φ−1(x, r−N) is uniformly almost decreasing on (0,∞), where

σ0 = N
/(

1 + (logA3)/(log 2)
)
.

Proof. By (Φ4), we see that

Φ−1

(
x,

1

2A3

s

)
≤ 1

2
Φ−1(x, s) (3.2)

for all x ∈ RN and s > 0. If 0 < λ < 1, then choosing k ∈ N such that
(2A3)

−k ≤ λ < (2A3)
−k+1 and applying (3.2), we have

Φ−1(x, λs) ≤ 2−k+1Φ−1(x, s) ≤ 2λ1/(1+σ)Φ−1(x, s),

where σ = (logA3)/(log 2). Note that σ0 = N/(1 + σ). Thus, for a > 1, we have

(ar)σ0Φ−1
(
x, (ar)−N

)
≤ (ar)σ02(a−N)1/(1+σ)Φ−1

(
x, r−N

)
= 2rσ0Φ−1(x, r−N),

which shows the assertion of the lemma.

Lemma 3.7. Suppose that Φ(x, t) satisfies (Φ5) and (Φ6∗). Let 0 < α < σ0 for σ0

given in Lemma 3.6. Then there exists a constant C > 0 such that∫
B(x,2|x|)\B(x,r)

|x− y|α−Nf(y) dy ≤ CrαΦ−1(x, r−N) (3.3)

and ∫
B(x,r)

f(y) dy ≤ CrNΦ−1(x, r−N) (3.4)

for all x ∈ RN , 0 < r ≤ 2|x|, and f ≥ 0 satisfying ∥f∥LΦ(RN ) ≤ 1.

Proof. Condition (ΦκJ) in [9] with κ(x, r) = rN and J(x, r) = rα−N is satisfied
by Lemma 3.6, if 0 < α < σ0. Hence, (3.3) follows from [9, Lemma 6.3] in view of
Lemma 3.5. (3.4) follows from [9, Lemma 5.3] and Lemma 3.5.
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Hereafter, let Ω is an open set in RN such that Ω ̸= RN , and let δ(x) =
dist(x, ∂Ω).

The following is a key lemma:

Lemma 3.8. (1) If Ω satisfies

|B(z, r) ∩ Ωc| ≥ k|B(z, r)| (3.5)

for every z ∈ ∂Ω and r > 0 with a constant k > 0 (k ≤ 1), then there exists a
constant C = C(N, k) > 0 such that

|u(x)| ≤ C

∫
B(x,2δ(x))

|x− y|1−N |∇u(y)| dy

for almost every x ∈ Ω, whenever u ∈ W 1,1
loc (RN) and u = 0 outside Ω.

(2) Let λ > N . Then there exists a constant C > 0 such that

|v(x)| ≤ C

(
δ(x)λ−N

∫
B(x,2δ(x))

|∇v(y)|λ dy
)1/λ

for every x ∈ Ω, whenever v ∈ W 1,λ
loc (RN) and v = 0 outside Ω.

For (1) see [10, Lemma 2.1]; for (2) see e.g. [6, (3.1)] (also cf. [2, Proposition
1]). Here note that (2) holds without the assumption (3.5).

We consider

H(f ; x, α) = δ(x)α−1

∫
B(x,2δ(x))

|x− y|1−Nf(y) dy

for x ∈ Ω, 0 ≤ α ≤ 1 and f ∈ L1
loc(R

N) such that f ≥ 0, f = 0 outside Ω.
We know (by integration by parts)

H(f ; x, 0) ≤ CMf(x). (3.6)

for all x ∈ Ω.

Lemma 3.9. Let Ω ̸= RN be an open set and suppose that Φ(x, t) satisfies (Φ5)
and (Φ6∗).

(1) Let α ∈ [0, σ0) ∩ [0, 1]. Then there exists a constant C > 0 such that

H(f ;x, α) ≤ CMf(x)Φ(x,Mf(x))−α/N (3.7)

for all x ∈ Ω and f ≥ 0 such that f = 0 outside Ω and ∥f∥LΦ(Ω) ≤ 1.
(2) Let α ∈ [0, σ0]. Then there exists a constant C > 0 such that

δ(x)α−N

∫
B(x,2δ(x))

f(y) dy ≤ CMf(x)Φ(x,Mf(x))−α/N (3.8)

for all x ∈ Ω and f ≥ 0 such that f = 0 outside Ω and ∥f∥LΦ(Ω) ≤ 1.
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Proof. We have only to consider the case α > 0. Without loss of generality, we
may assume that 0 ∈ ∂Ω, so that δ(x) ≤ |x|. Let f ≥ 0 with f = 0 outside Ω and
∥f∥LΦ(Ω) ≤ 1.

(1) For 0 < r ≤ δ(x), we have by (3.3) in Lemma 3.7

H(f ;x, α) ≤ C

{
δ(x)α−1rMf(x) +

∫
B(x,2δ(x))\B(x,r)

|x− y|α−Nf(y) dy

}
≤ C

{
rαMf(x) + rαΦ−1(x, r−N)

}
.

Suppose Φ(x,Mf(x))−1/N > δ(x). Then we have by (3.6)

H(f ; x, α) = δ(x)αH(f ; x, 0) ≤ Cδ(x)αMf(x) ≤ CMf(x)Φ(x,Mf(x))−α/N ,

which is (3.7).
Next, if Φ(x,Mf(x))−1/N ≤ δ(x), then take r = Φ(x,Mf(x))−1/N . Then, in

view of (3.1) in Lemma 3.4, we obtain (3.7).
(2) By (3.4),

δ(x)α−N

∫
B(x,2δ(x))

f(y) dy ≤ Cδ(x)αΦ−1(x, δ(x)−N).

If α ≤ σ0, then r 7→ rαΦ−1(x, r−N) is uniformly almost decreasing in view of
Lemma 3.6. Hence

δ(x)α−N

∫
B(x,2δ(x))

f(y) dy ≤ CrαΦ−1(x, r−N)

for 0 < r ≤ δ(x). Thus, by the same arguments as above we obtain (3.8).

4 Hardy’s inequality I

Lemma 4.1. Let Ω ̸= RN be an open set satisfying (3.5). Suppose Φ(x, t) satisfies
(Φ5), (Φ6) and (Φ3∗). Then there exist constants C > 0 and 0 < b0 < 1 such that

∥δb−1u∥LΦ(Ω) ≤ C∥δb|∇u|∥LΦ(Ω) (4.1)

for all u ∈ W 1,Φ
0 (Ω) and 0 ≤ b ≤ b0. If u ∈ W 1,Φ

0 (Ω) and δb|∇u| ∈ LΦ(Ω) for
0 ≤ b ≤ b0, then δbu extended by 0 outside Ω belongs to W 1,Φ(RN).

Proof. Without loss of generality, we may assume that 0 ∈ ∂Ω. For u ∈ W 1,Φ
0 (Ω)

and b ≥ 0, let

ub(x) =

{
δ(x)bu(x), if x ∈ Ω
0, if x ∈ Ωc.

We first treat u ∈ C∞
0 (Ω). Note that δ and 1/δ are bounded on support of u

and δ ∈ W 1,∞(Ω). Hence ub ∈ W 1,Φ(RN) ⊂ W 1,1
loc (RN) for every b ≥ 0. Applying

Lemma 3.8 (1) to this function, we have

δ(x)b|u(x)| ≤ C

∫
B(x,2δ(x))∩Ω

|x− y|1−N{bδ(y)b−1|u(y)| + δ(y)b|∇u(y)|} dy, (4.2)
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so that
δ(x)b−1|u(x)| ≤ C

{
bM(δb−1u)(x) + M(δb|∇u|)(x)

}
for a.e. x ∈ Ω with a constant C independent of b. In view of Lemma 3.1, we find

∥δb−1u∥LΦ(Ω) ≤ C0

{
b∥δb−1u∥LΦ(Ω) + ∥δb|∇u|∥LΦ(Ω)

}
,

which gives

(1 − C0b)∥δb−1u∥LΦ(Ω) ≤ C0∥δb|∇u|∥LΦ(Ω).

Hence, taking b0 such that 1 − C0b0 > 0, we have (4.1) for 0 ≤ b ≤ b0.
We next treat u ∈ W 1,Φ

0 (Ω) such that u = 0 outside B(0, R) for some R > 0.
Then we can find a sequence φj ∈ C∞

0 (Ω) such that φj → u in W 1,Φ
0 (Ω) and φj = 0

outside B(0, 2R) for each j. By the above discussions, for 0 < b ≤ b0, we have

∥δb−1φj∥LΦ(Ω) ≤ C∥δb|∇φj|∥LΦ(Ω) (4.3)

for all j and

∥δb−1(φj − φj′)∥LΦ(Ω) ≤ C∥δb|∇φj −∇φj′ |∥LΦ(Ω) (4.4)

for all j, j′. Since δ is bounded on B(0, 2R), we see that

∥δb|∇φj|∥LΦ(Ω) → ∥δb|∇u|∥LΦ(Ω)

as j → ∞. Similarly
∥δb|∇φj −∇φj′|∥LΦ(Ω) → 0

as j, j′ → ∞. Hence by (4.4), {δb−1φj} is a Cauchy sequence in LΦ(Ω), which
implies that δb−1φj → δb−1u in LΦ(Ω). Thus, letting j → ∞ in (4.3), we obtain
(4.1). Further, (φj)b → ub in LΦ(RN) and

∇(φj)b =

{
bδb−1φj∇δ + δb∇φj on Ω
0 on Ωc

→
{

bδb−1u∇δ + δb∇u on Ω
0 on Ωc

in LΦ(RN) as j → ∞. It then follows that

∇ub =

{
bδb−1u∇δ + δb∇u on Ω
0 on Ωc,

which belongs to LΦ(RN), and hence ub ∈ W 1,Φ(RN).
Finally we treat a general u ∈ W 1,Φ

0 (Ω). For each n ∈ N, we consider a C1-
function Hn on [0,∞) such that 0 ≤ Hn ≤ 1 on [0,∞), Hn = 1 on [0, n], Hn = 0
on [3n,∞), 0 ≤ −H ′

n(t) ≤ t−1 for t ∈ (n, 3n). The existence of such Hn is assured

since

∫ 3n

n

t−1 dt = log 3 > 1. Set un(x) = Hn(|x|)u(x), n = 1, 2, . . .. Then we know

by the above that
∥δb−1un∥LΦ(Ω) ≤ C∥δb|∇(un)|∥LΦ(Ω). (4.5)
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Since δb−1|un| ↑ δb−1|u| (n → ∞),

∥δb−1un∥LΦ(Ω) → ∥δb−1u∥LΦ(Ω) (n → ∞).

On the other hand,

|∇un(x)| ≤ |Hn
′(|x|)||u(x)| + Hn(|x|)|∇u(x)|

≤ 1

|x|
|u(x)|χB(0,3n)\B(0,n)(x) + |∇u(x)|.

Since δ(x)b/|x| ≤ |x|b−1 ≤ nb−1 for |x| ≥ n and b < 1,

δ(x)b|∇un(x)| ≤ nb−1|u(x)| + δ(x)b|∇u(x)|,

so that

∥δb|∇un|∥LΦ(Ω) ≤ nb−1∥u∥LΦ(Ω) + ∥δb|∇u|∥LΦ(Ω)

→ ∥δb|∇u|∥LΦ(Ω) (n → ∞).

Therefore, by letting n → ∞ in (4.5), we obtain (4.1), which also implies that
ub ∈ W 1,Φ(RN).

For α ≥ 0, we consider a function Ψα(x, t) : RN × [0,∞) → [0,∞) satisfying
the following conditions:

(Ψ1) Ψα(·, t) is measurable on RN for each t ≥ 0 and Ψα(x, ·) is continuous on
[0,∞) for each x ∈ RN ;

(Ψ2) Ψα(x, ·) is uniformly almost increasing on [0,∞), namely there is a constant
A4 ≥ 1 such that Ψα(x, t) ≤ A4Ψα(x, s) for all x ∈ RN , whenever 0 ≤ t < s;

(Ψ3) there exists a constant A5 ≥ 1 such that

Ψα

(
x, tΦ(x, t)−α/N

)
≤ A5Φ(x, t)

for all x ∈ RN and t > 0.

Note that we may take Ψ0(x, t) = Φ(x, t).

Example 4.2. Let Φ(x, t) be as in Example 2.1. Set

Ψα(x, t) =

(
t

k∏
j=1

(L(j)
e (t))qj(x)/p(x)

)p♯(x)

,

where 1/p♯(x) = 1/p(x) − α/N . If 0 ≤ α < N/p+, then Ψα satisfies (Ψ1), (Ψ2)
and (Ψ3).

Example 4.3. Let Φ(x, t) be as in Example 2.2. Set

Ψα(x, t) =
(
(1 + t)Lc(t)

q1(x)/p1(x)
)p♯1(x) ((1 + 1/t)Lc(1/t)

−q2(x)/p2(x)
)p♯2(x) .

If 0 ≤ α < min{N/p+1 , N/p+2 }, then Ψα satisfies (Ψ1), (Ψ2) and (Ψ3).
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Theorem 4.4. Let Ω ̸= RN be an open set satisfying (3.5). Suppose Φ(x, t)
satisfies (Φ5), (Φ3∗) and (Φ6∗) and let α ∈ [0, σ0) ∩ [0, 1] for σ0 given in Lemma
3.6. Then there exist constants C∗ > 0 and 0 < b0 < 1 such that∫

Ω

Ψα

(
x, δ(x)α+b−1|u(x)|/C∗) dx ≤ 1

for all u ∈ W 1,Φ
0 (Ω) with ∥δb|∇u|∥LΦ(Ω) ≤ 1 and 0 ≤ b ≤ b0.

Proof. Let b0 be the number given in Lemma 4.1 and let 0 ≤ b ≤ b0. Let u ∈
W 1,Φ

0 (Ω) with ∥δb|∇u|∥LΦ(Ω) ≤ 1. By Lemma 4.1, δbu extended by 0 outside Ω

belongs to W 1,1
loc (RN), so that by Lemma 3.8 (1), (4.2) holds a.e. x ∈ Ω. Hence

δ(x)α+b−1|u(x)| ≤ Cδ(x)α−1

∫
B(x,2δ(x))

|x− y|1−Nfu(y) dy

for a.e x ∈ Ω, where fu(y) = bδ(y)b−1|u(y)|+ δ(y)b|∇u(y)| for y ∈ Ω and fu(y) = 0
for y ∈ Ωc. By Lemma 4.1, there is a constant C1 ≥ 1 such that ∥fu∥LΦ(Ω) ≤ C1.
Applying Lemma 3.9 (1) to fu/C1 and using (Φ4), we have

δ(x)α+b−1|u(x)| ≤ C2Mfu(x)Φ(x,Mfu(x))−α/N

a.e. x ∈ Ω. Hence by (Ψ2) and (Ψ3) we have∫
Ω

Ψα(x, δ(x)α+b−1|u(x)|/C2) dx ≤ A4A5

∫
Ω

Φ(x,Mfu(x)) dx (4.6)

whenever ∥δb|∇u|∥LΦ(Ω) ≤ 1. By Lemma 3.1, ∥Mfu∥LΦ(Ω) ≤ C3, which implies∫
Ω

Φ(x,Mfu(x)) dx ≤ C4 (C4 ≥ 1).
Now let 0 < ε ≤ 1. Since

Φ(x,Mfεu(x)) = Φ(x, εMfu(x)) ≤ A2εΦ(x,Mfu(x))

by (2.1), applying (4.6) to εu, we have∫
Ω

Ψα(x,δ(x)α+b−1|εu(x)|/C2) dx ≤ A4A5

∫
Ω

Φ(x,Mfεu(x)) dx

≤ A2A4A5ε

∫
Ω

Φ(x,Mfu(x)) dx ≤ A2A4A5C4ε.

Thus, taking ε = (A2A4A5C4)
−1 and C∗ = C2/ε, we obtain the required result.

Applying Theorem 4.4 to special Φ and Ψα given in Examples 2.1 and 4.2, we
obtain the following corollary, which is an extension of Theorem B.

Corollary 4.5. Let Φ and Ψα be as in Examples 2.1 and 4.2 and let Ω ̸= RN be
an open set satisfying (3.5). Suppose p− > 1 and let α ∈ [0, N/p+) ∩ [0, 1]. Then
there exist constants C > 0 and 0 < b0 < 1 such that

∥δα+b−1u∥LΨα (Ω) ≤ C∥δb|∇u|∥LΦ(Ω)

for all u ∈ W 1,Φ
0 (Ω) and 0 ≤ b ≤ b0.
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Similarly, applying Theorem 4.4 to special Φ and Ψα given in Examples 2.2 and
4.3, we obtain another extension of Theorem B:

Corollary 4.6. Let Φ and Ψα be as in Examples 2.2 and 4.3 and let Ω ̸=
RN be an open set satisfying (3.5). Suppose min(p−1 , p

−
2 ) > 1 and let α ∈

[0,min(N/p+1 , N/p+2 )) ∩ [0, 1]. Then there exist constants C > 0 and 0 < b0 < 1
such that

∥δα+b−1u∥LΨα (Ω) ≤ C∥δb|∇u|∥LΦ(Ω)

for all u ∈ W 1,Φ
0 (Ω) and 0 ≤ b ≤ b0.

5 Hardy’s inequality II

For a proof of next theorem, we prepare the following lemma instead of Lemma
4.1.

Lemma 5.1. Let Ω ̸= RN be an open set. Suppose that Φ(x, t) satisfies (Φ5), (Φ6)
and (Φ3∗) for ε0 > N − 1. Then there exist constants C > 0 and 0 < b1 < 1 such
that

∥δb−1u∥LΦ(Ω) ≤ C∥δb|∇u|∥LΦ(Ω)

for all u ∈ W 1,Φ
0 (Ω) and 0 ≤ b ≤ b1. If u ∈ W 1,Φ

0 (Ω) and δb|∇u| ∈ LΦ(Ω) for
0 ≤ b ≤ b1, then δbu extended by 0 outside Ω belongs to W 1,Φ(RN).

Proof. Take λ such that N < λ < ε0 + 1. Then W 1,Φ(RN) ⊂ W 1,λ
loc (RN).

First, let u ∈ C∞
0 (Ω) and b ≥ 0. Let ub be the function δbu extended by 0

outside Ω. Then ub ∈ W 1,Φ(RN) ⊂ W 1,λ
loc (RN) and applying Lemma 3.8 (2) to

v = ub, we have

[δ(x)b−1|u(x)|]λ ≤ Cδ(x)−N

∫
B(x,2δ(x))∩Ω

fu(y) dy ≤ CMfu(x) (5.1)

for all x ∈ Ω, where fu(y) = [bδ(y)b−1|u(y)| + δ(y)b|∇u(y)|]λ. In view of Corollary
3.3, we find

∥[δb−1|u|]λ∥LΦλ (Ω) ≤ C∥fu∥LΦλ (Ω).

Since ∥f∥LΦλ (Ω) = ∥f 1/λ∥λLΦ(Ω) for every f ∈ LΦλ(Ω), we obtain

∥δb−1u∥LΦ(Ω) ≤ C1/λ∥f 1/λ
u ∥LΦ(Ω) ≤ C1

{
b∥δb−1u∥LΦ(Ω) + ∥δb|∇u|∥LΦ(Ω)

}
,

which gives

(1 − C1b)∥δb−1u∥LΦ(Ω) ≤ C1∥δb|∇u|∥LΦ(Ω).

Take b1 such that 1 − C1b1 > 0. Then, in the same way as the last half of the
proof of Lemma 4.1, we obtain the required results for u ∈ W 1,Φ

0 (Ω) and 0 ≤ b ≤ b1.
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Theorem 5.2. Let Ω ̸= RN be an open set. Suppose Φ(x, t) satisfies (Φ5), (Φ6∗)
and (Φ3∗) with ε0 > N−1. Let α ∈ [0, σ0]. Then there exist C∗ > 0 and 0 < b1 < 1
such that ∫

Ω

Ψα(x, δ(x)α+b−1|u(x)|/C∗) dx ≤ 1

for all u ∈ W 1,Φ
0 (Ω) with ∥δb|∇u|∥LΦ(Ω) ≤ 1 and 0 ≤ b ≤ b1.

Proof. Let b1 be as in the above lemma and let 0 ≤ b ≤ b1. Let u ∈ W 1,Φ
0 (Ω) with

∥δb|∇u|∥LΦ(Ω) ≤ 1. Take λ such that N < λ < ε0 + 1. By the above lemma, δbu

extended by 0 outside Ω belongs to W 1,λ
loc (RN), so that by (5.1) we have

[δ(x)α+b−1|u(x)|]λ ≤ Cδ(x)αλ−N

∫
B(x,2δ(x))

fu(y) dy

for all x ∈ Ω, where fu(y) = [bδ(y)b−1|u(y)|+δ(y)b|∇u(y)|]λ for y ∈ Ω and fu(y) = 0

for y ∈ Ωc. By Lemma 5.1, there is a constant C1 ≥ 1 such that ∥f 1/λ
u ∥LΦ(Ω) ≤ C1,

so that ∥fu∥LΦλ (Ω) ≤ C1
λ.

Here we note that Φλ(x, t) satisfies (Φ6∗) with gλ in place of g and that r 7→
rλσ0Φ−1

λ (x, r−N) is uniformly almost decreasing on (0,∞). Since λα ∈ [0, λσ0], we
can apply Lemma 3.9 (2) to fu/C1

λ, λα and Φλ in place of f , α and Φ respectively,
and using (Φ4), we obtain

δ(x)α+b−1|u(x)| ≤ C[Mfu(x)]1/λΦλ(x,Mfu(x)/C1
λ)−α/N

≤ C2[Mfu(x)]1/λΦ(x, [Mfu(x)]1/λ)−α/N

for all x ∈ Ω. Hence by (Ψ2) and (Ψ3)∫
Ω

Ψα(x, δ(x)α+b−1|u(x)|/C2) dx ≤ A4A5

∫
Ω

Φ(x, [Mfu(x)]1/λ) dx

= A4A5

∫
Ω

Φλ(x,Mfu(x)) dx. (5.2)

By Corollary 3.3, ∥Mfu∥LΦλ (Ω) ≤ C3, which implies
∫
Ω

Φλ(x,Mfu(x)) dx ≤ C4.
Let 0 < ε ≤ 1. Since

Φλ(x,Mfεu(x)) = Φλ(x, ελMfu(x)) = Φ(x, ε[Mfu(x)]1/λ)

≤ A2εΦ(x, [Mfu(x)]1/λ) = A2εΦλ(x,Mfu(x))

by (2.1), applying (5.2) to εu, we have∫
Ω

Ψα(x,δ(x)α+b−1|εu(x)|/C2) dx ≤ A4A5

∫
Ω

Φλ(x,Mfεu(x)) dx

≤ A2A4A5ε

∫
Ω

Φλ(x,Mfu(x)) dx ≤ A2A4A5C4ε.

Thus, taking ε = (A2A4A5C4)
−1 and C∗ = C2/ε, we obtain the required result.
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Applying Theorem 5.2 to special Φ and Ψα given in Examples 2.1 and 4.2, we
obtain the following corollary, which is an extension of Theorem B′.

Corollary 5.3. Let Φ and Ψα be as in Examples 2.1 and 4.2. Suppose p− > N
and let 0 ≤ α < N/p+. Then there exist constants C > 0 and 0 < b1 < 1 such that

∥δα+b−1u∥LΨα (Ω) ≤ C∥δb|∇u|∥LΦ(Ω)

for all u ∈ W 1,Φ
0 (Ω) and 0 ≤ b ≤ b1.

Similarly, applying Theorem 5.2 to special Φ and Ψα given in Examples 2.2 and
4.3, we obtain another extension of Theorem B′:

Corollary 5.4. Let Φ and Ψα be as in Examples 2.2 and 4.3. Suppose min(p−1 , p
−
2 ) >

N and let 0 ≤ α < min(N/p+1 , N/p+2 ). Then there exist constants C > 0 and
0 < b1 < 1 such that

∥δα+b−1u∥LΨα (Ω) ≤ C∥δb|∇u|∥LΦ(Ω)

for all u ∈ W 1,Φ
0 (Ω) and 0 ≤ b ≤ b1.
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