Hardy's inequality in Musielak-Orlicz-Sobolev spaces

Fumi-Yuki Maeda, Yoshihiro Mizuta, Takao Ohno and Tetsu Shimomura

July 24, 2013

Abstract

Our aim in this paper is to treat Hardy's inequalities for Musielak-OrliczSobolev functions on proper open subset of \mathbf{R}^{N}.

1 Introduction

The higher dimensional Hardy's inequality of the form

$$
\int_{\Omega}|u(x)|^{p} \delta(x)^{-p+\beta} d x \leq C \int_{\Omega}|\nabla u(x)|^{p} \delta(x)^{\beta} d x, u \in C_{0}^{\infty}(\Omega)
$$

appeared in [12] for bounded Lipschitz domains $\Omega \subset \mathbf{R}^{N}, 1<p<\infty$ and $\beta<p-1$, where $\delta(x)=\operatorname{dist}(x, \partial \Omega)$. For related results, we refer to [1], [2], [6], [7], [8] and [13].

Variable exponent Lebesgue spaces and Sobolev spaces were introduced to discuss nonlinear partial differential equations with non-standard growth conditions. Harjulehto-Hästö-Koskenoja [4] proved Hardy's inequality for Sobolev functions $u \in W_{0}^{1, p(\cdot)}(\Omega)$ when Ω is bounded and $p(\cdot)$ is a variable exponent satisfying the \log-Hölder conditions on Ω, as an extension of [2]. In fact they proved the following:
Theorem A. Let Ω be an open and bounded subset of \mathbf{R}^{N}. Suppose $1<p^{-} \leq$ $p^{+}<\infty$, where $p^{-}:=\inf _{x \in \mathbf{R}^{N}} p(x)$ and $p^{+}:=\sup _{x \in \mathbf{R}^{N}} p(x)$. Assume that Ω satisfies the measure density condition, that is, there exists a constant $k>0$ such that

$$
\begin{equation*}
\left|B(z, r) \cap \Omega^{c}\right| \geq k|B(z, r)| \tag{1.1}
\end{equation*}
$$

for every $z \in \partial \Omega$ and $r>0$ (see [3]). Then there exist positive constants C and b_{0} such that the inequality

$$
\begin{equation*}
\left\|\delta^{b-1} u\right\|_{L^{p(\cdot)}(\Omega)} \leq C\left\|\delta^{b}|\nabla u|\right\|_{L^{p(\cdot)}(\Omega)} \tag{1.2}
\end{equation*}
$$

2000 Mathematics Subject Classification : Primary 46E30, 42B25
Key words and phrases : Musielak-Orlicz space, Hardy's inequality, variable exponent
holds for all $u \in W_{0}^{1, p(\cdot)}(\Omega)$ and all $0 \leq b<b_{0}$, where $\delta(x)=\operatorname{dist}(x, \partial \Omega)$.
In the case when $b=0$, Hästö [5, Theorem 3.2] proved Theorem A without the assumption that Ω is bounded. It is also shown in [4] that if $p^{-}>N$ then (1.2) holds without the measure density condition (1.1).

Recently, these results have been extended to the two variable exponents Sobolev spaces $W_{0}^{1, \Phi_{p(\cdot), q(\cdot)}}(\Omega)$ in [10], where $\Phi_{p(\cdot), q(\cdot)}(x, t)=\left(t\left(\log \left(c_{0}+t\right)\right)^{q(x)}\right)^{p(x)}$ with $p(\cdot)$ as above and a measurable bounded function $q(\cdot)$. In fact, the following results are shown in [10]:
Theorem B ([10, Theorem 1.1]). Let $\Omega \neq \mathbf{R}^{N}$ be an open set. Suppose $1<$ $p^{-} \leq p^{+}<\infty$ and Ω satisfies the measure density condition (1.1). Then, for $0<A<N / p^{+}, A \leq 1$, there exist positive constants C and b_{0} such that the inequality

$$
\left\|\delta^{\alpha+b-1} u\right\|_{\Phi_{p_{\alpha}(\cdot), q(\cdot)}(\Omega)} \leq C\left\|\delta^{b}|\nabla u|\right\|_{\Phi_{p(\cdot), q(\cdot)}(\Omega)}
$$

holds for all $u \in W_{0}^{1, \Phi_{p(\cdot), q(\cdot)}}(\Omega), 0 \leq \alpha \leq A$ and $0 \leq b<b_{0}$, where $1 / p_{\alpha}(x)=$ $1 / p(x)-\alpha / N$.

Theorem $\mathrm{B}^{\prime}\left(\left[10\right.\right.$, Theorem 1.2]). If $N<p^{-} \leq p^{+}<\infty$, then the same conclusion as in Theorem B holds without the measure density condition (1.1).

Our aim in this paper is to extend these results to functions in general Musielak-Orlicz-Sobolev spaces $W_{0}^{1, \Phi}(\Omega)$ defined by a general function $\Phi(x, t)$ satisfying certain conditions (see Section 2 for the definitions of Φ and $W_{0}^{1, \Phi}(\Omega)$). Corresponding to the functions $\Phi_{p_{\alpha}(\cdot), q(\cdot)}(x, t)$ in [10], we shall introduce functions $\Psi_{\alpha}(x, t)$ to state our main results Theorem 4.4 and Theorem 5.2, which are extensions of Theorem B and Theorem B^{\prime}, respectively.

2 Preliminaries

Throughout this paper, let C denote various constants independent of the variables in question and $C(a, b, \cdots)$ be a constant that depends on a, b, \cdots.

We consider a function

$$
\Phi(x, t)=t \phi(x, t): \mathbf{R}^{N} \times[0, \infty) \rightarrow[0, \infty)
$$

satisfying the following conditions $(\Phi 1)-(\Phi 4)$:
(Ф1) $\phi(\cdot, t)$ is measurable on \mathbf{R}^{N} for each $t \geq 0$ and $\phi(x, \cdot)$ is continuous on $[0, \infty)$ for each $x \in \mathbf{R}^{N}$;
$(\Phi 2)$ there exists a constant $A_{1} \geq 1$ such that

$$
A_{1}^{-1} \leq \phi(x, 1) \leq A_{1} \quad \text { for all } x \in \mathbf{R}^{N} ;
$$

($\Phi 3$) $\quad \phi(x, \cdot)$ is uniformly almost increasing, namely there exists a constant $A_{2} \geq 1$ such that

$$
\phi(x, t) \leq A_{2} \phi(x, s) \quad \text { for all } x \in \mathbf{R}^{N} \quad \text { whenever } 0 \leq t<s ;
$$

($\Phi 4$) there exists a constant $A_{3} \geq 1$ such that

$$
\phi(x, 2 t) \leq A_{3} \phi(x, t) \quad \text { for all } x \in \mathbf{R}^{N} \text { and } t>0 .
$$

Note that ($\Phi 2$), ($\Phi 3$) and ($\Phi 4$) imply

$$
0<\inf _{x \in \mathbf{R}^{N}} \phi(x, t) \leq \sup _{x \in \mathbf{R}^{N}} \phi(x, t)<\infty
$$

for each $t>0$.
If $\Phi(x, \cdot)$ is convex for each $x \in \mathbf{R}^{N}$, then ($\Phi 3$) holds with $A_{2}=1$; namely $\phi(x, \cdot)$ is non-decreasing for each $x \in \mathbf{R}^{N}$.

Let $\bar{\phi}(x, t)=\sup _{0 \leq s \leq t} \phi(x, s)$ and

$$
\bar{\Phi}(x, t)=\int_{0}^{t} \bar{\phi}(x, r) d r
$$

for $x \in \mathbf{R}^{N}$ and $t \geq 0$. Then $\bar{\Phi}(x, \cdot)$ is convex and

$$
\frac{1}{2 A_{3}} \Phi(x, t) \leq \bar{\Phi}(x, t) \leq A_{2} \Phi(x, t)
$$

for all $x \in \mathbf{R}^{N}$ and $t \geq 0$.
By ($\Phi 3$), we see that

$$
\Phi(x, a t) \begin{cases}\leq A_{2} a \Phi(x, t) & \text { if } 0 \leq a \leq 1 \tag{2.1}\\ \geq A_{2}^{-1} a \Phi(x, t) & \text { if } a \geq 1\end{cases}
$$

We shall also consider the following conditions:
($\Phi 5$) for every $\gamma>0$, there exists a constant $B_{\gamma} \geq 1$ such that

$$
\phi(x, t) \leq B_{\gamma} \phi(y, t)
$$

whenever $|x-y| \leq \gamma t^{-1 / N}$ and $t \geq 1$;
(Ф6) there exist a function $g \in L^{1}\left(\mathbf{R}^{N}\right)$ and a constant $B_{\infty} \geq 1$ such that $0 \leq$ $g(x)<1$ for all $x \in \mathbf{R}^{N}$ and

$$
B_{\infty}^{-1} \phi(x, t) \leq \phi\left(x^{\prime}, t\right) \leq B_{\infty} \phi(x, t)
$$

whenever $\left|x^{\prime}\right| \geq|x|$ and $g(x) \leq t \leq 1$.
Example 2.1. Let $p(\cdot)$ and $q_{j}(\cdot), j=1, \ldots, k$, be measurable functions on \mathbf{R}^{N} such that
(P1) $1 \leq p^{-}:=\inf _{x \in \mathbf{R}^{N}} p(x) \leq \sup _{x \in \mathbf{R}^{N}} p(x)=: p^{+}<\infty$
and
(Q1) $-\infty<q_{j}^{-}:=\inf _{x \in \mathbf{R}^{N}} q_{j}(x) \leq \sup _{x \in \mathbf{R}^{N}} q_{j}(x)=: q_{j}^{+}<\infty$
for all $j=1, \ldots, k$.
Set $L_{c}(t)=\log (c+t)$ for $c \geq e$ and $t \geq 0, L_{c}^{(1)}(t)=L_{c}(t), L_{c}^{(j+1)}(t)=L_{c}\left(L_{c}^{(j)}(t)\right)$ and

$$
\Phi(x, t)=t^{p(x)} \prod_{j=1}^{k}\left(L_{c}^{(j)}(t)\right)^{q_{j}(x)}
$$

Then, $\Phi(x, t)$ satisfies $(\Phi 1),(\Phi 2)$ and ($\Phi 4$). It satisfies ($\Phi 3$) if there is a constant $K \geq 0$ such that $K(p(x)-1)+q_{j}(x) \geq 0$ for all $x \in G$ and $j=1, \ldots, k$; in particular if $p^{-}>1$ or $q_{j}^{-} \geq 0$ for all $j=1, \ldots, k$.

Moreover, we see that $\Phi(x, t)$ satisfies ($\Phi 5$) if
(P2) $p(\cdot)$ is log-Hölder continuous, namely

$$
|p(x)-p(y)| \leq \frac{C_{p}}{L_{e}(1 /|x-y|)}
$$

with a constant $C_{p} \geq 0$ and
(Q2) $q_{j}(\cdot)$ is $(j+1)$-log-Hölder continuous, namely

$$
\left|q_{j}(x)-q_{j}(y)\right| \leq \frac{C_{q_{j}}}{L_{e}^{(j+1)}(1 /|x-y|)}
$$

with constants $C_{q_{j}} \geq 0, j=1, \ldots k$.
Finally, we see that $\Phi(x, t)$ satisfies $(\Phi 6)$ with $g(x)=1 /(1+|x|)^{N+1}$ if $p(\cdot)$ is log-Hölder continuous at ∞, namely if it satisfies
(P3) $\left|p(x)-p\left(x^{\prime}\right)\right| \leq \frac{C_{p, \infty}}{L_{e}(|x|)}$ whenever $\left|x^{\prime}\right| \geq|x|$ with a constant $C_{p, \infty} \geq 0$.
In fact, if $1 /(1+|x|)^{N+1}<t \leq 1$, then $t^{-\left|p(x)-p\left(x^{\prime}\right)\right|} \leq e^{(N+1) C_{\infty}}$ for $\left|x^{\prime}\right| \geq|x|$ and $L_{c}^{(j)}(t)^{\left|q_{j}(x)-q_{j}\left(x^{\prime}\right)\right|} \leq L_{c}^{(j)}(1)^{q_{j}^{+}-q_{j}^{-}}$.

Example 2.2. Let $p_{1}(\cdot), p_{2}(\cdot), q_{1}(\cdot)$ and $q_{2}(\cdot)$ be measurable functions on \mathbf{R}^{N} satisfying (P1) and (Q1).

Then,

$$
\Phi(x, t)=(1+t)^{p_{1}(x)}(1+1 / t)^{-p_{2}(x)} L_{c}(t)^{q_{1}(x)} L_{c}(1 / t)^{-q_{2}(x)}
$$

satisfies ($\Phi 1$), ($\Phi 2$) and ($\Phi 4$). It satisfies ($\Phi 3$) if $p_{j}^{-}>1, j=1,2$ or $q_{j}^{-} \geq 0$, $j=1,2$. As a matter of fact, it satisfies ($\Phi 3$) if and only if $p_{j}(\cdot), q_{j}(\cdot)$ satisfies the following conditions:
(1) $q_{j}(x) \geq 0$ at points x where $p_{j}(x)=1, j=1,2$;
(2) $\sup _{x: p_{j}(x)>1}\left\{\min \left(q_{j}(x), 0\right) \log \left(p_{j}(x)-1\right)\right\}<\infty, j=1,2$.

Moreover, we see that $\Phi(x, t)$ satisfies ($\Phi 5)$ if $p_{1}(\cdot)$ is log-Hölder continuous and $q_{1}(\cdot)$ is 2 -log-Hölder continuous.

Finally, we see that $\Phi(x, t)$ satisfies ($\Phi 6$) with $g(x)=1 /(1+|x|)^{N+1}$ if $p_{2}(\cdot)$ is \log-Hölder continuous at ∞ and
(Q3) $q_{2}(\cdot)$ is 2 -log-Hölder continuous at ∞, namely

$$
\left|q_{2}(x)-q_{2}\left(x^{\prime}\right)\right| \leq \frac{C_{q_{2}, \infty}}{L_{c}^{(2)}(|x|)} \quad \text { whenever }\left|x^{\prime}\right| \geq|x|
$$

with a constant $C_{q_{2}, \infty} \geq 0$.
In fact, if $1 /(1+|x|)^{N+1}<t \leq 1$, then $(1+t)^{\left|p_{1}(x)-p_{1}\left(x^{\prime}\right)\right|} \leq 2^{p_{1}^{+}-1}$, $(1+1 / t)^{\left|p_{2}(x)-p_{2}\left(x^{\prime}\right)\right|} \leq e^{(N+1) C_{p, \infty}}, \quad(\log (e+t))^{\left|q_{1}(x)-q_{1}\left(x^{\prime}\right)\right|} \leq(\log (e+1))^{q_{1}^{+}-q_{1}^{-}}$ and $(\log (e+1 / t))^{\left|q_{2}(x)-q_{2}\left(x^{\prime}\right)\right|} \leq C\left(N, C_{q, \infty}\right)$ for $\left|x^{\prime}\right| \geq|x|$.

Let Ω be an open set in \mathbf{R}^{N}. Given $\Phi(x, t)$ as above, the associated MusielakOrlicz space

$$
L^{\Phi}(\Omega)=\left\{f \in L_{l o c}^{1}(\Omega) ; \int_{\Omega} \Phi(y,|f(y)|) d y<\infty\right\}
$$

is a Banach space with respect to the norm

$$
\|f\|_{L^{\Phi}(\Omega)}=\inf \left\{\lambda>0 ; \int_{\Omega} \bar{\Phi}(y,|f(y)| / \lambda) d y \leq 1\right\}
$$

(cf. [11]). Further, we define the Musielak-Orlicz-Sobolev space by

$$
W^{1, \Phi}(\Omega)=\left\{u \in L^{\Phi}(\Omega):|\nabla u| \in L^{\Phi}(\Omega)\right\} .
$$

The norm

$$
\|u\|_{W^{1, \Phi}(\Omega)}=\|u\|_{L^{\Phi}(\Omega)}+\| \| \nabla u \|_{L^{\Phi}(\Omega)}
$$

makes $W^{1, \Phi}(\Omega)$ a Banach space. We denote the closure of $C_{0}^{\infty}(\Omega)$ in $W^{1, \Phi}(\Omega)$ by $W_{0}^{1, \Phi}(\Omega)$. As usual, let $W_{\text {loc }}^{1, \Phi}\left(\mathbf{R}^{N}\right)$ denote the set of functions u on \mathbf{R}^{N} such that $\left.u\right|_{\Omega} \in W^{1, \Phi}(\Omega)$ for every bounded open set Ω. By ($\Phi 2$) and $(\Phi 3), W_{l o c}^{1, \Phi}\left(\mathbf{R}^{N}\right) \subset$ $W_{l o c}^{1,1}\left(\mathbf{R}^{N}\right)$.

3 Lemmas

We denote by $B(x, r)$ the open ball centered at x of radius r. For a measurable set E, we denote by $|E|$ the Lebesgue measure of E.

For a locally integrable function f on Ω, the Hardy-Littlewood maximal function $M f$ is defined by

$$
M f(x)=\sup _{r>0} \frac{1}{|B(x, r)|} \int_{B(x, r) \cap \Omega}|f(y)| d y .
$$

We know the following boundedness of maximal operator on $L^{\Phi}(\Omega)$.
Lemma 3.1 ([9, Corollary 4.4]). Suppose that $\Phi(x, t)$ satisfies ($\Phi 5$), ($\Phi 6$) and further assume:
$\left(\Phi 3^{*}\right) t \mapsto t^{-\varepsilon_{0}} \phi(x, t)$ is uniformly almost increasing on $(0, \infty)$ for some $\varepsilon_{0}>0$, namely there is a constant $A_{2, \varepsilon_{0}} \geq 1$ such that

$$
t^{-\varepsilon_{0}} \phi(x, t) \leq A_{2, \varepsilon_{0}} s^{-\varepsilon_{0}} \phi(x, s) \quad \text { for all } x \in \mathbf{R}^{N} \text { whenever } 0<t<s .
$$

Then the maximal operator M is bounded from $L^{\Phi}(\Omega)$ into itself, namely, there is a constant $C>0$ such that

$$
\|M f\|_{L^{\Phi}(\Omega)} \leq C\|f\|_{L^{\Phi}(\Omega)}
$$

for all $f \in L^{\Phi}(\Omega)$.
For $\lambda \geq 1, x \in \mathbf{R}^{N}$ and $t \geq 0$, set

$$
\Phi_{\lambda}(x, t)=\Phi\left(x, t^{1 / \lambda}\right)=t \phi_{\lambda}(x, t),
$$

where $\phi_{\lambda}(x, t)=t^{1 / \lambda-1} \phi\left(x, t^{1 / \lambda}\right)$.
Lemma 3.2. (1) $\Phi_{\lambda}(x, t)$ satisfies the conditions ($\Phi 2$) and ($\Phi 4$).
(2) Suppose $\Phi(x, t)$ satisfies $\left(\Phi 3^{*}\right)$. Then $\Phi_{\lambda}(x, t)$ satisfies ($\Phi 1$) and ($\Phi 3$) when $\lambda \leq 1+\varepsilon_{0}$, and it satisfies $\left(\Phi 3^{*}\right)$ when $\lambda<1+\varepsilon_{0}\left(\right.$ with ε_{0} replaced by $\left.\left(1+\varepsilon_{0}-\lambda\right) / \lambda\right)$.
(3) If $\Phi(x, t)$ satisfies ($\Phi 5$), then so does $\Phi_{\lambda}(x, t)$.
(4) If $\Phi(x, t)$ satisfies ($\Phi 6$), then so does $\Phi_{\lambda}(x, t)$.

Proof. (1) ($\Phi 2$) for Φ immediately implies that for Φ_{λ}. For ($\Phi 4$), note that $\phi_{\lambda}(x, 2 t) \leq 2^{1 / \lambda-1} A_{2} A_{3} \phi_{\lambda}(x, t)$.
(2) The assertions of (2) follow from ($\Phi 3^{*}$) and the equality

$$
\phi_{\lambda}(x, t)=t^{\left(1+\varepsilon_{0}\right) / \lambda-1}\left(t^{1 / \lambda}\right)^{-\varepsilon_{0}} \phi\left(x, t^{1 / \lambda}\right) .
$$

(3) It is enough to note that $t^{-\lambda / N} \leq t^{-1 / N}$ for $t \geq 1$.
(4) It is enough to note that $g(x) \leq g(x)^{1 / \lambda}$ when $0 \leq g(x)<1$.

From Lemma 3.1 and the above lemma, we obtain
Corollary 3.3. Suppose that $\Phi(x, t)$ satisfies ($\Phi 5$), ($\Phi 6$) and ($\Phi 3^{*}$). Then the maximal operator M is bounded from $L^{\Phi_{\lambda}}(\Omega)$ into itself for $1 \leq \lambda<1+\varepsilon_{0}$.

Set

$$
\Phi^{-1}(x, s)=\sup \{t>0 ; \Phi(x, t)<s\}
$$

for $x \in \mathbf{R}^{N}$ and $s>0$.
Lemma 3.4 (cf. [9, Lemma 5.1]). $\Phi^{-1}(x, \cdot)$ is non-decreasing,

$$
\Phi\left(x, \Phi^{-1}(x, t)\right)=t
$$

and

$$
\begin{equation*}
A_{2}^{-1} t \leq \Phi^{-1}(x, \Phi(x, t)) \leq A_{2}^{2} t \tag{3.1}
\end{equation*}
$$

for all $x \in \mathbf{R}^{N}$ and $t>0$.
We shall consider the following condition:
$\left(\Phi 6^{*}\right) \Phi(x, t)$ satisfies $(\Phi 6)$ with $g(x) \leq(1+|x|)^{-\beta}$ for some $\beta>N$.
Lemma 3.5. If $\Phi(x, t)$ satisfies ($\left.\Phi 6^{*}\right)$, then there exists $0<\lambda<1$ such that

$$
\Phi\left(x, \lambda g^{*}(x)\right) \leq(2|x|)^{-N} \quad \text { for all } x \in \mathbf{R}^{N},
$$

where $g^{*}(x)=\max (g(x), M g(x))$.
Proof. Since $g(x) \leq(1+|x|)^{-\beta}$ with $\beta>N, M g(x) \leq C(1+|x|)^{-N}$, so that $g^{*}(x) \leq C(1+|x|)^{-N}$. Hence

$$
\Phi\left(x, \lambda g^{*}(x)\right) \leq \lambda C(1+|x|)^{-N} A_{2} \phi(x, \lambda C) \leq 2^{N} \lambda C A_{2}(2|x|)^{-N} \phi(x, \lambda C)
$$

Thus, the required inequality holds if $\lambda \leq\left(2^{N} C A_{1} A_{2}^{2}\right)^{-1}$.
Lemma 3.6. $r \mapsto r^{\sigma_{0}} \Phi^{-1}\left(x, r^{-N}\right)$ is uniformly almost decreasing on $(0, \infty)$, where $\sigma_{0}=N /\left(1+\left(\log A_{3}\right) /(\log 2)\right)$.

Proof. By ($\Phi 4$), we see that

$$
\begin{equation*}
\Phi^{-1}\left(x, \frac{1}{2 A_{3}} s\right) \leq \frac{1}{2} \Phi^{-1}(x, s) \tag{3.2}
\end{equation*}
$$

for all $x \in \mathbf{R}^{N}$ and $s>0$. If $0<\lambda<1$, then choosing $k \in \mathbf{N}$ such that $\left(2 A_{3}\right)^{-k} \leq \lambda<\left(2 A_{3}\right)^{-k+1}$ and applying (3.2), we have

$$
\Phi^{-1}(x, \lambda s) \leq 2^{-k+1} \Phi^{-1}(x, s) \leq 2 \lambda^{1 /(1+\sigma)} \Phi^{-1}(x, s)
$$

where $\sigma=\left(\log A_{3}\right) /(\log 2)$. Note that $\sigma_{0}=N /(1+\sigma)$. Thus, for $a>1$, we have

$$
\begin{aligned}
(a r)^{\sigma_{0}} \Phi^{-1}\left(x,(a r)^{-N}\right) & \leq(a r)^{\sigma_{0}} 2\left(a^{-N}\right)^{1 /(1+\sigma)} \Phi^{-1}\left(x, r^{-N}\right) \\
& =2 r^{\sigma_{0}} \Phi^{-1}\left(x, r^{-N}\right)
\end{aligned}
$$

which shows the assertion of the lemma.
Lemma 3.7. Suppose that $\Phi(x, t)$ satisfies ($\Phi 5$) and ($\Phi 6^{*}$). Let $0<\alpha<\sigma_{0}$ for σ_{0} given in Lemma 3.6. Then there exists a constant $C>0$ such that

$$
\begin{equation*}
\int_{B(x, 2|x|) \backslash B(x, r)}|x-y|^{\alpha-N} f(y) d y \leq C r^{\alpha} \Phi^{-1}\left(x, r^{-N}\right) \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{B(x, r)} f(y) d y \leq C r^{N} \Phi^{-1}\left(x, r^{-N}\right) \tag{3.4}
\end{equation*}
$$

for all $x \in \mathbf{R}^{N}, 0<r \leq 2|x|$, and $f \geq 0$ satisfying $\|f\|_{L^{\Phi}\left(\mathbf{R}^{N}\right)} \leq 1$.
Proof. Condition $(\Phi \kappa J)$ in [9] with $\kappa(x, r)=r^{N}$ and $J(x, r)=r^{\alpha-N}$ is satisfied by Lemma 3.6, if $0<\alpha<\sigma_{0}$. Hence, (3.3) follows from [9, Lemma 6.3] in view of Lemma 3.5. (3.4) follows from [9, Lemma 5.3] and Lemma 3.5.

Hereafter, let Ω is an open set in \mathbf{R}^{N} such that $\Omega \neq \mathbf{R}^{N}$, and let $\delta(x)=$ $\operatorname{dist}(x, \partial \Omega)$.

The following is a key lemma:
Lemma 3.8. (1) If Ω satisfies

$$
\begin{equation*}
\left|B(z, r) \cap \Omega^{c}\right| \geq k|B(z, r)| \tag{3.5}
\end{equation*}
$$

for every $z \in \partial \Omega$ and $r>0$ with a constant $k>0(k \leq 1)$, then there exists a constant $C=C(N, k)>0$ such that

$$
|u(x)| \leq C \int_{B(x, 2 \delta(x))}|x-y|^{1-N}|\nabla u(y)| d y
$$

for almost every $x \in \Omega$, whenever $u \in W_{\text {loc }}^{1,1}\left(\mathbf{R}^{N}\right)$ and $u=0$ outside Ω.
(2) Let $\lambda>N$. Then there exists a constant $C>0$ such that

$$
|v(x)| \leq C\left(\delta(x)^{\lambda-N} \int_{B(x, 2 \delta(x))}|\nabla v(y)|^{\lambda} d y\right)^{1 / \lambda}
$$

for every $x \in \Omega$, whenever $v \in W_{l o c}^{1, \lambda}\left(\mathbf{R}^{N}\right)$ and $v=0$ outside Ω.
For (1) see [10, Lemma 2.1]; for (2) see e.g. [6, (3.1)] (also cf. [2, Proposition 1]). Here note that (2) holds without the assumption (3.5).

We consider

$$
H(f ; x, \alpha)=\delta(x)^{\alpha-1} \int_{B(x, 2 \delta(x))}|x-y|^{1-N} f(y) d y
$$

for $x \in \Omega, 0 \leq \alpha \leq 1$ and $f \in L_{l o c}^{1}\left(\mathbf{R}^{N}\right)$ such that $f \geq 0, f=0$ outside Ω.
We know (by integration by parts)

$$
\begin{equation*}
H(f ; x, 0) \leq C M f(x) \tag{3.6}
\end{equation*}
$$

for all $x \in \Omega$.
Lemma 3.9. Let $\Omega \neq \mathbf{R}^{N}$ be an open set and suppose that $\Phi(x, t)$ satisfies ($\Phi 5$) and ($\Phi 6^{*}$).
(1) Let $\alpha \in\left[0, \sigma_{0}\right) \cap[0,1]$. Then there exists a constant $C>0$ such that

$$
\begin{equation*}
H(f ; x, \alpha) \leq C M f(x) \Phi(x, M f(x))^{-\alpha / N} \tag{3.7}
\end{equation*}
$$

for all $x \in \Omega$ and $f \geq 0$ such that $f=0$ outside Ω and $\|f\|_{L^{\Phi}(\Omega)} \leq 1$.
(2) Let $\alpha \in\left[0, \sigma_{0}\right]$. Then there exists a constant $C>0$ such that

$$
\begin{equation*}
\delta(x)^{\alpha-N} \int_{B(x, 2 \delta(x))} f(y) d y \leq C M f(x) \Phi(x, M f(x))^{-\alpha / N} \tag{3.8}
\end{equation*}
$$

for all $x \in \Omega$ and $f \geq 0$ such that $f=0$ outside Ω and $\|f\|_{L^{\Phi}(\Omega)} \leq 1$.

Proof. We have only to consider the case $\alpha>0$. Without loss of generality, we may assume that $0 \in \partial \Omega$, so that $\delta(x) \leq|x|$. Let $f \geq 0$ with $f=0$ outside Ω and $\|f\|_{L^{\Phi}(\Omega)} \leq 1$.
(1) For $0<r \leq \delta(x)$, we have by (3.3) in Lemma 3.7

$$
\begin{aligned}
H(f ; x, \alpha) & \leq C\left\{\delta(x)^{\alpha-1} r M f(x)+\int_{B(x, 2 \delta(x)) \backslash B(x, r)}|x-y|^{\alpha-N} f(y) d y\right\} \\
& \leq C\left\{r^{\alpha} M f(x)+r^{\alpha} \Phi^{-1}\left(x, r^{-N}\right)\right\}
\end{aligned}
$$

Suppose $\Phi(x, M f(x))^{-1 / N}>\delta(x)$. Then we have by (3.6)

$$
H(f ; x, \alpha)=\delta(x)^{\alpha} H(f ; x, 0) \leq C \delta(x)^{\alpha} M f(x) \leq C M f(x) \Phi(x, M f(x))^{-\alpha / N},
$$

which is (3.7).
Next, if $\Phi(x, M f(x))^{-1 / N} \leq \delta(x)$, then take $r=\Phi(x, M f(x))^{-1 / N}$. Then, in view of (3.1) in Lemma 3.4, we obtain (3.7).
(2) By (3.4),

$$
\delta(x)^{\alpha-N} \int_{B(x, 2 \delta(x))} f(y) d y \leq C \delta(x)^{\alpha} \Phi^{-1}\left(x, \delta(x)^{-N}\right)
$$

If $\alpha \leq \sigma_{0}$, then $r \mapsto r^{\alpha} \Phi^{-1}\left(x, r^{-N}\right)$ is uniformly almost decreasing in view of Lemma 3.6. Hence

$$
\delta(x)^{\alpha-N} \int_{B(x, 2 \delta(x))} f(y) d y \leq C r^{\alpha} \Phi^{-1}\left(x, r^{-N}\right)
$$

for $0<r \leq \delta(x)$. Thus, by the same arguments as above we obtain (3.8).

4 Hardy's inequality I

Lemma 4.1. Let $\Omega \neq \mathbf{R}^{N}$ be an open set satisfying (3.5). Suppose $\Phi(x, t)$ satisfies ($\Phi 5$), ($\Phi 6$) and $\left(\Phi 3^{*}\right)$. Then there exist constants $C>0$ and $0<b_{0}<1$ such that

$$
\begin{equation*}
\left\|\delta^{b-1} u\right\|_{L^{\Phi}(\Omega)} \leq C\left\|\delta^{b}|\nabla u|\right\|_{L^{\Phi}(\Omega)} \tag{4.1}
\end{equation*}
$$

for all $u \in W_{0}^{1, \Phi}(\Omega)$ and $0 \leq b \leq b_{0}$. If $u \in W_{0}^{1, \Phi}(\Omega)$ and $\delta^{b}|\nabla u| \in L^{\Phi}(\Omega)$ for $0 \leq b \leq b_{0}$, then $\delta^{b} u$ extended by 0 outside Ω belongs to $W^{1, \Phi}\left(\mathbf{R}^{N}\right)$.

Proof. Without loss of generality, we may assume that $0 \in \partial \Omega$. For $u \in W_{0}^{1, \Phi}(\Omega)$ and $b \geq 0$, let

$$
u_{b}(x)= \begin{cases}\delta(x)^{b} u(x), & \text { if } x \in \Omega \\ 0, & \text { if } x \in \Omega^{c} .\end{cases}
$$

We first treat $u \in C_{0}^{\infty}(\Omega)$. Note that δ and $1 / \delta$ are bounded on support of u and $\delta \in W^{1, \infty}(\Omega)$. Hence $u_{b} \in W^{1, \Phi}\left(\mathbf{R}^{N}\right) \subset W_{l o c}^{1,1}\left(\mathbf{R}^{N}\right)$ for every $b \geq 0$. Applying Lemma 3.8 (1) to this function, we have

$$
\begin{equation*}
\delta(x)^{b}|u(x)| \leq C \int_{B(x, 2 \delta(x)) \cap \Omega}|x-y|^{1-N}\left\{b \delta(y)^{b-1}|u(y)|+\delta(y)^{b}|\nabla u(y)|\right\} d y \tag{4.2}
\end{equation*}
$$

so that

$$
\delta(x)^{b-1}|u(x)| \leq C\left\{b M\left(\delta^{b-1} u\right)(x)+M\left(\delta^{b}|\nabla u|\right)(x)\right\}
$$

for a.e. $x \in \Omega$ with a constant C independent of b. In view of Lemma 3.1, we find

$$
\left\|\delta^{b-1} u\right\|_{L^{\Phi}(\Omega)} \leq C_{0}\left\{b\left\|\delta^{b-1} u\right\|_{L^{\Phi}(\Omega)}+\left\|\delta^{b}|\nabla u|\right\|_{L^{\Phi}(\Omega)}\right\},
$$

which gives

$$
\left(1-C_{0} b\right)\left\|\delta^{b-1} u\right\|_{L^{\Phi}(\Omega)} \leq C_{0}\left\|\delta^{b}|\nabla u|\right\|_{L^{\Phi}(\Omega)} .
$$

Hence, taking b_{0} such that $1-C_{0} b_{0}>0$, we have (4.1) for $0 \leq b \leq b_{0}$.
We next treat $u \in W_{0}^{1, \Phi}(\Omega)$ such that $u=0$ outside $B(0, R)$ for some $R>0$. Then we can find a sequence $\varphi_{j} \in C_{0}^{\infty}(\Omega)$ such that $\varphi_{j} \rightarrow u$ in $W_{0}^{1, \Phi}(\Omega)$ and $\varphi_{j}=0$ outside $B(0,2 R)$ for each j. By the above discussions, for $0<b \leq b_{0}$, we have

$$
\begin{equation*}
\left\|\delta^{b-1} \varphi_{j}\right\|_{L^{\Phi}(\Omega)} \leq C\left\|\delta^{b}\left|\nabla \varphi_{j}\right|\right\|_{L^{\Phi}(\Omega)} \tag{4.3}
\end{equation*}
$$

for all j and

$$
\begin{equation*}
\left\|\delta^{b-1}\left(\varphi_{j}-\varphi_{j^{\prime}}\right)\right\|_{L^{\Phi}(\Omega)} \leq C\left\|\delta^{b} \mid \nabla \varphi_{j}-\nabla \varphi_{j^{\prime}}\right\|_{L^{\Phi}(\Omega)} \tag{4.4}
\end{equation*}
$$

for all j, j^{\prime}. Since δ is bounded on $B(0,2 R)$, we see that

$$
\left\|\delta^{b}\left|\nabla \varphi_{j}\right|\right\|_{L^{\Phi}(\Omega)} \rightarrow\left\|\delta^{b}|\nabla u|\right\|_{L^{\Phi}(\Omega)}
$$

as $j \rightarrow \infty$. Similarly

$$
\left\|\delta^{b}\left|\nabla \varphi_{j}-\nabla \varphi_{j^{\prime}}\right|\right\|_{L^{\Phi}(\Omega)} \rightarrow 0
$$

as $j, j^{\prime} \rightarrow \infty$. Hence by (4.4), $\left\{\delta^{b-1} \varphi_{j}\right\}$ is a Cauchy sequence in $L^{\Phi}(\Omega)$, which implies that $\delta^{b-1} \varphi_{j} \rightarrow \delta^{b-1} u$ in $L^{\Phi}(\Omega)$. Thus, letting $j \rightarrow \infty$ in (4.3), we obtain (4.1). Further, $\left(\varphi_{j}\right)_{b} \rightarrow u_{b}$ in $L^{\Phi}\left(\mathbf{R}^{N}\right)$ and

$$
\begin{aligned}
\nabla\left(\varphi_{j}\right)_{b} & = \begin{cases}b \delta^{b-1} \varphi_{j} \nabla \delta+\delta^{b} \nabla \varphi_{j} & \text { on } \Omega \\
0 & \text { on } \Omega^{c}\end{cases} \\
& \rightarrow \begin{cases}b \delta^{b-1} u \nabla \delta+\delta^{b} \nabla u & \text { on } \Omega \\
0 & \text { on } \Omega^{c}\end{cases}
\end{aligned}
$$

in $L^{\Phi}\left(\mathbf{R}^{N}\right)$ as $j \rightarrow \infty$. It then follows that

$$
\nabla u_{b}= \begin{cases}b \delta^{b-1} u \nabla \delta+\delta^{b} \nabla u & \text { on } \Omega \\ 0 & \text { on } \Omega^{c}\end{cases}
$$

which belongs to $L^{\Phi}\left(\mathbf{R}^{N}\right)$, and hence $u_{b} \in W^{1, \Phi}\left(\mathbf{R}^{N}\right)$.
Finally we treat a general $u \in W_{0}^{1, \Phi}(\Omega)$. For each $n \in \mathbf{N}$, we consider a C^{1} function H_{n} on $[0, \infty)$ such that $0 \leq H_{n} \leq 1$ on $[0, \infty), H_{n}=1$ on $[0, n], H_{n}=0$ on $[3 n, \infty), 0 \leq-H_{n}^{\prime}(t) \leq t^{-1}$ for $t \in(n, 3 n)$. The existence of such H_{n} is assured since $\int_{n}^{3 n} t^{-1} d t=\log 3>1$. Set $u_{n}(x)=H_{n}(|x|) u(x), n=1,2, \ldots$. Then we know by the above that

$$
\begin{equation*}
\left\|\delta^{b-1} u_{n}\right\|_{L^{\Phi}(\Omega)} \leq C\left\|\delta^{b}\left|\nabla\left(u_{n}\right)\right|\right\|_{L^{\Phi}(\Omega)} . \tag{4.5}
\end{equation*}
$$

Since $\delta^{b-1}\left|u_{n}\right| \uparrow \delta^{b-1}|u|(n \rightarrow \infty)$,

$$
\left\|\delta^{b-1} u_{n}\right\|_{L^{\Phi}(\Omega)} \rightarrow\left\|\delta^{b-1} u\right\|_{L^{\Phi}(\Omega)} \quad(n \rightarrow \infty) .
$$

On the other hand,

$$
\begin{aligned}
\left|\nabla u_{n}(x)\right| & \leq\left|H_{n}{ }^{\prime}(|x|)\right||u(x)|+H_{n}(|x|)|\nabla u(x)| \\
& \leq \frac{1}{|x|}|u(x)| \chi_{B(0,3 n) \backslash B(0, n)}(x)+|\nabla u(x)| .
\end{aligned}
$$

Since $\delta(x)^{b} /|x| \leq|x|^{b-1} \leq n^{b-1}$ for $|x| \geq n$ and $b<1$,

$$
\delta(x)^{b}\left|\nabla u_{n}(x)\right| \leq n^{b-1}|u(x)|+\delta(x)^{b}|\nabla u(x)|,
$$

so that

$$
\begin{aligned}
\left\|\delta^{b}\left|\nabla u_{n}\right|\right\|_{L^{\Phi}(\Omega)} & \leq n^{b-1}\|u\|_{L^{\Phi}(\Omega)}+\left\|\delta^{b}|\nabla u|\right\|_{L^{\Phi}(\Omega)} \\
& \rightarrow\left\|\delta^{b}|\nabla u|\right\|_{L^{\Phi}(\Omega)} \quad(n \rightarrow \infty) .
\end{aligned}
$$

Therefore, by letting $n \rightarrow \infty$ in (4.5), we obtain (4.1), which also implies that $u_{b} \in W^{1, \Phi}\left(\mathbf{R}^{N}\right)$.

For $\alpha \geq 0$, we consider a function $\Psi_{\alpha}(x, t): \mathbf{R}^{N} \times[0, \infty) \rightarrow[0, \infty)$ satisfying the following conditions:
($\Psi 1$) $\Psi_{\alpha}(\cdot, t)$ is measurable on \mathbf{R}^{N} for each $t \geq 0$ and $\Psi_{\alpha}(x, \cdot)$ is continuous on $[0, \infty)$ for each $x \in \mathbf{R}^{N}$;
($\Psi 2$) $\Psi_{\alpha}(x, \cdot)$ is uniformly almost increasing on $[0, \infty)$, namely there is a constant $A_{4} \geq 1$ such that $\Psi_{\alpha}(x, t) \leq A_{4} \Psi_{\alpha}(x, s)$ for all $x \in \mathbf{R}^{N}$, whenever $0 \leq t<s ;$
($\Psi 3$) there exists a constant $A_{5} \geq 1$ such that

$$
\Psi_{\alpha}\left(x, t \Phi(x, t)^{-\alpha / N}\right) \leq A_{5} \Phi(x, t)
$$

for all $x \in \mathbf{R}^{N}$ and $t>0$.
Note that we may take $\Psi_{0}(x, t)=\Phi(x, t)$.
Example 4.2. Let $\Phi(x, t)$ be as in Example 2.1. Set

$$
\Psi_{\alpha}(x, t)=\left(t \prod_{j=1}^{k}\left(L_{e}^{(j)}(t)\right)^{q_{j}(x) / p(x)}\right)^{p^{\sharp}(x)}
$$

where $1 / p^{\sharp}(x)=1 / p(x)-\alpha / N$. If $0 \leq \alpha<N / p^{+}$, then Ψ_{α} satisfies $(\Psi 1),(\Psi 2)$ and ($\Psi 3$).

Example 4.3. Let $\Phi(x, t)$ be as in Example 2.2. Set

$$
\Psi_{\alpha}(x, t)=\left((1+t) L_{c}(t)^{q_{1}(x) / p_{1}(x)}\right)^{p_{1}^{\sharp}(x)}\left((1+1 / t) L_{c}(1 / t)^{-q_{2}(x) / p_{2}(x)}\right)^{p_{2}^{\sharp}(x)} .
$$

If $0 \leq \alpha<\min \left\{N / p_{1}^{+}, N / p_{2}^{+}\right\}$, then Ψ_{α} satisfies $(\Psi 1),(\Psi 2)$ and $(\Psi 3)$.

Theorem 4.4. Let $\Omega \neq \mathbf{R}^{N}$ be an open set satisfying (3.5). Suppose $\Phi(x, t)$ satisfies $(\Phi 5),\left(\Phi 3^{*}\right)$ and $\left(\Phi 6^{*}\right)$ and let $\alpha \in\left[0, \sigma_{0}\right) \cap[0,1]$ for σ_{0} given in Lemma 3.6. Then there exist constants $C^{*}>0$ and $0<b_{0}<1$ such that

$$
\int_{\Omega} \Psi_{\alpha}\left(x, \delta(x)^{\alpha+b-1}|u(x)| / C^{*}\right) d x \leq 1
$$

for all $u \in W_{0}^{1, \Phi}(\Omega)$ with $\left\|\delta^{b}|\nabla u|\right\|_{L^{\Phi}(\Omega)} \leq 1$ and $0 \leq b \leq b_{0}$.
Proof. Let b_{0} be the number given in Lemma 4.1 and let $0 \leq b \leq b_{0}$. Let $u \in$ $W_{0}^{1, \Phi}(\Omega)$ with $\left\|\delta^{b}|\nabla u|\right\|_{L^{\Phi}(\Omega)} \leq 1$. By Lemma 4.1, $\delta^{b} u$ extended by 0 outside Ω belongs to $W_{l o c}^{1,1}\left(\mathbf{R}^{N}\right)$, so that by Lemma 3.8 (1), (4.2) holds a.e. $x \in \Omega$. Hence

$$
\delta(x)^{\alpha+b-1}|u(x)| \leq C \delta(x)^{\alpha-1} \int_{B(x, 2 \delta(x))}|x-y|^{1-N} f_{u}(y) d y
$$

for a.e $x \in \Omega$, where $f_{u}(y)=b \delta(y)^{b-1}|u(y)|+\delta(y)^{b}|\nabla u(y)|$ for $y \in \Omega$ and $f_{u}(y)=0$ for $y \in \Omega^{c}$. By Lemma 4.1, there is a constant $C_{1} \geq 1$ such that $\left\|f_{u}\right\|_{L^{\Phi}(\Omega)} \leq C_{1}$. Applying Lemma 3.9 (1) to f_{u} / C_{1} and using ($\Phi 4$), we have

$$
\delta(x)^{\alpha+b-1}|u(x)| \leq C_{2} M f_{u}(x) \Phi\left(x, M f_{u}(x)\right)^{-\alpha / N}
$$

a.e. $x \in \Omega$. Hence by ($\Psi 2$) and ($\Psi 3$) we have

$$
\begin{equation*}
\int_{\Omega} \Psi_{\alpha}\left(x, \delta(x)^{\alpha+b-1}|u(x)| / C_{2}\right) d x \leq A_{4} A_{5} \int_{\Omega} \Phi\left(x, M f_{u}(x)\right) d x \tag{4.6}
\end{equation*}
$$

whenever $\left\|\delta^{b}|\nabla u|\right\|_{L^{\Phi}(\Omega)} \leq 1$. By Lemma 3.1, $\left\|M f_{u}\right\|_{L^{\Phi}(\Omega)} \leq C_{3}$, which implies $\int_{\Omega} \Phi\left(x, M f_{u}(x)\right) d x \leq C_{4}\left(C_{4} \geq 1\right)$.

Now let $0<\varepsilon \leq 1$. Since

$$
\Phi\left(x, M f_{\varepsilon u}(x)\right)=\Phi\left(x, \varepsilon M f_{u}(x)\right) \leq A_{2} \varepsilon \Phi\left(x, M f_{u}(x)\right)
$$

by (2.1), applying (4.6) to εu, we have

$$
\begin{gathered}
\int_{\Omega} \Psi_{\alpha}\left(x, \delta(x)^{\alpha+b-1}|\varepsilon u(x)| / C_{2}\right) d x \leq A_{4} A_{5} \int_{\Omega} \Phi\left(x, M f_{\varepsilon u}(x)\right) d x \\
\leq A_{2} A_{4} A_{5} \varepsilon \int_{\Omega} \Phi\left(x, M f_{u}(x)\right) d x \leq A_{2} A_{4} A_{5} C_{4} \varepsilon
\end{gathered}
$$

Thus, taking $\varepsilon=\left(A_{2} A_{4} A_{5} C_{4}\right)^{-1}$ and $C^{*}=C_{2} / \varepsilon$, we obtain the required result.

Applying Theorem 4.4 to special Φ and Ψ_{α} given in Examples 2.1 and 4.2, we obtain the following corollary, which is an extension of Theorem B.

Corollary 4.5. Let Φ and Ψ_{α} be as in Examples 2.1 and 4.2 and let $\Omega \neq \mathbf{R}^{N}$ be an open set satisfying (3.5). Suppose $p^{-}>1$ and let $\alpha \in\left[0, N / p^{+}\right) \cap[0,1]$. Then there exist constants $C>0$ and $0<b_{0}<1$ such that

$$
\left\|\delta^{\alpha+b-1} u\right\|_{L^{\Psi^{\alpha}}(\Omega)} \leq C\left\|\delta^{b}|\nabla u|\right\|_{L^{\Phi}(\Omega)}
$$

for all $u \in W_{0}^{1, \Phi}(\Omega)$ and $0 \leq b \leq b_{0}$.

Similarly, applying Theorem 4.4 to special Φ and Ψ_{α} given in Examples 2.2 and 4.3, we obtain another extension of Theorem B:

Corollary 4.6. Let Φ and Ψ_{α} be as in Examples 2.2 and 4.3 and let $\Omega \neq$ \mathbf{R}^{N} be an open set satisfying (3.5). Suppose $\min \left(p_{1}^{-}, p_{2}^{-}\right)>1$ and let $\alpha \in$ $\left[0, \min \left(N / p_{1}^{+}, N / p_{2}^{+}\right)\right) \cap[0,1]$. Then there exist constants $C>0$ and $0<b_{0}<1$ such that

$$
\left\|\delta^{\alpha+b-1} u\right\|_{L^{\Phi_{\alpha}}(\Omega)} \leq C\left\|\delta^{b}|\nabla u|\right\|_{L^{\Phi}(\Omega)}
$$

for all $u \in W_{0}^{1, \Phi}(\Omega)$ and $0 \leq b \leq b_{0}$.

5 Hardy's inequality II

For a proof of next theorem, we prepare the following lemma instead of Lemma 4.1.

Lemma 5.1. Let $\Omega \neq \mathbf{R}^{N}$ be an open set. Suppose that $\Phi(x, t)$ satisfies ($\Phi 5$), ($\Phi 6$) and ($\left.\Phi 3^{*}\right)$ for $\varepsilon_{0}>N-1$. Then there exist constants $C>0$ and $0<b_{1}<1$ such that

$$
\left\|\delta^{b-1} u\right\|_{L^{\Phi}(\Omega)} \leq C\left\|\delta^{b}|\nabla u|\right\|_{L^{\Phi}(\Omega)}
$$

for all $u \in W_{0}^{1, \Phi}(\Omega)$ and $0 \leq b \leq b_{1}$. If $u \in W_{0}^{1, \Phi}(\Omega)$ and $\delta^{b}|\nabla u| \in L^{\Phi}(\Omega)$ for $0 \leq b \leq b_{1}$, then $\delta^{b} u$ extended by 0 outside Ω belongs to $W^{1, \Phi}\left(\mathbf{R}^{N}\right)$.

Proof. Take λ such that $N<\lambda<\varepsilon_{0}+1$. Then $W^{1, \Phi}\left(\mathbf{R}^{N}\right) \subset W_{l o c}^{1, \lambda}\left(\mathbf{R}^{N}\right)$.
First, let $u \in C_{0}^{\infty}(\Omega)$ and $b \geq 0$. Let u_{b} be the function $\delta^{b} u$ extended by 0 outside Ω. Then $u_{b} \in W^{1, \Phi}\left(\mathbf{R}^{N}\right) \subset W_{\text {loc }}^{1, \lambda}\left(\mathbf{R}^{N}\right)$ and applying Lemma 3.8 (2) to $v=u_{b}$, we have

$$
\begin{equation*}
\left[\delta(x)^{b-1}|u(x)|\right]^{\lambda} \leq C \delta(x)^{-N} \int_{B(x, 2 \delta(x)) \cap \Omega} f_{u}(y) d y \leq C M f_{u}(x) \tag{5.1}
\end{equation*}
$$

for all $x \in \Omega$, where $f_{u}(y)=\left[b \delta(y)^{b-1}|u(y)|+\delta(y)^{b}|\nabla u(y)|\right]^{\lambda}$. In view of Corollary 3.3, we find

$$
\left\|\left[\delta^{b-1}|u|\right]^{\lambda}\right\|_{L^{\Phi} \lambda(\Omega)} \leq C\left\|f_{u}\right\|_{L^{\Phi} \lambda(\Omega)} .
$$

Since $\|f\|_{L^{\Phi} \lambda(\Omega)}=\left\|f^{1 / \lambda}\right\|_{L^{\Phi}(\Omega)}^{\lambda}$ for every $f \in L^{\Phi_{\lambda}}(\Omega)$, we obtain

$$
\left\|\delta^{b-1} u\right\|_{L^{\Phi}(\Omega)} \leq C^{1 / \lambda}\left\|f_{u}^{1 / \lambda}\right\|_{L^{\Phi}(\Omega)} \leq C_{1}\left\{b\left\|\delta^{b-1} u\right\|_{L^{\Phi}(\Omega)}+\left\|\delta^{b} \mid \nabla u\right\|_{L^{\Phi}(\Omega)}\right\},
$$

which gives

$$
\left(1-C_{1} b\right)\left\|\delta^{b-1} u\right\|_{L^{\Phi}(\Omega)} \leq C_{1}\left\|\delta^{b}|\nabla u|\right\|_{L^{\Phi}(\Omega)} .
$$

Take b_{1} such that $1-C_{1} b_{1}>0$. Then, in the same way as the last half of the proof of Lemma 4.1, we obtain the required results for $u \in W_{0}^{1, \Phi}(\Omega)$ and $0 \leq b \leq b_{1}$.

Theorem 5.2. Let $\Omega \neq \mathbf{R}^{N}$ be an open set. Suppose $\Phi(x, t)$ satisfies ($\Phi 5$), ($\Phi 6^{*}$) and $\left(\Phi 3^{*}\right)$ with $\varepsilon_{0}>N-1$. Let $\alpha \in\left[0, \sigma_{0}\right]$. Then there exist $C^{*}>0$ and $0<b_{1}<1$ such that

$$
\int_{\Omega} \Psi_{\alpha}\left(x, \delta(x)^{\alpha+b-1}|u(x)| / C^{*}\right) d x \leq 1
$$

for all $u \in W_{0}^{1, \Phi}(\Omega)$ with $\left\|\delta^{b}|\nabla u|\right\|_{L^{\Phi}(\Omega)} \leq 1$ and $0 \leq b \leq b_{1}$.
Proof. Let b_{1} be as in the above lemma and let $0 \leq b \leq b_{1}$. Let $u \in W_{0}^{1, \Phi}(\Omega)$ with $\left\|\delta^{b}|\nabla u|\right\|_{L^{\Phi}(\Omega)} \leq 1$. Take λ such that $N<\lambda<\varepsilon_{0}+1$. By the above lemma, $\delta^{b} u$ extended by 0 outside Ω belongs to $W_{l o c}^{1, \lambda}\left(\mathbf{R}^{N}\right)$, so that by (5.1) we have

$$
\left[\delta(x)^{\alpha+b-1}|u(x)|\right]^{\lambda} \leq C \delta(x)^{\alpha \lambda-N} \int_{B(x, 2 \delta(x))} f_{u}(y) d y
$$

for all $x \in \Omega$, where $f_{u}(y)=\left[b \delta(y)^{b-1}|u(y)|+\delta(y)^{b}|\nabla u(y)|\right]^{\lambda}$ for $y \in \Omega$ and $f_{u}(y)=0$ for $y \in \Omega^{c}$. By Lemma 5.1, there is a constant $C_{1} \geq 1$ such that $\left\|f_{u}^{1 / \lambda}\right\|_{L^{\Phi}(\Omega)} \leq C_{1}$, so that $\left\|f_{u}\right\|_{L^{\Phi_{\lambda}(\Omega)}} \leq C_{1}{ }^{\lambda}$.

Here we note that $\Phi_{\lambda}(x, t)$ satisfies $\left(\Phi 6^{*}\right)$ with g^{λ} in place of g and that $r \mapsto$ $r^{\lambda \sigma_{0}} \Phi_{\lambda}^{-1}\left(x, r^{-N}\right)$ is uniformly almost decreasing on $(0, \infty)$. Since $\lambda \alpha \in\left[0, \lambda \sigma_{0}\right]$, we can apply Lemma 3.9 (2) to $f_{u} / C_{1}{ }^{\lambda}, \lambda \alpha$ and Φ_{λ} in place of f, α and Φ respectively, and using ($\Phi 4$), we obtain

$$
\begin{aligned}
\delta(x)^{\alpha+b-1}|u(x)| & \leq C\left[M f_{u}(x)\right]^{1 / \lambda} \Phi_{\lambda}\left(x, M f_{u}(x) / C_{1}^{\lambda}\right)^{-\alpha / N} \\
& \leq C_{2}\left[M f_{u}(x)\right]^{1 / \lambda} \Phi\left(x,\left[M f_{u}(x)\right]^{1 / \lambda}\right)^{-\alpha / N}
\end{aligned}
$$

for all $x \in \Omega$. Hence by ($\Psi 2$) and ($\Psi 3$)

$$
\begin{align*}
\int_{\Omega} \Psi_{\alpha}\left(x, \delta(x)^{\alpha+b-1}|u(x)| / C_{2}\right) d x & \leq A_{4} A_{5} \int_{\Omega} \Phi\left(x,\left[M f_{u}(x)\right]^{1 / \lambda}\right) d x \\
& =A_{4} A_{5} \int_{\Omega} \Phi_{\lambda}\left(x, M f_{u}(x)\right) d x \tag{5.2}
\end{align*}
$$

By Corollary 3.3, $\left\|M f_{u}\right\|_{L^{\Phi} \lambda(\Omega)} \leq C_{3}$, which implies $\int_{\Omega} \Phi_{\lambda}\left(x, M f_{u}(x)\right) d x \leq C_{4}$.
Let $0<\varepsilon \leq 1$. Since

$$
\begin{aligned}
\Phi_{\lambda}\left(x, M f_{\varepsilon u}(x)\right) & =\Phi_{\lambda}\left(x, \varepsilon^{\lambda} M f_{u}(x)\right)=\Phi\left(x, \varepsilon\left[M f_{u}(x)\right]^{1 / \lambda}\right) \\
& \leq A_{2} \varepsilon \Phi\left(x,\left[M f_{u}(x)\right]^{1 / \lambda}\right)=A_{2} \varepsilon \Phi_{\lambda}\left(x, M f_{u}(x)\right)
\end{aligned}
$$

by (2.1), applying (5.2) to εu, we have

$$
\begin{gathered}
\int_{\Omega} \Psi_{\alpha}\left(x, \delta(x)^{\alpha+b-1}|\varepsilon u(x)| / C_{2}\right) d x \leq A_{4} A_{5} \int_{\Omega} \Phi_{\lambda}\left(x, M f_{\varepsilon u}(x)\right) d x \\
\leq A_{2} A_{4} A_{5} \varepsilon \int_{\Omega} \Phi_{\lambda}\left(x, M f_{u}(x)\right) d x \leq A_{2} A_{4} A_{5} C_{4} \varepsilon
\end{gathered}
$$

Thus, taking $\varepsilon=\left(A_{2} A_{4} A_{5} C_{4}\right)^{-1}$ and $C^{*}=C_{2} / \varepsilon$, we obtain the required result.

Applying Theorem 5.2 to special Φ and Ψ_{α} given in Examples 2.1 and 4.2, we obtain the following corollary, which is an extension of Theorem B^{\prime}.

Corollary 5.3. Let Φ and Ψ_{α} be as in Examples 2.1 and 4.2. Suppose $p^{-}>N$ and let $0 \leq \alpha<N / p^{+}$. Then there exist constants $C>0$ and $0<b_{1}<1$ such that

$$
\left\|\delta^{\alpha+b-1} u\right\|_{L^{\Psi_{\alpha}}(\Omega)} \leq C\left\|\delta^{b}|\nabla u|\right\|_{L^{\Phi}(\Omega)}
$$

for all $u \in W_{0}^{1, \Phi}(\Omega)$ and $0 \leq b \leq b_{1}$.
Similarly, applying Theorem 5.2 to special Φ and Ψ_{α} given in Examples 2.2 and 4.3 , we obtain another extension of Theorem B':

Corollary 5.4. Let Φ and Ψ_{α} be as in Examples 2.2 and 4.3. Suppose min $\left(p_{1}^{-}, p_{2}^{-}\right)>$ N and let $0 \leq \alpha<\min \left(N / p_{1}^{+}, N / p_{2}^{+}\right)$. Then there exist constants $C>0$ and $0<b_{1}<1$ such that

$$
\left\|\delta^{\alpha+b-1} u\right\|_{L^{\Psi_{\alpha}}(\Omega)} \leq C\left\|\delta^{b}|\nabla u|\right\|_{L^{\Phi}(\Omega)}
$$

for all $u \in W_{0}^{1, \Phi}(\Omega)$ and $0 \leq b \leq b_{1}$.

References

[1] D. E. Edmunds and W. D. Evans, Hardy operators, function spaces and embeddings, Springer, 2004.
[2] P. Hajłasz, Pointwise Hardy inequalities, Proc. Amer. Math. Soc. 127(2) (1999), 417-423.
[3] P. Hajłasz, P. Koskela and H. Tuominen, Sobolev embeddings, extensions and measure density condition, J. Funct. Anal. 254 (2008), no. 5, 1217-1234.
[4] P. Harjulehto, P. Hästö and M. Koskenoja, Hardy's inequality in variable exponent Sobolev space, Georgian Math. J. 12 (2005), no. 3, 431-442.
[5] P. Hästö, Local-to-global results in variable exponent spaces, Math. Res. Lett. 16 (2009), no. 2, 263-278.
[6] J. Kinnunen and O. Martio, Hardy's inequalities for Sobolev functions, Math. Res. Lett. 4 (1997), no. 4, 489-500.
[7] P. Koskela and J. Lehrback, Weighted pointwise Hardy inequalities, J. London Math. Soc. (2) 79 (2009), no. 3, 757-779.
[8] A. Kufner and L. E. Persson, Weighted inequalities of Hardy type, World Scientific Publishing Co., Inc., River Edge, NJ, 2003.
[9] F.-Y. Maeda, Y. Mizuta, T. Ohno and T. Shimomura, Boundedness of maximal operators and Sobolev's inequality on Musielak-Orlicz-Morrey spaces, Bull. Sci. Math. 137, (2013), 76-96.
[10] Y. Mizuta, E. Nakai, T. Ohno and T. Shimomura, Hardy's inequality in OrliczSobolev spaces of variable exponent, Hokkaido Math. J. 40 (2011), no. 2, 187-203.
[11] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034, Springer-Verlag, 1983.
[12] J. Nečas, Sur une méthode pour résoudre les équations aux dérivées partielles du type elliptique, voisine de la variationnelle, Ann. Scuola Norm. Sup. Pisa, 16 (1962), 305-326.
[13] A. Wannebo, Hardy inequalities, Proc. Amer. Math. Soc. 109(1) (1990), 8595.

4-24 Furue-higashi-machi, Nishi-ku
Hiroshima 733-0872, Japan
E-mail: fymaeda@h6.dion.ne.jp
and
Department of Mechanical Systems Engineering
Hiroshima Institute of Technology
2-1-1 Miyake Saeki-ku Hiroshima 731-5193, Japan
E-mail: y.mizuta.5x@it-hiroshima.ac.jp
and
Faculty of Education and Welfare Science
Oita University
Dannoharu Oita-city 870-1192, Japan
E-mail : t-ohno@oita-u.ac.jp
and
Department of Mathematics
Graduate School of Education
Hiroshima University
Higashi-Hiroshima 739-8524, Japan
E-mail: tshimo@hiroshima-u.ac.jp

