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Abstract

Our aim in this paper is to treat Hardy’s inequalities for Musielak-Orlicz-
Sobolev functions on proper open subset of RY.

1 Introduction

The higher dimensional Hardy’s inequality of the form
/ lu(x)[PS(2) PP dr < C/ |Vu(z)|Po(x) de, v € C(Q)
Q Q

appeared in [12] for bounded Lipschitz domains @ C RY, 1 < p < coand § < p—1,
where §(z) = dist(z,092). For related results, we refer to [1], [2], [6], [7], [8] and
[13].

Variable exponent Lebesgue spaces and Sobolev spaces were introduced to dis-
cuss nonlinear partial differential equations with non-standard growth conditions.
Harjulehto-Hasto-Koskenoja [4] proved Hardy’s inequality for Sobolev functions
u € VVO1 P (')(Q) when (2 is bounded and p(-) is a variable exponent satisfying the
log-Hoélder conditions on €2, as an extension of [2]. In fact they proved the following:

THEOREM A. Let Q be an open and bounded subset of RY. Suppose 1 < p~ <
pT < oo, where p~ = inf gy p(x) and p* := sup,cgny p(z). Assume that )
satisfies the measure density condition, that is, there exists a constant k > 0 such
that

|B(z,7) N Q°| > k|B(z,7)| (1.1)

for every z € 0Q and r > 0 (see [3]). Then there exist positive constants C' and by
such that the inequality

16" ull ooy < CNO° IVl || 2oty g (12)
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holds for all w € WoP () and all 0 < b < by, where §(z) = dist(x, 0%).

In the case when b = 0, Hasto [5, Theorem 3.2] proved Theorem A without the
assumption that €2 is bounded. It is also shown in [4] that if p— > N then (1.2)
holds without the measure density condition (1.1).

Recently, these results have been extended to the two variable exponents Sobolev
spaces Wol’q)p(‘)’“‘>(§2) in [10], where @, 4)(z,t) = (t(log(co + t))q(x))p(x) with p(-)
as above and a measurable bounded function ¢(+). In fact, the following results are
shown in [10]:

THEOREM B ([10, Theorem 1.1]). Let Q # RY be an open set. Suppose 1 <
p~ < pt < oo and Q) satisfies the measure density condition (1.1). Then, for
0 < A< N/pt, A <1, there exist positive constants C' and by such that the
inequality

H6a+b71

u”‘i)pa(.)yq(.)(ﬂ) S C||5b|vu| ||‘Pp(4),q(4)(Q)

holds for all u € Wol’q)p(‘)’q(‘)(Q), 0 <a< Aand 0 < b < by, where 1/p,(z) =
1/p(z) — a/N.

THEOREM B’ ([10, Theorem 1.2]). If N < p~ < p* < oo, then the same conclusion
as in Theorem B holds without the measure density condition (1.1).

Our aim in this paper is to extend these results to functions in general Musielak-
Orlicz-Sobolev spaces Wy'® (Q) defined by a general function ®(z,t) satisfying cer-
tain conditions (see Section 2 for the definitions of ® and W, ®(Q)). Corresponding
to the functions @, () 4)(2,t) in [10], we shall introduce functions ¥, (z,t) to state
our main results Theorem 4.4 and Theorem 5.2, which are extensions of Theorem
B and Theorem B’, respectively.

2 Preliminaries

Throughout this paper, let C' denote various constants independent of the variables
in question and C(a,b,---) be a constant that depends on a,b, - - -.
We consider a function

®(z,t) = to(z,t) : RN x [0,00) — [0, 00)
satisfying the following conditions (®1) — ($4):

(®1) ¢é(-,t) is measurable on RY for each ¢ > 0 and ¢(z, -) is continuous on
[0, 00) for each z € RY;

(®2) there exists a constant A; > 1 such that

AT < ¢(x,1) < Ay for all 2 € RY;

(®3) ¢(x,-) is uniformly almost increasing, namely there exists a constant A, > 1
such that

o(x,t) < Asd(z,s) forall € RY  whenever 0 <t < s;



(®4) there exists a constant Az > 1 such that

d(x,2t) < Asop(x,t) for all z € RN and t > 0.

Note that (©2), ($3) and (P4) imply

0 < inf ¢(z,t) < sup ¢(z,t) < 00

for each ¢ > 0.
If ®(z,-) is convex for each x € RY, then (®3) holds with Ay = 1; namely
é(x,-) is non-decreasing for each z € RY.

Let Q_S(a:,t) = SUPg< < ¢(z,s) and

t
B t) = [ dlarydr
0
for v € RY and t > 0. Then ®(z,-) is convex and

L o) < B(a.t) < Ayd(a, 1)
24,

for all z € RY and ¢t > 0.
By (®3), we see that

< Asad(z,t) ifo<a<l1
O (x,at) )
> Ay a®(x,t)  ifa>1.
We shall also consider the following conditions:
(®5) for every v > 0, there exists a constant B, > 1 such that
¢($, t) S B’Y¢<y7 t)

whenever |z —y| < vt~V and t > 1,

(®6) there exist a function g € L'(RY) and a constant B,, > 1 such that 0 <
g(z) < 1 for all z € RN and

Blo(w,t) < 9(',1) < Buot(, 1)
whenever |2/| > |z] and g(z) <t < 1.

EXAMPLE 2.1. Let p(-) and ¢;(-), j = 1,...,k, be measurable functions on R¥
such that

(P1) 1<p™ :=infern p(z) < sup,ern p(x) = p* < o0
and
(Q1) —oo0 < q; = inf,epn ¢j(z) < sup,egy ¢;(2) = g < 00
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forall j=1,... k. ' '
Set L.(t) = log(c+t) for ¢ > e and t > 0, LV (¢) = Lo(t), LYV (1) = L.(LY (1))
and

k
D (a,1) = '@ [ (L9 (1)),
j=1

Then, ®(z,t) satisfies (®1), ($2) and (P4). It satisfies ($3) if there is a constant
K > 0 such that K(p(z) — 1)+ ¢;(z) > 0for all z € G and j = 1,...,k; in
particular if p~ > 1org; >0forall j=1,... k.

Moreover, we see that ®(x,t) satisfies (@5) if

(P2) p(-) is log-Holder continuous, namely
p(z) = pW)| < 57—
Le(1/]z —yl)

with a constant Cj, > 0 and
(Q2) gj(+) is (j + 1)-log-Hélder continuous, namely
&
(1/]z ~ y)

|4j(z) — ;(y)| < G

with constants Cy, >0, 7 =1,...k.
Finally, we see that ®(z,t) satisfies (®6) with g(z) = 1/(1 + |2|)M*L if p(-) is
log-Hoélder continuous at oo, namely if it satisfies

(P3) [p(z) —p(2)l < 7 (‘ |>

In fact, if 1/(1 4 |2))N*' < ¢ < 1, then ¢t~ P@ =P < (N+DCo for |o/| > |z
and LY (t)l@-a@) < L0 (1)9" -9,

whenever |2'| > |z| with a constant C), o > 0.

EXAMPLE 2.2. Let pi(+), p2(+), ¢i(-) and ¢o(-) be measurable functions on RY
satisfying (P1) and (Q1).
Then,

Oz, t) = (1 + )P (14 1/t) PO L ()@ L. (1/t) "2

satisfies (®1), (®2) and (P4). It satisfies (®3) if p; > 1, j = 1,2 or ¢;; > 0,
Jj =1,2. As a matter of fact, it satisfies (®3) if and only if p;(-), ¢;(-) satisfies the
following conditions:

(1) g;(z) > 0 at points = where p;(z) =1, j =1,2;

(2) SUD,.p, (2)>1 {min(g; (), 0) log(p;(x) — 1)} < 00, j = 1,2

Moreover, we see that ®(x,t) satisfies ($5) if p;(-) is log-Holder continuous and
¢1(+) is 2-log-Holder continuous.

Finally, we see that ®(z,t) satisfies (®6) with g(z) = 1/(1 + |z|)N*1 if po(-) is
log-Holder continuous at co and



(Q3) @o(+) is 2-log-Holder continuous at oo, namely

Cga 00

— &= whenever |/ > ||
L (|

|a2(2) = q2(2)] <

with a constant Cy, o > 0.
In fact, if 1/(1+ |z[)N™ < ¢ <1, then (14 ¢)lP@-P)l < gpi—1

(1 + 1/t>|p2(m)*P2(1/)| < 6(N+1)Cp,oo’ (log(e + t))|q1(r)fq1(x’)\ < (log(e + 1))(]1"7(11—
and (log(e + 1/25))"72@)_‘12(”3/)' < C(N,Cy o) for |2| > |z].

Let Q be an open set in RY. Given ®(z,t) as above, the associated Musielak-
Orlicz space

1(9) = {f € L) [ @17 w)) dy < oo}

is a Banach space with respect to the norm

1l = inf {A -0 / By, £ (9)1/N) dy < 1}

(cf. [11]). Further, we define the Musielak-Orlicz-Sobolev space by
Whe(Q) = {u e L*(Q) : |[Vu| € L*(Q)}.

The norm
ullwre@) = llullpe@) + [ [VulllLe

makes W1*(Q2) a Banach space. We denote the closure of C§°(€) in Wh®(Q) by
W, *(Q). As usual, let W,5*(RY) denote the set of functions u on RY such that

ulg € WH®(Q) for every bounded open set Q. By (®2) and (®3), W,2*(RYN) ¢
Wi (RY).

loc

3 Lemmas

We denote by B(z,r) the open ball centered at z of radius r. For a measurable
set F, we denote by |E| the Lebesgue measure of E.

For a locally integrable function f on 2, the Hardy-Littlewood maximal func-
tion M f is defined by

1
Mf(x) =sup —— fy)| dy.
( ) r>0 |B(x77n>’ B(m,r)ﬂQ‘ ( )’

We know the following boundedness of maximal operator on L®((2).

LEMMA 3.1 ([9, Corollary 4.4]). Suppose that ®(z,t) satisfies (95), (96) and
further assume:



(®3*) t — t7%0¢(x,t) is uniformly almost increasing on (0,00) for some gy > 0,
namely there is a constant As ., > 1 such that

t0¢(z,t) < Ay s ¢(x,s) for all v € RN whenever 0 < t < s.

Then the maximal operator M is bounded from L®() into itself, namely, there is
a constant C' > 0 such that

(M fllze@) < Cllifllze@
for all f € L*(Q).
For A\>1,z € RY and ¢t > 0, set
Ox(w, 1) = O(x, 1) = tx(x, 1),
where ¢y (z,t) = t/21p(z, t1/).

LEMMA 3.2. (1) ®,(x,t) satisfies the conditions (92) and (P4).
(2) Suppose ®(x,t) satisties (P3*). Then ®,(z,t) satisfies (P1) and (P3) when
A < 1+¢y, and it satisties ($3*) when A < 14¢( (with gy replaced by (1+eo—A)/A).
(3) If ®(x,t) satisfies (P5), then so does @y (x,1).
(4) If O(x,t) satisfies (P6), then so does Py (x,t).

Proof. (1) (®2) for ® immediately implies that for ®,. For (P4), note that
oa(x, 2t) < 271 A Az (1),
(2) The assertions of (2) follow from (®3*) and the equality

dala, 1) = LA () e0g i 1A),

(3) It is enough to note that t=—/~ < ¢=V/N for ¢ > 1.
(4) It is enough to note that g(x) < g(x)"* when 0 < g(x) < 1. O

From Lemma 3.1 and the above lemma, we obtain

COROLLARY 3.3. Suppose that ®(x,t) satisfies (®5), (P6) and (®3*). Then the
maximal operator M is bounded from L®*(Q) into itself for 1 < X\ < 1+ &.

Set
O (z,5) =sup{t > 0; ®(x,t) < s}

for z € RV and s > 0.
LEMMA 3.4 (cf. [9, Lemma 5.1]). ®~!(z,-) is non-decreasing,
Oz, & (x,t) =t

and
At < O, d(x,t)) < Adt (3.1)

for all z € RN and t > 0.

We shall consider the following condition:
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(®6*) ®(x,t) satisfies (®6) with g(x) < (1 + |z|)~? for some 3 > N.

LEMMA 3.5. If ®(x,t) satisfies (P6*), then there exists 0 < A < 1 such that
d(z,\g*(2)) < (2|z|)™" for all z € RV,

where g*(z) = max(g(x), Mg(z)).

Proof. Since g(z) < (1 + |z])™? with 8 > N, Mg(z) < C(1 + |z)~", so that
g*(z) < C(1 + |z|)~". Hence

Oz, \g*(2)) < AC(1 + |z]) N Az (2, \C) < 2V NC AL (2|z]) Vo (2, AC).
Thus, the required inequality holds if A\ < (2NCA;A42)7L O

LEMMA 3.6. 7+ r2®~1(z,r~) is uniformly almost decreasing on (0, 00), where
oo = N/(l + (log A3)/(log 2)).

Proof. By (®4), we see that

1 1
-1 < Lot '
o (m, 2A38> < 2@ (z,s) (3.2)

for all z € RY and s > 0. If 0 < A < 1, then choosing & € N such that
(243)7% < X\ < (243)7*"! and applying (3.2), we have

Oz, As) < 27F1d N, 5) < 2AYHDD (g 5),
where 0 = (log A3)/(log2). Note that 0g = N/(1+ o). Thus, for a > 1, we have

(aT)UO(I)_l (x, (ar)_N) < (ar)UOZ(a_N)1/(1+")q)_1 (:E, T_N>
= 2r°® H(z, r ),
which shows the assertion of the lemma. [
LEMMA 3.7. Suppose that ®(x,t) satisfies ($5) and ($6*). Let 0 < a < oy for og
given in Lemma 3.6. Then there exists a constant C' > 0 such that

/ 2~y N fly) dy < Crod (a, e N) (3.3)
B(z,2|z|)\B(z,r)

and

|ty <crei@n ) (3.4)
B(z,r)
for all z € RN, 0 < r < 2|z|, and f > 0 satisfying || f|| o ®y) < 1.

Proof. Condition (®xJ) in [9] with x(z,r) = vV and J(z,r) = r* is satisfied
by Lemma 3.6, if 0 < a < 0y. Hence, (3.3) follows from [9, Lemma 6.3] in view of
Lemma 3.5. (3.4) follows from [9, Lemma 5.3] and Lemma 3.5. O



Hereafter, let Q is an open set in RY such that Q # RY, and let 6(z) =
dist(x, 0Q2).
The following is a key lemma:

LEMMA 3.8. (1) If Q satisfies
B(z.r) N | > KB(z.7)] (3.5)
for every z € 02 and r > 0 with a constant k > 0 (k < 1), then there exists a

constant C' = C(N, k) > 0 such that

u(z)] < C 2 =y Vu(y)| dy
B(z,20(x))

for almost every x € (), whenever u € VVZIOCI(RN) and u = 0 outside (2.

(2) Let A > N. Then there exists a constant C' > 0 such that

1/
el <c (o [ vumpay)
B(x,26(z))

for every x € Q, whenever v € W22 (RN) and v = 0 outside .

For (1) see [10, Lemma 2.1]; for (2) see e.g. [6, (3.1)] (also cf. [2, Proposition
1]). Here note that (2) holds without the assumption (3.5).

We consider

H(f:2,0) = 6(x)*" / = — 5"V f(y) dy

B(z,20(x))

forz€Q,0<a<1land f e L. (RY) such that f >0, f = 0 outside Q.

loc

We know (by integration by parts)
H(f:2,0) < CMf(z). (3.6)
for all z € €.

LEMMA 3.9. Let Q # RY be an open set and suppose that ®(z,t) satisfies (®5)
and (96*).
(1) Let a € [0,00) N[0, 1]. Then there exists a constant C' > 0 such that
H(f;2,0) < CMf(a)®(z, M ()=~ (3.7)

for all x € Q and f > 0 such that f = 0 outside Q and || f|| o) < 1.
(2) Let a € [0, 0¢]. Then there exists a constant C' > 0 such that

S [ f)dy < MR M) (38)
B(x,26(z))

for all x € Q and f > 0 such that f = 0 outside Q and || f|| o) < 1.



Proof. We have only to consider the case a > 0. Without loss of generality, we
may assume that 0 € 09, so that d(z) < |z|. Let f > 0 with f = 0 outside €2 and

[fllze@ < 1.
(1) For 0 < r < §(x), we have by (3.3) in Lemma 3.7

H(fina) < oy f@) + [ o=y )
B(z,26(x))\B(z,r)
< 0{ N f(x) + oD (x, N)}.
Suppose ®(z, M f(z))~/N > §(x). Then we have by (3.6)
H(f;x,0) = 0(x)*H(f;2,0) < C6(x)*M f(x) < OM f(x)®(x, M f(x)) =/,

which is (3.7).

Next, if ®(z, M f(z))~/N < §(x), then take r = ®(z, M f(z))""/N. Then, in
view of (3.1) in Lemma 3.4, we obtain (3.7).

(2) By (3.4),

5(x)™N / F(y) dy < C8(x)*d (2, 6(2) ™).
(2,26(x))

If « < 09, then r — 79®~1(z,7~) is uniformly almost decreasing in view of
Lemma 3.6. Hence

5(a)*N / F(y) dy < Croo(z, 1)
B(z,26(x))

for 0 < r < §(x). Thus, by the same arguments as above we obtain (3.8). O

4 Hardy’s inequality I

LEMMA 4.1. Let Q # R” be an open set satisfying (3.5). Suppose ®(z,t) satisfies
(®5), (®6) and ($3*). Then there exist constants C' > 0 and 0 < by < 1 such that

16" ull oy < CNO°Vull| o) (4.1)
for all u € Wy*(Q) and 0 < b < by. If u € Wy *(Q) and &|Vu| € L*(Q) for
0 < b < by, then 6°u extended by 0 outside © belongs to W®(RY).

Proof. Without loss of generality, we may assume that 0 € 9€). For u € VVO1 "b(Q)
and b > 0, let
[ d(x)bu(z), ifzeQ
() = { 0, if v € Q.

We first treat u € C§°(€2). Note that 6 and 1/ are bounded on support of u
and 6 € Wh(Q). Hence u, € WHS(RN) ¢ WEHRYN) for every b > 0. Applying
Lemma 3.8 (1) to this function, we have

0(@)"|u(z)] < C/ o =y TN{B ()" u)] + 0(y) [Vuly) [} dy,  (4.2)

B(z,20(x))NO2



so that
§(z)" Mu(z)| < C{bM (6" u)(z) + M (8°|Vul)(z)}

for a.e. x € ) with a constant C' independent of b. In view of Lemma 3.1, we find
18" ul| Lo ) < Co {bl16° ull Loy + 16°] Vul [ ooy }
which gives
(1 = Cab) 8 ull (@) < Coll8* IVl o

Hence, taking by such that 1 — Cobg > 0, we have (4.1) for 0 < b < by.

We next treat v € Wy*(Q) such that « = 0 outside B(0, R) for some R > 0.
Then we can find a sequence ¢; € C§°(Q) such that ¢; — u in W, *(Q) and ¢; = 0
outside B(0,2R) for each j. By the above discussions, for 0 < b < by, we have

16" il o) < ClIO° Vsl oo (4.3)
for all j and
16° (5 = wi)llLo) < ClO°IVe; = Voylll Lo (4.4)
for all j, j'. Since ¢ is bounded on B(0,2R), we see that
||5b|V<Pj|||L<I>(Q) - ||5b|vu|||L<1>(Q)

as j — oco. Similarly

16°|Vep; — Vojlllpe@ — 0
as j, j' — oo. Hence by (4.4), {6°7¢;} is a Cauchy sequence in L®(Q), which
implies that 6°7'¢; — 6*'u in L*(2). Thus, letting j — oo in (4.3), we obtain
(4.1). Further, (¢;), — up in L*(RY) and

b6* 1,V + 6*V,; on Q

V(@j)b = { 0 i i on Q¢
N b6*~uVé + 6°Vu on
0 on )¢

in L*(RY) as j — oco. It then follows that

Vi — bd*~'uVE 4 6*Vu on
=90 on )¢,

which belongs to L*(RY), and hence u, € W1®(RY).

Finally we treat a general u € W, *(Q). For each n € N, we consider a C'-
function H, on [0, 00) such that 0 < H,, <1 on [0,00), H, =1 on [0,n], H, =0
on [3n,00), 0 < —H!(t) <t~ for t € (n,3n). The existence of such H,, is assured

n

since t~tdt =1log3 > 1. Set uy(z) = H,(|z|)u(x),n = 1,2,.... Then we know

by the 'above that
18 | o) < CIS° IV ()] o 0y (4.5)
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Since 6°~tuy,| 1 6 ul (n — o0),
18" un o) = (16" ull o) (n — o0).
On the other hand,
V()] < [Hy/(l2)][u(2)] + Hu(|2])|Vu(z)]

1
< ﬂ’u<$)|XB(O,3n)\B(O,n) () + |Vu(x)|.

Since 0(z)b/|x| < |z|>~t < nP ! for |z| > n and b < 1,
3(2)" | Vun ()] < 0" Hu(z)] + 6(2)[Vu(@)],
so that

H5b|vun|\|m(ﬂ) < nbﬂHUHL@(Q) + ||5b|VU|HL¢(Q)
- ||5b|vu|||L<>(Q) (n — 00).

Therefore, by letting n — oo in (4.5), we obtain (4.1), which also implies that

Uy € Wl’q)(RN).

For a > 0, we consider a function ¥,(z,t) : RY x [0,00) — [0, 00) satisfying

the following conditions:

(U1) W,(-,t) is measurable on RY for each ¢ > 0 and ¥, (z,) is continuous on

[0,00) for each z € RY;

(¥2) W, (x,-) is uniformly almost increasing on [0, c0), namely there is a constant
Ay > 1 such that W, (z,t) < AW, (z, s) for all z € RY, whenever 0 <t < s;

(W3) there exists a constant A5 > 1 such that
v, (:U,tq)(as,t)_o‘/N) < A5P(x,t)
for all z € RY and ¢ > 0.
Note that we may take Wy (z,t) = ®(x,t).
EXAMPLE 4.2. Let ®(z,t) be as in Example 2.1. Set

k

p?(x)
U, (x,t) = (tH(Lej)(t))qj(r)/p(r)> 7

j=1

where 1/p*(z) = 1/p(z) —a/N. If 0 < a < N/p™, then ¥, satisfies (U1), (¥2)

and (U3).
EXAMPLE 4.3. Let ®(xz,t) be as in Example 2.2. Set

ﬁ x ! x
U (a, 1) = ((1+ O Lo(t) =@MV (14 1)L (1) @/ @)

If 0 < a <min{N/p;, N/p;}, then ¥, satisfies (¥1), (U2) and (¥3).
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THEOREM 4.4. Let Q # RY be an open set satisfying (3.5). Suppose ®(z,t)
satisfies (P5), (P3*) and (P6*) and let o € [0,00) N[0, 1] for oy given in Lemma
3.6. Then there exist constants C* > 0 and 0 < by < 1 such that

/Q W, (x, 8(2)* " u()|/C7) de < 1

for all u € Wy® () with ||6°|Vul|| ey < 1 and 0 < b < by.

Proof. Let by be the number given in Lemma 4.1 and let 0 < b < by. Let u €
W, (Q) with 10°|Vul|| o) < 1. By Lemma 4.1, 6°u extended by 0 outside Q2
belongs to W2 (RY), so that by Lemma 3.8 (1), (4.2) holds a.e. z € Q. Hence

loc

5(2)* " u(z)| < O8(x)™! / 2=y fuly) dy
B(z,26(x))

for a.e z € Q, where f,(y) = b3(y)" Hu(y)| + d(y)°|Vu(y)| for y € Q and f,(y) =
for y € Q°. By Lemma 4.1, there is a constant Cy > 1 such that || f,| 2@ < C
Applying Lemma 3.9 (1) to f,/C and using (®4), we have

0()* u(x)| < CoM fu(w)®(w, M fu(x))=*/
a.e. = € ). Hence by (¥2) and (¥3) we have

/Q\Ifa(a:, §(z)* 0 ()| /Cy) da < A4A5/ O(x, M f,(2)) de (4.6)

Q

Whenever ||(5b\Vu|HLq>(Q) < 1. By Lemma 3.1, [|[Mf,| 12 < Cs, which implies
Jo ®(x, M fu(x))dx < Cy (Cy > 1).
Now let 0 < e < 1. Since

(I)(.CE, MfEU(x)) = (D(.T,eru(fE)) < Aqu)(mv MfU(x))

by (2.1), applying (4.6) to eu, we have

/\I/a(a:,é(x)a+b_1|5u(x)|/02)dx < A4A5/ O(z, M fou(x)) dx
Q Q

< A2A4A55/ O(x, Mf,(z))de < AyA A5Cye.
Q
Thus, taking ¢ = (A4, 45C,)~! and C* = Cy /e, we obtain the required result.

]

Applying Theorem 4.4 to special & and ¥, given in Examples 2.1 and 4.2, we
obtain the following corollary, which is an extension of Theorem B.

COROLLARY 4.5. Let ® and ¥, be as in Examples 2.1 and 4.2 and let Q # RY be
an open set satistfying (3.5). Suppose p~ > 1 and let a € [0, N/p*t) N [0,1]. Then
there exist constants C' > 0 and 0 < by < 1 such that

169 | pwa ) < C10°Vul| oo

for all w € W, ®(Q) and 0 < b < by.
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Similarly, applying Theorem 4.4 to special ® and ¥, given in Examples 2.2 and
4.3, we obtain another extension of Theorem B:

COROLLARY 4.6. Let ® and V¥, be as in Examples 2.2 and 4.3 and let ) #
RYM be an open set satisfying (3.5). Suppose min(p;,p;) > 1 and let a €
[0, min(N/p, N/p3)) N [0,1]. Then there exist constants C' > 0 and 0 < by < 1
such that

189 ]| e ) < C118° V|| o (@)

for all u € W (Q) and 0 < b < by.

5 Hardy’s inequality II

For a proof of next theorem, we prepare the following lemma instead of Lemma
4.1.

LEMMA 5.1. Let Q # R” be an open set. Suppose that ®(x,t) satisfies (®5), (96)
and (®3*) for ¢y > N — 1. Then there exist constants C' > 0 and 0 < by < 1 such
that

16 ull 2 (@) < ClI6°[Vull| oo

for all u € Wy'®(Q) and 0 < b < by. Ifu € Wy *(Q) and 8*|Vu| € L*(Q) for
0 < b < by, then §°u extended by 0 outside Q belongs to Wh®(RY).

Proof. Take X such that N < A < g9 4+ 1. Then W'(RN) ¢ W2 RN).

loc

First, let u € Cg°(Q) and b > 0. Let u, be the function 6°u extended by 0
outside Q. Then uw, € WH®(RN) ¢ WNRYN) and applying Lemma 3.8 (2) to
v = uy, we have

W@HWMWSC%WW/ fuly)dy < CMfu(x)  (5.1)

B(z,26(x))NQ2

for all x € Q, where f,(y) = [b6(y)> Y u(y)| + 0(v)°|Vu(y)|]*. In view of Corollary
3.3, we find

6%l Loy < Cllfull Lo y-
Since || fll ox(q) = Hfl/AHz@(Q) for every f € L* (Q), we obtain
16° ull Lo 0y < CY| fu Moy < Cu{DIO" ull oy + (18”1 Vulll ooy }
which gives
(1= OIS Ml iy < il Tallzoey

Take b; such that 1 — C1b; > 0. Then, in the same way as the last half of the
proof of Lemma 4.1, we obtain the required results for u € Wy'*(Q) and 0 < b < b;.
O
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THEOREM 5.2. Let Q # RY be an open set. Suppose ®(x,t) satisfies (5), ($6*)
and (®3*) withey > N—1. Let a € [0, 00]|. Then there exist C* > 0and 0 < b; < 1
such that

/ U, (2, 6() " u(z)|/C*) dz < 1
Q
for all w € Wy*(Q) with [|6°|Vul|| ey < 1 and 0 < b < by.

Proof. Let by be as in the above lemma and let 0 < b < by. Let u € W, *(Q) with
10°|Vul|| Loy < 1. Take A such that N < X < &g + 1. By the above lemma, 6°u

extended by 0 outside Q belongs to W2 (RYN), so that by (5.1) we have

loc

16(2)* > u(@) | < Co(x)™> / fuly) dy

B(z,26(x))

for all z € Q, where f,(y) = [b6(y)°Hu(y)|+6(y)°|Vu(y)|]* for y € Qand f,(y) =0
for y € Q°. By Lemma 5.1, there is a constant C; > 1 such that ||fu1/’\||Lq>(Q) < Ch,
so that [ fullpex @) < Ci.

Here we note that ®,(z,t) satisfies (®6*) with ¢* in place of g and that r
r*0® 1z, r~V) is uniformly almost decreasing on (0, 00). Since Aa € [0, Aay], we
can apply Lemma 3.9 (2) to f,/C1*, Aa and ®, in place of f, a and ® respectively,
and using ($4), we obtain

3(2) " Mu(w)] < O[M fu(@)]@a(z, M fu(x)/Cr*) =

<
< Go[M fu(@)] P, [M ful@)]) =
for all x € Q2. Hence by (¥2) and (¥3)
/Q Vo (2, 0(2)* " Hu(a)]|/Co)dz < AsAs /Q O(x, [M fo(z)]/*) d
— A4A5/Q(I>,\(£U,Mfu(x))dw. (5.2)

By Corollary 3.3, || M fu|| 12,y < Cs, which implies [, ®z(z, M f(2)) dz < Cy.
Let 0 < e < 1. Since

D, M fou (@) = B (2,22 M (1)) = B(a, [ M fu(2)])
< Ape®(a, [M fu(2)]) = Apep(a, M fo ()

by (2.1), applying (5.2) to eu, we have
/ U, (2,6(2) P eu(z)|/Co) dr < AuAs / B (, M () d
Q Q

S A2A4A5€/ (P)\(JZ, Mfu(l‘)) dx S A2A4A5C4€.
Q

Thus, taking ¢ = (A4, 45C,)~! and C* = Cy /e, we obtain the required result.
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Applying Theorem 5.2 to special ® and ¥, given in Examples 2.1 and 4.2, we
obtain the following corollary, which is an extension of Theorem B’.

COROLLARY 5.3. Let ® and ¥, be as in Examples 2.1 and 4.2. Suppose p~ > N
and let 0 < o < N/p*. Then there exist constants C > 0 and 0 < by < 1 such that

169 | pwa ) < C10°Vul| oo

for all w € Wy®(Q) and 0 < b < by.

Similarly, applying Theorem 5.2 to special ® and ¥, given in Examples 2.2 and
4.3, we obtain another extension of Theorem B’:

COROLLARY 5.4. Let ® and V,, be as in Examples 2.2 and 4.3. Suppose min(p; , py ) >
N and let 0 < o < min(N/p], N/p3). Then there exist constants C > 0 and
0 < by < 1 such that

169 | pwa ) < CJ10°|Vul|| e

for all w € Wy ®(Q) and 0 < b < by.
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