COMPACT EMBEDDINGS FOR SOBOLEV SPACES OF VARIABLE EXPONENTS AND EXISTENCE OF SOLUTIONS FOR NONLINEAR ELLIPTIC PROBLEMS INVOLVING THE p(x)-LAPLACIAN AND ITS CRITICAL EXPONENT

YOSHIHIRO MIZUTA, TAKAO OHNO, TETSU SHIMOMURA AND NAOKI SHIOJI

ABSTRACT. We give a sufficient condition for the compact embedding from $W_0^{k,p(\cdot)}(\Omega)$ to $L^{q(\cdot)}(\Omega)$ in case $\operatorname{ess\,inf}_{x\in\Omega}(Np(x)/(N-kp(x))-q(x))=0,$ where Ω is a bounded open set in \mathbb{R}^N . As an application, we find a nontrivial nonnegative weak solution of the nonlinear elliptic equation

 $-\operatorname{div}\left(|\nabla u(x)|^{p(x)-2}\nabla u(x)\right) = |u(x)|^{q(x)-2}u(x) \quad \text{in } \Omega,$ u(x) = 0 on $\partial \Omega$.

We also consider the existence of a weak solution to the problem above even if the embedding is not compact.

1. INTRODUCTION

In recent years, many authors have studied the generalized Lebesgue spaces; see [2, 5, 8–23, 26–29, 32]. First, let us recall some definitions. Following Orlicz [29] and Kovácik and Rákosník [22], for an open set Ω in \mathbb{R}^N with $N \geq 1$ and a measurable function $p(\cdot): \Omega \to [1,\infty)$, we define the $L^{p(\cdot)}(\Omega)$ -norm of a measurable function f on Ω by

$$\|f\|_{L^{p(\cdot)}(\Omega)} = \inf\left\{\lambda > 0: \int_{\Omega} \left|\frac{f(x)}{\lambda}\right|^{p(x)} dx \le 1\right\}$$

and denote by $L^{p(\cdot)}(\Omega)$ the family of all measurable functions whose $L^{p(\cdot)}(\Omega)$ -norms are finite. Further we denote by $W^{k,p(\cdot)}(\Omega)$ with $k \in \mathbb{N}$ the family of all measurable functions u on Ω such that

$$||u||_{W^{k,p(\cdot)}(\Omega)} = \sum_{0 \le |\alpha| \le k} ||D^{\alpha}u||_{L^{p(\cdot)}(\Omega)} < \infty$$

and by $W_0^{k,p(\cdot)}(\Omega)$ the closure of $C_0^{\infty}(\Omega)$ in $W^{k,p(\cdot)}(\Omega)$.

Recently, Kurata and the fourth author [23] posed the following problem: if a variable exponent $q(\cdot)$ satisfies $2 < \operatorname{ess\,inf}_{x \in \Omega} q(x) \leq \operatorname{ess\,sup}_{x \in \Omega} q(x) \leq 2N/(N-2)$ $(N \ge 3)$ and $q(\cdot)$ is equal to 2N/(N-2) at a point, then does the problem

(1.1)
$$-\Delta u(x) = |u(x)|^{q(x)-2}u(x) \quad \text{in } \Omega \quad \text{and} \quad u(x) = 0 \quad \text{on } \partial\Omega$$

²⁰⁰⁰ Mathematics Subject Classification. 35J20, 46B50, 46E30.

Key words and phrases. Sobolev spaces of variable exponents, compact embeddings, nonlinear elliptic problems.

The fourth author was supported in part by Grant-in-Aid for Scientific Research (C)(No.17540149) Japan Society for Promotion of Science. 1

have a positive solution? When $q(\cdot)$ is a constant, problem (1.1) has been studied by many researchers. If $q(\cdot)$ is a constant smaller than 2N/(N-2), then the embedding from $W_0^{1,2}(\Omega)$ to $L^q(\cdot)(\Omega)$ is compact, and hence the existence of a positive solution to (1.1) is easily obtained by the standard mountain pass theorem. When $q(\cdot) \equiv 2N/(N-2)$, problem (1.1) is quite interesting. If Ω is star-shaped, then Pohozaev [31] showed that there is no solution. If Ω has a nontrivial topology in the sense of \mathbb{Z}_2 -homology, then Bahri and Coron [3] showed that the problem has a positive solution; see also [7]. Even if Ω is contractible, then, under some condition on the shape of Ω , Passaseo [30] obtained a positive solution. In the case when $q(\cdot)$ is a variable exponent and $q(\cdot)$ coincides with 2N/(N-2) at a point in Ω , since the embedding of $W_0^{1,2}(\Omega)$ to $L^{q(\cdot)}(\Omega)$ may not be compact, the existence of positive solution to (1.1) is not trivial. Kurata and the fourth author showed that if there exist $x_0 \in \Omega$, $C_0 > 0$, $\eta > 0$ and 0 < l < 1 such that $\operatorname{ess\,sup}_{x\in\Omega\setminus B_\eta(x_0)}q(x) < 2N/(N-2)$ and

(1.2)
$$q(x) \le \frac{2N}{N-2} - \frac{C_0}{(\log(1/|x-x_0|))^l}$$
 for almost every $x \in \Omega \cap B_\eta(x_0)$,

then the embedding from $W_0^{1,2}(\Omega)$ to $L^{q(\cdot)}(\Omega)$ is compact; see [23, Theorem 2]. As an application of the compact embedding, they obtained a positive solution to (1.1).

Our first aim in this paper is to establish the compact embedding from $W_0^{k,p(\cdot)}(\Omega)$ to $L^{q(\cdot)}(\Omega)$ when $q(\cdot)$ is an exponent satisfying a condition weaker than (1.2). As an application, we show the existence of a nontrivial nonnegative weak solution to the nonlinear elliptic equation

(1.3)
$$\begin{cases} -\operatorname{div}\left(|\nabla u(x)|^{p(x)-2}\nabla u(x)\right) = |u(x)|^{q(x)-2}u(x) & \text{in }\Omega, \\ u(x) = 0 & \text{on }\partial\Omega. \end{cases}$$

Here u is called a weak solution of (1.3) if $u \in W_0^{1,p(\cdot)}(\Omega)$ and

$$\int_{\Omega} \left(|\nabla u(x)|^{p(x)-2} \nabla u(x) \nabla v(x) - |u(x)|^{q(x)-2} u(x) v(x) \right) \, dx = 0$$

for all $v \in W_0^{1,p(\cdot)}(\Omega)$. Our final goal is to find nontrivial nonnegative weak solutions to (1.3), even if the embedding might not be compact.

2. Preliminaries

Throughout this paper, we use the symbol C to denote various positive constants independent of the variables in question. We only use N as the dimension of the Euclidean space \mathbb{R}^N and we set $B_r(x) = \{y \in \mathbb{R}^N : |y - x| < r\}$ for $x \in \mathbb{R}^N$ and r > 0. For a measurable subset E of \mathbb{R}^N , we denote by |E| the Lebesgue measure of E. For a measurable function u, we set $u^+ = \max\{u, 0\}$. Unless otherwise stated, we assume that $N \ge 2$ and Ω is a bounded open set in \mathbb{R}^N .

A measurable function $p(\cdot): \Omega \to [1, \infty)$ is called a variable exponent on Ω . We set

$$p_* = \operatorname{ess\,inf}_{x \in \Omega} p(x)$$
 and $p^* = \operatorname{ess\,sup}_{x \in \Omega} p(x)$

It is worth noting the next result, which follows readily from the definition of $L^{p(\cdot)}$ -norm (see [17, Theorem 1.3]).

Lemma 2.1. If $p(\cdot)$ is a variable exponent on Ω satisfying $1 \le p_* \le p^* < \infty$, then $\min\left\{ \|u\|_{L^{p(\cdot)}(\Omega)}^{p_*}, \|u\|_{L^{p(\cdot)}(\Omega)}^{p^*}\right\} \le \int_{\Omega} |u(x)|^{p(x)} dx \le \max\left\{ \|u\|_{L^{p(\cdot)}(\Omega)}^{p_*}, \|u\|_{L^{p(\cdot)}(\Omega)}^{p^*}\right\}.$

A variable exponent $p(\cdot)$ is said to satisfy the log-Hölder condition on Ω if

$$|p(x) - p(y)| \le \frac{C}{\log(1/|x - y|)} \quad \text{for each } x, y \in \Omega \text{ with } |x - y| < \frac{1}{2},$$

where C is a positive constant. We set

$$p_k^{\sharp}(x) = \begin{cases} Np(x)/(N-kp(x)) & \text{if } 1 \le p(x) < N/k \\ \infty & \text{if } p(x) \ge N/k \end{cases}$$

for each $k \in \mathbb{N}$.

We know the following Sobolev inequality for functions in $W_0^{1,p(\cdot)}(\Omega)$; see [20, Proposition 4.2 (1)].

Lemma 2.2. Let $p(\cdot)$ be a variable exponent on Ω satisfying the log-Hölder condition and $1 \leq p_* \leq p^* < \infty$. If $p^* < N$, then there exists a constant C > 0 such that

$$\|u\|_{L^{p_1^{\sharp}(\cdot)}(\Omega)} \le C \|\nabla u\|_{L^{p(\cdot)}(\Omega)}$$

for $u \in W_0^{1,p(\cdot)}(\Omega)$.

Corollary 2.3. Let $p(\cdot)$ be as in the previous lemma. If $p^* < N/k$ with $k \in \mathbb{N}$, then there exists a constant C > 0 such that

$$\|u\|_{L^{p_k^{\sharp}(\cdot)}(\Omega)} \le C \sum_{|\alpha|=k} \|D^{\alpha}u\|_{L^{p(\cdot)}(\Omega)}$$

for $u \in W_0^{k,p(\cdot)}(\Omega)$.

Proof. Assume $p^* < N/k$ with $k \in \mathbb{N}$. Let $u \in W_0^{k,p(\cdot)}(\Omega)$ and let ℓ be a positive integer with $\ell \leq k$. Then we see from Lemma 2.2 that $u \in W_0^{k-\ell,p_{\ell}^{\sharp}(\cdot)}(\Omega)$, so that

$$\|D^{\alpha}u\|_{L^{p_{\ell}^{\sharp}(\cdot)}(\Omega)} \leq C \sum_{|\beta|=k-\ell+1} \|D^{\beta}u\|_{L^{p_{\ell-1}^{\sharp}(\cdot)}(\Omega)}$$

for $|\alpha| = k - \ell$, where $p_0^{\sharp}(x) = p(x)$. This proves the required result.

3. Compact embeddings

In this section, we assume that $p(\cdot)$ is a variable exponent on Ω satisfying the log-Hölder condition and $1 \leq p_* \leq p^* < \infty$. For a set K in \mathbb{R}^N , we define

$$K(r) = \{ x \in \mathbb{R}^N : \delta_K(x) \le r \} \quad \text{for } r > 0$$

where $\delta_K(x)$ denotes the distance of x to K.

First, as in [23], we show the following noncompact embedding from $W_0^{k,p(\cdot)}(\Omega)$ to $L^{q(\cdot)}(\Omega)$.

Proposition 3.1. Let $x_0 \in \Omega$ and $k \in \mathbb{N}$, and let $q(\cdot) : \Omega \to [1, \infty)$ be a variable exponent on Ω such that there exist C > 0 and $\eta > 0$ satisfying

(3.1)
$$q(x) \ge p_k^{\sharp}(x) - \frac{C}{\log(1/|x - x_0|)} \quad \text{for almost every } x \in \Omega \cap B_{\eta}(x_0).$$

If $p(x_0) < N/k$, then the embedding from $W_0^{k,p(\cdot)}(\Omega)$ to $L^{q(\cdot)}(\Omega)$ is not compact.

Proof. Assume $p(x_0) < N/k$. We may assume that $x_0 = 0$ and $B_1(0) \subset \Omega$. Let $\psi \in C_0^{\infty}(\mathbb{R})$ be a function such that $0 \leq \psi(r) \leq 1, \psi(r) = 0$ for r > 1 and $\psi(r) = 1$ for $0 \leq r < 1/2$. Set

$$\psi_n(x) = n^{N/p_k^{\sharp}(0)} \psi(n|x|)$$

for each $n \in \mathbb{N}$. Then, for $n \ge 2$ and $0 \le |\alpha| \le k$, we note

$$\int_{\Omega} |D^{\alpha}\psi_{n}(x)|^{p(x)} dx \leq C \int_{B_{1/n}(0)} n^{(N/p_{k}^{\sharp}(0)+|\alpha|)p(x)} dx$$
$$\leq C n^{(N/p_{k}^{\sharp}(0)+|\alpha|)(p(0)+C/\log n)} \int_{B_{1/n}(0)} dx \leq C$$

by the log-Hölder condition on $p(\cdot)$. Using (3.1), we have

$$\int_{\Omega} |\psi_n(x)|^{q(x)} dx \ge \int_{B_{1/(2n)}(0)} n^{Nq(x)/p_k^{\sharp}(0)} |\psi(n|x|)|^{q(x)} dx$$
$$\ge C n^N \int_{B_{1/(2n)}(0)} dx = C > 0,$$

which implies that the embedding from $W_0^{k,p(\cdot)}(\Omega)$ to $L^{q(\cdot)}(\Omega)$ is not compact since $\int_{\Omega} |\psi_n(x)|^{p(x)} dx \to 0$ as $n \to \infty$.

As a direct consequence, we have the following result:

Corollary 3.2. Let K be a set in \mathbb{R}^N , and let $x_0 \in K \cap \Omega$ and $k \in \mathbb{N}$. Let $q(\cdot) : \Omega \to [1, \infty)$ be a variable exponent on Ω such that there exist C > 0 and r > 0 satisfying

$$q(x) \ge p_k^{\sharp}(x) - \frac{C}{\log(1/\delta_K(x))}$$
 for almost every $x \in K(r) \cap \Omega$.

If $p(x_0) < N/k$, then the embedding from $W_0^{k,p(\cdot)}(\Omega)$ to $L^{q(\cdot)}(\Omega)$ is not compact.

Proof. Assume $p(x_0) < N/k$. Since $\delta_K(x) \leq |x - x_0|$ for each $x \in \mathbb{R}^N$, we obtain the conclusion by the previous proposition.

For the compact embeddings, we first give the following result.

Proposition 3.3. Assume that $p^* < N/k$ with some $k \in \mathbb{N}$. Let $q(\cdot)$ be a variable exponent on Ω such that $1 \leq q_*$ and

(3.2)
$$\operatorname{essinf}_{x \in \Omega} \left(p_k^{\sharp}(x) - q(x) \right) > 0.$$

Then the following hold.

- (i) The embedding of $W_0^{k,p(\cdot)}(\Omega)$ to $L^{q(\cdot)}(\Omega)$ is compact.
- (ii) If Ω satisfies the cone condition, then the embedding of W^{k,p(·)}(Ω) to L^{q(·)}(Ω) is compact.

The case (i) in the proposition is essentially a special case of [22, Theorem 3.8]; the case (ii) is a slight generalization of [14, Theorem 1.3] to the case $1 \le p_*$.

Proof of Proposition 3.3. We only give a proof of (ii), since (i) can be proved similarly. Assume that Ω satisfies the cone condition. By (3.2), take $\varepsilon > 0$ such that $p_k^{\sharp}(x) - q(x) > 2\varepsilon > 0$ for almost every $x \in \Omega$. Since $p(\cdot)$ is uniformly continuous on

 Ω , one can find open balls $\{B_j\}_{j=1}^l$ and $\{\tilde{B}_j\}_{j=1}^l$ with $l \in \mathbb{N}$ such that $\overline{\Omega} \subset \bigcup_{i=1}^l B_i$, $\overline{B}_j \subset \tilde{B}_j$ and

$$\inf_{x\in \tilde{B}_j\cap\Omega} p_k^{\sharp}(x) - \varepsilon \ge \sup_{x\in \tilde{B}_j\cap\Omega} p_k^{\sharp}(x) - 2\varepsilon \ge \operatorname{ess\,sup}_{x\in \tilde{B}_j\cap\Omega} q(x) \quad \text{for each } j = 1, \dots, l.$$

Setting $p_j = \inf_{x \in \tilde{B}_j \cap \Omega} p(x)$ and $q_j = \operatorname{ess\,sup}_{x \in \tilde{B}_j \cap \Omega} q(x)$, we see that $q_j < Np_j/(N-kp_j)$ and the embedding from $\{u \in W^{k,p(\cdot)}(\Omega) : u = 0 \text{ on } \Omega \setminus \tilde{B}_j\}$ to $W^{k,p_j}(\Omega)$ and the embedding from $\{u \in L^{q_j}(\Omega) : u = 0 \text{ on } \Omega \setminus \tilde{B}_j\}$ to $L^{q(\cdot)}(\Omega)$ are continuous. By the Rellich-Kondrachov theorem (see [1, Theorem 6.3]), $W^{k,p_j}(\Omega)$ is compactly embedded into $L^{q_j}(\Omega)$. Now, take $\varphi_j \in C^1(\Omega; [0,1])$ such that $|\nabla \varphi_j| \leq C$ on Ω , $\varphi_j = 1$ on $\Omega \cap B_j$ and $\varphi_j = 0$ on $\Omega \setminus \tilde{B}_j$. It is easy to see that the linear operator $u \mapsto \varphi_j u$ is continuous on $W^{k,p(\cdot)}(\Omega)$. Noting $\varphi_j u = 0$ on $\Omega \setminus \tilde{B}_j$ for each $u \in W^{k,p(\cdot)}(\Omega)$, we can infer that $\{\varphi_j u : u \in W^{k,p(\cdot)}(\Omega)\}$ is compactly embedded into $L^{q(\cdot)}(\Omega)$. Passing to subsequences repeatedly, we obtain the conclusion. \Box

For a compact set K in \mathbb{R}^N and $s \in [0, N]$, following Mattila [25], we say that the (N - s)-dimensional upper Minkowski content of K is finite if

$$|K(r)| \le Cr^s$$
 for small $r > 0$.

Now we are concerned with the compact embedding from $W_0^{k,p(\cdot)}(\Omega)$ to $L^{q(\cdot)}(\Omega)$ when $q(\cdot)$ and $p_k^{\sharp}(\cdot)$ coincides on some part of Ω .

Theorem 3.4. Let $\varphi(\cdot) \colon [1/r_0, \infty) \to (0, \infty)$ be a continuous function such that

- (i) $\varphi(r)/\log r$ is nonincreasing on $[1/r_0, \infty)$,
- (ii) $\varphi(r) \to \infty \text{ as } r \to \infty$

for some $r_0 \in (0, 1/e)$. Let K be a compact set in \mathbb{R}^N whose (N - s)-dimensional upper Minkowski content is finite for some s with $0 < s \leq N$. Let $k \in \mathbb{N}$ and let $q(\cdot)$ be a variable exponent on Ω such that

(iii)
$$1 \le q_* \le q^* < \infty$$
,
(iv) $\operatorname{ess\,inf}_{\Omega \setminus K(r_0)} \left(p_k^{\sharp}(x) - q(x) \right) > 0$,
(v) $q(x) \le p_k^{\sharp}(x) - \frac{\varphi(1/\delta_K(x))}{\log(1/\delta_K(x))}$ for almost every $x \in K(r_0) \cap \Omega$.

Then the embedding from $W_0^{k,p(\cdot)}(\Omega)$ to $L^{q(\cdot)}(\Omega)$ is compact.

Proof. Without loss of generality, we may assume $\varphi(r)/\log r \to 0$ as $r \to \infty$; otherwise, we have $\operatorname{ess\,inf}_{x\in\Omega}(p_k^{\sharp}(x)-q(x))>0$, so that the conclusion follows from Proposition 3.3 (i).

First, consider the case $p^* < N/k$. Let us prove that

(3.3)
$$\lim_{\varepsilon \to +0} \sup\left\{ \int_{K(\varepsilon) \cap \Omega} |v(x)|^{q(x)} dx : v \in W_0^{k, p(\cdot)}(\Omega), \|v\|_{W^{k, p(\cdot)}(\Omega)} \le 1 \right\} = 0.$$

For this purpose, take β with $0 < \beta < s/(p^*)_k^{\sharp}$. Let $\varepsilon > 0$ such that $\varepsilon^{-1} > 1/r_0$ and $\varphi(1/\varepsilon) \ge 1$. We set $\eta_n = \varepsilon^{-\beta n}$ for each $n \in \mathbb{N}$. Then, by the assumptions on φ , we have for each $n \in \mathbb{N}$ and $x \in (K(\varepsilon^n) \setminus K(\varepsilon^{n+1})) \cap \Omega$,

$$\eta_n^{q(x)-p_k^{\sharp}(x)} \le \eta_n^{-\frac{\varphi(1/\delta_K(x))}{\log(1/\delta_K(x))}} \le \eta_n^{-\frac{\varphi(1/\varepsilon^{n+1})}{\log(1/\varepsilon^{n+1})}} = \exp(-(\beta n/(n+1))\varphi(1/\varepsilon^{n+1})) \equiv A_n$$

Since

$$|K(r) \cap \Omega| \le Cr^s$$
 for all $r > 0$

by the boundedness of Ω , we have

$$\int_{(K(\varepsilon^n)\setminus K(\varepsilon^{n+1}))\cap\Omega} \eta_n^{q(x)} dx \le \eta_n^{(p^*)_k^{\sharp}} \int_{K(\varepsilon^n)\cap\Omega} dx \le C\varepsilon^{n(s-\beta(p^*)_k^{\sharp})}.$$

Hence we have

$$\begin{split} &\int_{(K(\varepsilon^{n})\setminus K(\varepsilon^{n+1}))\cap\Omega} |v(x)|^{q(x)} dx \\ &\leq \int_{(K(\varepsilon^{n})\setminus K(\varepsilon^{n+1}))\cap\Omega} |v(x)|^{q(x)} \left(\frac{|v(x)|}{\eta_{n}}\right)^{p_{k}^{\sharp}(x)-q(x)} dx + \int_{(K(\varepsilon^{n})\setminus K(\varepsilon^{n+1}))\cap\Omega} \eta_{n}^{q(x)} dx \\ &\leq A_{n} \int_{(K(\varepsilon^{n})\setminus K(\varepsilon^{n+1}))\cap\Omega} |v(x)|^{p_{k}^{\sharp}(x)} dx + C\varepsilon^{n(s-\beta(p^{*})_{k}^{\sharp})}, \end{split}$$

so that for each $n_0 \in \mathbb{N}$, we obtain

$$\int_{K(\varepsilon^{n_0})\cap\Omega} |v(x)|^{q(x)} dx = \sum_{n=n_0}^{\infty} \int_{(K(\varepsilon^n)\setminus K(\varepsilon^{n+1}))\cap\Omega} |v(x)|^{q(x)} dx$$
$$\leq \left(\sup_{n\geq n_0} A_n\right) \int_{\Omega} |v(x)|^{p_k^{\sharp}(x)} dx + C \sum_{n=n_0}^{\infty} \varepsilon^{n(s-\beta(p^*)_k^{\sharp})}.$$

Since $A_n \to 0$ as $n \to \infty$, $s - \beta(p^*)_k^{\sharp} > 0$ and $\|v\|_{L^{p_k^{\sharp}(\cdot)}(\Omega)} \leq C \|v\|_{W^{k,p(\cdot)}(\Omega)}$ for all $v \in W_0^{k,p(\cdot)}(\Omega)$ by Corollary 2.3, (3.3) is obtained by letting $n_0 \to \infty$. Let $\{v_j\}$ be a bounded sequence in $W_0^{k,p(\cdot)}(\Omega)$. We may assume that it converges

Let $\{v_j\}$ be a bounded sequence in $W_0^{k,p(\cdot)}(\Omega)$. We may assume that it converges weakly to some $v \in W_0^{k,p(\cdot)}(\Omega)$. By Proposition 3.3 (ii), the embedding from $W^{k,p(\cdot)}(B)$ to $L^{q(\cdot)}(B)$ is compact for each ball $B \subset \Omega$ such that $\operatorname{ess\,inf}_{x \in B}(p_k^{\sharp}(x) - q(x)) > 0$. Let $n \in \mathbb{N}$. Since $\Omega \setminus K(2^{-n})$ is a bounded open set in \mathbb{R}^N , there exists a finite family of balls contained in $\mathbb{R}^N \setminus K(2^{-n-1})$ whose union contains $\Omega \setminus K(2^{-n})$. Since $\operatorname{ess\,inf}_{x \in \Omega \setminus K(2^{-n-1})}(p_k^{\sharp}(x) - q(x)) > 0$, we can find a subsequence $\{v_{j_k,n}\}$ of $\{v_j\}$ such that $v_{j_k,n} \to v$ in $L^{q(\cdot)}(\Omega \setminus K(2^{-n}))$ as well as almost everywhere on $\Omega \setminus K(2^{-n})$. Using the diagonal method, we can find a subsequence $\{v_{j_n}\}$ such that $v_{j_n} \to v$ in $L^{q(\cdot)}(\Omega \setminus K(\varepsilon))$ for each small $\varepsilon > 0$ and $v_{j_n} \to v$ almost everywhere on Ω . It follows that

$$\begin{split} & \overline{\lim_{n \to \infty}} \int_{\Omega} |v_{j_n}(x) - v(x)|^{q(x)} dx \\ &= \overline{\lim_{n \to \infty}} \left(\int_{K(\varepsilon) \cap \Omega} |v_{j_n}(x) - v(x)|^{q(x)} dx + \int_{\Omega \setminus K(\varepsilon)} |v_{j_n}(x) - v(x)|^{q(x)} dx \right) \\ &= \overline{\lim_{n \to \infty}} \int_{K(\varepsilon) \cap \Omega} |v_{j_n}(x) - v(x)|^{q(x)} dx \end{split}$$

for each small $\varepsilon > 0$, which together with (3.3) implies that $||v_{j_n} - v||_{L^{q(\cdot)}(\Omega)} \to 0$ as $n \to \infty$.

Next consider the general case. We choose $\varepsilon_0 > 0$ such that

$$q^* < N(N/k - \varepsilon_0)/(k\varepsilon_0) - \varphi(1/r_0)/\log(1/r_0).$$

We set $p_{\varepsilon_0}(x) = \min\{p(x), N/k - \varepsilon_0\}$. Since the embedding from $W_0^{k, p(\cdot)}(\Omega)$ to $W_0^{k, p_{\varepsilon_0}(\cdot)}(\Omega)$ is bounded, we can apply the first considerations to obtain the required result.

As a special case of Theorem 3.4, we have the following corollary, which gives an extension of [23, Theorem 2]. We put $\log^1 r = \log r$ and $\log^{n+1} r = \log(\log^n r)$, inductively.

Corollary 3.5. Let $k \in \mathbb{N}$ and let $q(\cdot)$ be a variable exponent on Ω such that $1 \leq q_* \leq q^* < \infty$. Suppose there exist $x_0 \in \Omega$, C > 0, $n \in \mathbb{N}$ and small $r_0 > 0$ such that

$$\operatorname{essinf}_{x \in \Omega \setminus B_{r_0}(x_0)} \left(p_k^{\sharp}(x) - q(x) \right) > 0$$

and

$$q(x) \le p_k^{\sharp}(x) - \frac{C \log^n(1/|x - x_0|)}{\log(1/|x - x_0|)} \quad for \ almost \ every \ x \in B_{r_0}(x_0)$$

Then the embedding from $W_0^{k,p(\cdot)}(\Omega)$ to $L^{q(\cdot)}(\Omega)$ is compact.

4. Existence of a solution to (1.3): compact embedding case

In this section, we assume that $p(\cdot)$ is a variable exponent on Ω satisfying the log-Hölder condition and $1 < p_* \le p^* < N$. Further let $q(\cdot)$ be a variable exponent on Ω such that $p^* < q_* \le q(x) \le p_1^{\sharp}(x)$ for almost every $x \in \Omega$.

As an application of Theorem 3.4, we show an existence result of nontrivial nonnegative weak solutions to (1.3) as follows.

Theorem 4.1. Assume that the embedding from $W_0^{1,p(\cdot)}(\Omega)$ to $L^{q(\cdot)}(\Omega)$ is compact. Then there exists a nontrivial nonnegative weak solution of (1.3).

In the case of $\operatorname{ess\,inf}_{x\in\Omega}(p_1^{\sharp}(x)-q(x))>0$, Fan and Zhang obtained such a result in [15, Theorem 4.7]. Although $q(\cdot)$ can be equal to $p_1^{\sharp}(\cdot)$ at some points, the proof in [15] also works in our case with minor changes since we consider the case that the embedding from $W_0^{1,p(\cdot)}(\Omega)$ to $L^{q(\cdot)}(\Omega)$ is compact. However, for the reader's convenience, we give a proof of our theorem.

Let X be a Banach space. We say that $u \in X$ is a critical point of $I \in C^1(X; \mathbb{R})$ if the Fréchet derivative I'(u) of I at u is zero. We say that $\{u_n\} \subset X$ is a Palais-Smale sequence for I if $\{I(u_n)\}$ is bounded and $I'(u_n) \to 0$ as $n \to \infty$ in the dual space of X. We also say that I satisfies the Palais-Smale condition if every Palais-Smale sequence for I has a convergent subsequence.

We consider a functional $I: W_0^{1,p(\cdot)}(\Omega) \to \mathbb{R}$ defined by

$$I(u) = \int_{\Omega} \left(\frac{1}{p(x)} |\nabla u(x)|^{p(x)} - \frac{1}{q(x)} u^+(x)^{q(x)} \right) dx \quad \text{for } u \in W_0^{1, p(\cdot)}(\Omega).$$

The Gâteaux derivative I'(u) of I at $u \in W_0^{1,p(\cdot)}(\Omega)$ is given by

$$\langle I'(u), v \rangle = \lim_{t \to 0} \frac{I(u+tv) - I(u)}{t}$$

=
$$\int_{\Omega} \left(|\nabla u(x)|^{p(x)-2} \nabla u(x) \nabla v(x) - u^+(x)^{q(x)-1} v(x) \right) dx$$

 $\overline{7}$

for each $v \in W_0^{1,p(\cdot)}(\Omega)$. By the Vitali convergence theorem, we see that I' is continuous from $W_0^{1,p(\cdot)}(\Omega)$ to its dual space $(W_0^{1,p(\cdot)}(\Omega))'$, and hence $I \in C^1(W_0^{1,p(\cdot)}(\Omega); \mathbb{R})$. The following is essentially due to Boccardo and Murat [4, Theorem 2.1].

Proposition 4.2. Let $\{u_n\} \subset W_0^{1,p(\cdot)}(\Omega)$ be a Palais-Smale sequence for I. Then $\{u_n\}$ is bounded in $W_0^{1,p(\cdot)}(\Omega)$. Further there exist a subsequence $\{u_{n_i}\}$ of $\{u_n\}$ and $u \in W_0^{1,p(\cdot)}(\Omega)$ such that $\{\nabla u_{n_i}(x)\}$ converges to $\nabla u(x)$ for almost every $x \in \Omega$.

Proof. Setting $\beta = \sup_{n \in \mathbb{N}} I(u_n)$, we have

(4.1)
$$\int_{\Omega} \left(\frac{1}{p^*} |\nabla u_n(x)|^{p(x)} - \frac{1}{q_*} u_n^+(x)^{q(x)} \right) dx \le I(u_n) \le \beta \quad \text{for all } n \in \mathbb{N}$$

Since $I'(u_n) \to 0$ as $n \to \infty$ in $(W_0^{1,p(\cdot)}(\Omega))'$, we have

(4.2)
$$\int_{\Omega} \left(|\nabla u_n(x)|^{p(x)} - u_n^+(x)^{q(x)} \right) dx = \langle I'(u_n), u_n \rangle \ge - \|u_n\|_{W^{1,p(\cdot)}(\Omega)}$$

for each large positive integer n. Subtracting (4.2) divided by q_* from (4.1) gives

$$\left(\frac{1}{p^*} - \frac{1}{q_*}\right) \int_{\Omega} |\nabla u_n(x)|^{p(x)} dx \le \beta + \frac{1}{q_*} \|u_n\|_{W^{1,p(\cdot)}(\Omega)} \le C(\|\nabla u_n\|_{L^{p(\cdot)}(\Omega)} + 1);$$

we used Lemma 2.2 in the second inequality. Thus Lemma 2.1 gives

$$\|\nabla u_n\|_{L^{p(\cdot)}(\Omega)} + 1 \ge C \min\left\{ \|\nabla u_n\|_{L^{p(\cdot)}(\Omega)}^{p_*}, \|\nabla u_n\|_{L^{p(\cdot)}(\Omega)}^{p^*} \right\}$$

so that $\{u_n\}$ is bounded in $W_0^{1,p(\cdot)}(\Omega)$. Hence, passing to a subsequence, we may assume that $\{u_n\}$ converges weakly to some u in $W_0^{1,p(\cdot)}(\Omega)$ and $\{u_n(x)\}$ converges to u(x) for almost every $x \in \Omega$. For $\eta > 0$, let $T_\eta \colon \mathbb{R} \to \mathbb{R}$ be a function such that

$$T_{\eta}(t) = t$$
 for $|t| \le \eta$, $T_{\eta}(t) = \eta t/|t|$ for $|t| > \eta$.

Since $\{T_{\eta}(u_n - u)\}$ converges weakly to 0 in $W_0^{1,p(\cdot)}(\Omega)$ and $\{u_n\}$ is bounded in $L^{q(\cdot)}(\Omega)$ by Lemma 2.2, we have

$$\overline{\lim_{n \to \infty}} \int_{\Omega} \left(|\nabla u_n(x)|^{p(x)-2} \nabla u_n(x) - |\nabla u(x)|^{p(x)-2} \nabla u(x) \right) \nabla (T_\eta(u_n(x) - u(x))) \, dx$$

$$= \overline{\lim_{n \to \infty}} \int_{\Omega} u_n^+(x)^{q(x)-1} T_\eta(u_n(x) - u(x)) \, dx \le C\eta,$$

where C > 0 is a constant which is independent of $\eta > 0$. We set

$$\rho_n(x) = \left(|\nabla u_n(x)|^{p(x)-2} \nabla u_n(x) - |\nabla u(x)|^{p(x)-2} \nabla u(x) \right) \left(\nabla u_n(x) - \nabla u(x) \right).$$

We note that $\rho_n \ge 0$ almost everywhere for each $n \in \mathbb{N}$. Further we set

 $E_n = \{x \in \Omega : |u_n(x) - u(x)| \le \eta\}, \quad F_n = \{x \in \Omega : |u_n(x) - u(x)| > \eta\}$ for each $n \in \mathbb{N}$. We fix $\theta \in (0, 1)$. Since

$$\begin{split} &\int_{\Omega} \rho_n(x)^{\theta} \, dx \leq \left(\int_{E_n} \rho_n(x) \, dx \right)^{\theta} |E_n|^{1-\theta} + \left(\int_{F_n} \rho_n(x) \, dx \right)^{\theta} |F_n|^{1-\theta} \quad \text{for each } n \in \mathbb{N}, \\ &|F_n| \to 0 \text{ and } \{\rho_n\} \text{ is bounded in } L^1(\Omega), \text{ we have} \end{split}$$

$$\overline{\lim_{n \to \infty}} \int_{\Omega} \rho_n(x)^{\theta} \, dx \le (C\eta)^{\theta} |\Omega|^{1-\theta}.$$

Letting $\eta \to 0$, we have $\int_{\Omega} \rho_n(x)^{\theta} dx \to 0$. Thus we may assume $\{\rho_n(x)\}$ converges to 0 for almost every $x \in \Omega$. Since $p_* > 1$, we see that a subsequence of $\{\nabla u_n(x)\}$ converges to $\nabla u(x)$ for almost every $x \in \Omega$.

Lemma 4.3. Suppose the embedding from $W_0^{1,p(\cdot)}(\Omega)$ to $L^{q(\cdot)}(\Omega)$ is compact. Then the functional I satisfies the Palais-Smale condition.

Proof. Let $\{u_n\} \subset W_0^{1,p(\cdot)}(\Omega)$ be a Palais-Smale sequence for *I*. By the previous proposition, we may assume that $\{u_n\}$ converges weakly to some $u \in W_0^{1,p(\cdot)}(\Omega)$, and $\{u_n(x)\}$ and $\{\nabla u_n(x)\}$ converge to u(x) and $\nabla u(x)$ almost every $x \in \Omega$, respectively. Since $\langle I'(u_n), u \rangle \to 0$, the Vitali convergence theorem implies that

$$\int_{\Omega} |\nabla u(x)|^{p(x)} dx = \int_{\Omega} u^+(x)^{q(x)} dx$$

This equality together with $\langle I'(u_n), u_n\rangle \to 0$ and the compact embedding assumption give

(4.3)
$$\lim_{n \to \infty} \int_{\Omega} |\nabla u_n(x)|^{p(x)} dx = \lim_{n \to \infty} \int_{\Omega} u_n^+(x)^{q(x)} dx = \int_{\Omega} u^+(x)^{q(x)} dx = \int_{\Omega} |\nabla u(x)|^{p(x)} dx.$$

Now, we consider the function

$$w_n(x) = 2^{p^* - 1} \left(|\nabla u_n(x)|^{p(x)} + |\nabla u(x)|^{p(x)} \right) - |\nabla u_n(x) - \nabla u(x)|^{p(x)}.$$

Since $w_n(x) \ge 0$ for almost every $x \in \Omega$, we see from Fatou's lemma and (4.3) that

$$2^{p^*} \int_{\Omega} |\nabla u(x)|^{p(x)} dx - \lim_{n \to \infty} \int_{\Omega} |\nabla u_n(x) - \nabla u(x)|^{p(x)} dx$$
$$\geq \int_{\Omega} \lim_{n \to \infty} w_n(x) dx = 2^{p^*} \int_{\Omega} |\nabla u(x)|^{p(x)} dx,$$
$$\lim_{n \to \infty} \int_{\Omega} |\nabla u_n(x)|^{p(x)} dx = 0$$

so that

$$\lim_{n \to \infty} \int_{\Omega} |\nabla u_n(x) - \nabla u(x)|^{p(x)} \, dx = 0.$$

Hence we see that $\{u_n\}$ converges strongly to u in $W_0^{1,p(\cdot)}(\Omega)$.

We recall the following variant of the mountain pass theorem; see e.g., [34].

Theorem 4.4. Let X be a Banach space and let I be a C^1 functional on X such that I(0) = 0,

- (i) there exist positive constants $\kappa, r > 0$ such that $I(u) \ge \kappa$ for all $u \in X$ with ||u|| = r, and
- (ii) there exists an element $v \in X$ such that I(v) < 0 and ||v|| > r.

Define

$$c = \inf_{\gamma \in \Gamma} \max_{0 \le t \le 1} I(\gamma(t)),$$

where

(4.4) $\Gamma = \{ \gamma \in C([0,1]; X) : \gamma(0) = 0, I(\gamma(1)) < 0, \|\gamma(1)\| > r \}.$ Then c > 0 and for each $\varepsilon > 0$, there exists $u \in X$ such that $|I(u) - c| \le \varepsilon$ and $\|I'(u)\| \le \varepsilon.$

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. First we find r > 0 such that

(4.5)
$$\inf\{I(u): u \in W_0^{1,p(\cdot)}(\Omega), \|u\|_{W^{1,p(\cdot)}(\Omega)} = r\} > 0.$$

Taking r > 0 so small, by Lemma 2.2, we have $\|\nabla u\|_{L^{p(\cdot)}(\Omega)} \leq 1$ and $\|u\|_{L^{q(\cdot)}(\Omega)} \leq 1$ for all $u \in W_0^{1,p(\cdot)}(\Omega)$ with $\|u\|_{W^{1,p(\cdot)}(\Omega)} = r$. Then for each $u \in W_0^{1,p(\cdot)}(\Omega)$ with $\|u\|_{W^{1,p(\cdot)}(\Omega)} = r$, we have

$$\int_{\Omega} u^{+}(x)^{q(x)} dx \le \|u\|_{L^{q(\cdot)}(\Omega)}^{q_{*}} \le C \|u\|_{L^{p_{1}^{\sharp}(\cdot)}(\Omega)}^{q_{*}} \le C \|\nabla u\|_{L^{p(\cdot)}(\Omega)}^{q_{*}}$$

by Lemmas 2.1 and 2.2, so that

$$I(u) \ge \frac{1}{p^*} \|\nabla u\|_{L^{p(\cdot)}(\Omega)}^{p^*} - \frac{C}{q_*} \|\nabla u\|_{L^{p(\cdot)}(\Omega)}^{q_*}$$

Since $p^* < q_*$, we have (4.5) if r > 0 is small.

Next we prove $I(tu) \to -\infty$ as $t \to \infty$ for $u \in W_0^{1,p(\cdot)}(\Omega)$ with $u^+ \neq 0$. In fact, if $u \in W_0^{1,p(\cdot)}(\Omega)$ such that $u^+ \neq 0$, then we see that

$$I(tu) \le t^{p^*} \int_{\Omega} \frac{1}{p(x)} |\nabla u(x)|^{p(x)} dx - t^{q_*} \int_{\Omega} \frac{1}{q(x)} u^+(x)^{q(x)} dx \to -\infty$$

as $t \to \infty$, since $p^* < q_*$.

Now the required result follows from Lemma 4.3 and Theorem 4.4. $\hfill \Box$

As a direct consequence of Theorem 4.1, we have the following:

Corollary 4.5. Suppose all hypotheses in Theorem 3.4 hold for k = 1. Then there exists a nontrivial nonnegative weak solution of (1.3).

5. Existence of a solution to (1.3): Noncompact embedding case

Our final aim is to deal with the existence result of a nontrivial nonnegative weak solution to (1.3) in the case that the embedding may not be compact.

For real sequences $\{a_n\}$ and $\{b_n\}$, we write $a_n = b_n + o(1)$ or $a_n \leq b_n + o(1)$ if $\lim_n (a_n - b_n) = 0$ or $\overline{\lim_n (a_n - b_n)} \leq 0$, respectively.

Proposition 5.1. Let $p(\cdot)$ be a log-Hölder continuous function on Ω with $1 < p_* \le p^* < N$ and let $q(\cdot)$ be a measurable function on Ω such that $p^* < q_* \le q(x) \le p_1^{\sharp}(x)$ for almost every $x \in \Omega$. Assume $\inf_{u \in \mathcal{N}_I} I(u) < \inf_{u \in \mathcal{N}_J} J(u)$, where

$$I(u) = \int_{\Omega} \left(\frac{1}{p(x)} |\nabla u(x)|^{p(x)} - \frac{1}{q(x)} u^{+}(x)^{q(x)} \right) dx \quad \text{for } u \in W_{0}^{1,p(\cdot)}(\Omega),$$

$$J(u) = \int_{\Omega} \left(\frac{1}{p(x)} |\nabla u(x)|^{p(x)} - \frac{1}{p_{1}^{\sharp}(x)} u^{+}(x)^{p_{1}^{\sharp}(x)} \right) dx \quad \text{for } u \in W_{0}^{1,p(\cdot)}(\Omega),$$

$$\mathcal{N}_{I} = \left\{ u \in W_{0}^{1,p(\cdot)}(\Omega) \setminus \{0\} : \int_{\Omega} |\nabla u(x)|^{p(x)} dx = \int_{\Omega} u^{+}(x)^{q(x)} dx \right\},$$

$$\mathcal{N}_{J} = \left\{ u \in W_{0}^{1,p(\cdot)}(\Omega) \setminus \{0\} : \int_{\Omega} |\nabla u(x)|^{p(x)} dx = \int_{\Omega} u^{+}(x)^{p_{1}^{\sharp}(x)} dx \right\}.$$

Then problem (1.3) has a nontrivial nonnegative weak solution.

Proof. We set $c = \inf_{u \in \mathcal{N}_I} I(u)$, and define Γ by (4.4) with $X = W_0^{1,p(\cdot)}(\Omega)$. Along the similar lines as those in the proof of Theorem 4.1, we can easily see that $\Gamma \neq \emptyset$, $\mathcal{N}_J \neq \emptyset$, $\mathcal{N}_I \neq \emptyset$ and (4.5) holds for small r > 0.

First we show

(5.1)
$$c = \inf_{\gamma \in \Gamma} \max_{0 \le t \le 1} I(\gamma(t)).$$

Let $u \in \mathcal{N}_I$. For $\alpha_u > 1$ large enough, consider the path $\gamma_u \in \Gamma$ defined by $\gamma_u(t) = t\alpha_u u$ for $t \in [0, 1]$. Since $I(u) = \max_{0 \le t \le 1} I(\gamma_u(t))$, we have

$$c \ge \inf_{\gamma \in \Gamma} \max_{0 < t < 1} I(\gamma(t))$$

On the other hand, let $\gamma \in \Gamma$. Then

$$\int_{\Omega} (|\nabla \gamma(1)|^{p(x)} - (\gamma(1)^+)^{q(x)}) \, dx < 0.$$

As in the proof of Theorem 4.1, we find a small t > 0 satisfying

$$\int_{\Omega} (|\nabla \gamma(t)|^{p(x)} - (\gamma(t)^{+})^{q(x)}) \, dx > 0.$$

By the intermediate value theorem, there exists $t \in (0, 1)$ such that $\gamma(t) \in \mathcal{N}_I$, which implies $c \leq \inf_{\gamma \in \Gamma} \max_{0 \leq t \leq 1} I(\gamma(t))$. Thus (5.1) holds.

Now, in view of Theorem 4.4, c > 0. Moreover there exists $\{u_n\} \subset W_0^{1,p(\cdot)}(\Omega)$ such that $I(u_n) \to c$ and $I'(u_n) \to 0$ in $(W_0^{1,p(\cdot)}(\Omega))'$. By Proposition 4.2 and c > 0, we find a constant C > 0 such that

(5.2)
$$\frac{1}{C} \le \int_{\Omega} |\nabla u_n(x)|^{p(x)} \, dx \le C \quad \text{for large } n \in \mathbb{N}.$$

Here we may assume that $\{u_n\}$ converges weakly to some $u \in W_0^{1,p(\cdot)}(\Omega)$; further $\{u_n(x)\}$ and $\{\nabla u_n(x)\}$ converge to u(x) and $\nabla u(x)$ for almost every $x \in \Omega$, respectively. Then it follows that I'(u) = 0. If we show that $u \neq 0$, then u is a nontrivial nonnegative weak solution of (1.3).

On the contrary, suppose u = 0. Since $I(u_n) \to c > 0$ and $\langle I'(u_n), u_n \rangle \to 0$, taking a subsequence if necessary, we may assume $u_n^+ \neq 0$ for all $n \in \mathbb{N}$. Then for each $n \in \mathbb{N}$, there exists a unique $t_n \in (0, \infty)$ such that

$$\int_{\Omega} |\nabla(t_n u_n(x))|^{p(x)} \, dx = \int_{\Omega} (t_n u_n^+(x))^{p_1^{\sharp}(x)} \, dx,$$

i.e., $t_n u_n \in \mathcal{N}_J$. We will show $t_n \leq 1 + o(1)$. On the contrary, if there exists $\varepsilon > 0$ such that $t_n \geq 1 + \varepsilon$ for all $n \in \mathbb{N}$, then

$$t_n^{p^*} \int_{\Omega} |\nabla u_n(x)|^{p(x)} dx \ge \int_{\Omega} |\nabla (t_n u_n(x))|^{p(x)} dx$$
$$= \int_{\Omega} (t_n u_n^+(x))^{p_1^{\sharp}(x)} dx \ge t_n^{q_*} \int_{\Omega} u_n^+(x)^{p_1^{\sharp}(x)} dx$$

for all $n \in \mathbb{N}$. Using Lebesgue's convergence theorem, we have

$$\begin{split} \int_{\Omega} |\nabla u_n(x)|^{p(x)} \, dx &= \int_{\Omega} u_n^+(x)^{q(x)} \, dx + o(1) \\ &= \int_{\{x \in \Omega: u_n(x) \le 1\}} u_n^+(x)^{q(x)} \, dx + \int_{\{x \in \Omega: u_n(x) > 1\}} u_n^+(x)^{q(x)} \, dx + o(1) \\ &\le \int_{\Omega} \min\{u_n^+(x), 1\} \, dx + \int_{\Omega} u_n^+(x)^{p_1^{\sharp}(x)} \, dx + o(1) \\ &\le \int_{\Omega} u_n^+(x)^{p_1^{\sharp}(x)} \, dx + o(1). \end{split}$$

Hence it follows that

$$\int_{\Omega} |\nabla u_n(x)|^{p(x)} dx \ge t_n^{q_* - p^*} \int_{\Omega} u_n^+(x)^{p_1^{\sharp}(x)} dx \ge (1 + \varepsilon)^{q_* - p^*} \int_{\Omega} u_n^+(x)^{p_1^{\sharp}(x)} dx$$
$$\ge (1 + \varepsilon)^{q_* - p^*} \left(\int_{\Omega} |\nabla u_n(x)|^{p(x)} dx + o(1) \right),$$

which together with (5.2) yields a contradiction. Thus we have shown $t_n \leq 1 + o(1)$. On the other hand, for each $n \in \mathbb{N}$, take a unique number $s_n > 0$ such that

(5.3)
$$\int_{\Omega} |\nabla(s_n u_n(x))|^{p(x)} dx = \int_{\Omega} (s_n u_n^+(x))^{q(x)} dx$$

i.e., $s_n u_n \in \mathcal{N}_I$. We see easily that $I(s_n u_n) = \max_{s \ge 0} I(su_n)$ for each $n \in \mathbb{N}$. By (5.2), (5.3) and $\langle I'(u_n), u_n \rangle = o(1)$, we infer that $s_n = 1 + o(1)$, so that

$$I(u_n) = I(s_n u_n) + o(1) = \max_{s \ge 0} I(s u_n) + o(1) \ge I(t_n u_n) + o(1).$$

Let $\varepsilon \in (0, 1)$. Then, noting

$$\int_{\{x \in \Omega: q(x) \le p_1^{\sharp}(x) - \varepsilon\}} (t_n u_n^+(x))^{q(x)} dx$$

$$\leq \int_{\Omega} \min\{t_n u_n^+(x), 1\} dx + \int_{\Omega} (t_n u_n^+(x))^{p_1^{\sharp}(x) - \varepsilon} dx = o(1),$$

we obtain

$$\begin{aligned} c &= I(u_n) + o(1) \ge I(t_n u_n) + o(1) \\ &\ge \int_{\Omega} \left(\frac{1}{p(x)} |\nabla(t_n u_n(x))|^{p(x)} - \frac{1}{p_1^{\sharp}(x) - \varepsilon} (t_n u_n^+(x))^{p_1^{\sharp}(x)} \right) \, dx + o(1) \\ &= J(t_n u_n) + \int_{\Omega} \left(\frac{1}{p_1^{\sharp}(x)} - \frac{1}{p_1^{\sharp}(x) - \varepsilon} \right) (t_n u_n^+(x))^{p_1^{\sharp}(x)} \, dx + o(1) \\ &\ge \inf_{v \in \mathcal{N}_A} J(v) - C\varepsilon, \end{aligned}$$

where C is a constant which is independent of $\varepsilon \in (0,1)$. Since $\varepsilon \in (0,1)$ is arbitrary, we conclude that $c \geq \inf_{v \in \mathcal{N}_J} J(v)$, which contradicts our assumption. Hence it follows that $u \neq 0$, as required.

We denote by $\mathcal{D}^{1,p(\cdot)}(\mathbb{R}^N)$ the completion of $C_0^{\infty}(\mathbb{R}^N)$ by the norm $\|\nabla u\|_{L^{p(\cdot)}(\mathbb{R}^N)}$ in $C_0^{\infty}(\mathbb{R}^N)$. **Theorem 5.2.** Let $p(\cdot) : \mathbb{R}^N \to \mathbb{R}$ be a log-Hölder continuous function with $1 < p_* \leq p^* < N$, and let $q(\cdot) : \mathbb{R}^N \to \mathbb{R}$ be a measurable function such that $p^* < q_* \leq q(x) \leq p_1^{\sharp}(x)$ for almost every $x \in \mathbb{R}^N$. Assume that $\mathcal{D}^{1,p(\cdot)}(\mathbb{R}^N)$ is continuously embedded into $L^{p_1^{\sharp}(\cdot)}(\mathbb{R}^N)$, i.e., there exists a constant C > 0 such that

(5.4)
$$\|u\|_{L^{p_1^{\sharp}(\cdot)}(\mathbb{R}^N)} \leq C \|\nabla u\|_{L^{p(\cdot)}(\mathbb{R}^N)} \quad \text{for all } u \in \mathcal{D}^{1,p(\cdot)}(\mathbb{R}^N).$$

Assume also that there exist a measurable subset D of \mathbb{R}^N and a number q_0 such that

(5.5)
$$\overline{\lim_{R \to \infty}} |\{x \in B_1(0) : Rx \in D\}| < |B_1(0)|,$$

 $N\underline{p}/(N + p_* - \underline{p}) < q_0 < N\underline{p}/(N - \underline{p}), \text{ and } \operatorname{ess sup}_{x \in \mathbb{R}^N \setminus D} q(x) \leq q_0, \text{ where } \underline{p} = \underline{\lim}_{|x| \to \infty} p(x).$ Then there exists R > 0 such that for each bounded open set $\overline{\Omega}$ in \mathbb{R}^N which contains $B_R(0)$, problem (1.3) has a nontrivial nonnegative weak solution.

Proof. We set

$$J_{\mathbb{R}^{N}}(u) = \int_{\mathbb{R}^{N}} \left(\frac{1}{p(x)} |\nabla u(x)|^{p(x)} - \frac{1}{p_{1}^{\sharp}(x)} u^{+}(x)^{p_{1}^{\sharp}(x)} \right) dx \quad \text{for } u \in \mathcal{D}^{1,p(\cdot)}(\mathbb{R}^{N})$$
$$\mathcal{N}_{J_{\mathbb{R}^{N}}} = \left\{ u \in \mathcal{D}^{1,p(\cdot)}(\mathbb{R}^{N}) \setminus \{0\} : \int_{\mathbb{R}^{N}} |\nabla u(x)|^{p(x)} dx = \int_{\mathbb{R}^{N}} u^{+}(x)^{p_{1}^{\sharp}(x)} dx \right\}.$$

By Lemma 2.1 we have for $u \in \mathcal{N}_{J_{\mathbb{D}N}}$

$$\min\left\{ \|\nabla u\|_{L^{p(\cdot)}(\mathbb{R}^{N})}^{p_{*}}, \|\nabla u\|_{L^{p(\cdot)}(\mathbb{R}^{N})}^{p^{*}}\right\} \leq \int_{\mathbb{R}^{N}} |\nabla u(x)|^{p(x)} dx$$
$$= \int_{\mathbb{R}^{N}} u^{+}(x)^{p_{1}^{\sharp}(x)} dx \leq \max\left\{ \|u^{+}\|_{L^{p_{1}^{\sharp}(\cdot)}(\mathbb{R}^{N})}^{(p_{1}^{\sharp})_{*}}, \|u^{+}\|_{L^{p_{1}^{\sharp}(\cdot)}(\mathbb{R}^{N})}^{(p_{1}^{\sharp})_{*}}\right\},$$

which together with (5.4) implies that

$$\inf_{u\in\mathcal{N}_{J_{\mathbb{R}^N}}}\|\nabla u\|_{L^{p(\cdot)}(\mathbb{R}^N)}>0.$$

Hence we infer that

$$\inf_{u \in \mathcal{N}_{J_{\mathbb{R}^N}}} J_{\mathbb{R}^N}(u) > 0$$

Choose any p_0 such that

(5.6)
$$1 < p_0 < \underline{p} \text{ and } \frac{Np_0}{N + p_* - p_0} < q_0 < \frac{Np_0}{N - p_0}.$$

Let $\bar{u}_1 \in W_0^{1,p_0}(B_1(0))$ be a weak solution of the problem

(5.7)
$$\begin{cases} -\operatorname{div}\left(|\nabla u(x)|^{p_0-2}\nabla u(x)\right) = u(x)^{q_0-1} & \text{in } B_1(0), \\ u(x) > 0 & \text{in } B_1(0), \\ u(x) = 0 & \text{on } \partial B_1(0). \end{cases}$$

According to [24, Theorem 1] or [33, Proposition 2.1], we see that $\bar{u}_1 \in C^{1,\beta}(\overline{B_1(0)})$ for some $\beta \in (0, 1)$. Hence, for each R > 0, $\bar{u}_R(x) \equiv R^{-p_0/(q_0-p_0)}\bar{u}_1(x/R)$ is a weak solution of (5.7). Take $R_1 > 0$ such that $\max_{|x| \leq R} \bar{u}_R(x) \leq 1$ for $R \geq R_1$. For each R > 0, there exists a unique $t_R \in (0, \infty)$ such that

$$\int_{B_R(0)} |\nabla (t_R \bar{u}_R(x))|^{p(x)} \, dx = \int_{B_R(0)} |t_R \bar{u}_R(x)|^{q(x)} \, dx$$

From (5.5), we find $\delta > 0$ and $R_2 \ge R_1$ such that

$$|\{x \in B_1(0) : Rx \in D\}| \le |B_1(0)| - \delta$$
 for each $R \ge R_2$.

We will show $\{t_R : R \ge R_2\}$ is bounded. If $t_R > 1$ with $R \ge R_2$, then we have

$$t_R^{p^*} \int_{B_R(0)} |\nabla \bar{u}_R(x)|^{p(x)} dx \ge \int_{B_R(0)} |t_R \bar{u}_R(x)|^{q(x)} dx \ge t_R^{q_*} \int_{B_R(0) \setminus D} |\bar{u}_R(x)|^{q_0} dx$$
$$= t_R^{q_*} \left(\int_{B_R(0)} |\bar{u}_R(x)|^{q_0} dx - \int_{B_R(0) \cap D} |\bar{u}_R(x)|^{q_0} dx \right),$$

which implies

$$t_R^{q_*-p^*} \leq \frac{\int_{B_1(0)} R^{\frac{q_0(p_0-p(Rx))}{q_0-p_0}} |\nabla \bar{u}_1(x)|^{p(Rx)} \, dx}{\int_{B_1(0)} |\bar{u}_1(x)|^{q_0} \, dx - \sup\{\int_A |\bar{u}_1(x)|^{q_0} \, dx : A \subset B_1(0), |A| \leq |B_1(0)| - \delta\}}.$$

Let $r_0 > 0$ such that $p(x) > p_0$ for all $x \in \mathbb{R}^N$ with $|x| \ge r_0$. By (5.6) and the boundedness of $|\nabla \bar{u}_1|$, we have for $R \ge r_0$,

$$\begin{split} \int_{B_1(0)} R^{\frac{q_0(p_0 - p(Rx))}{q_0 - p_0}} |\nabla \bar{u}_1(x)|^{p(Rx)} \, dx \\ &\leq C \left(\int_{|x| < r_0/R} R^{\frac{q_0(p_0 - p(Rx))}{q_0 - p_0}} \, dx + \int_{r_0/R \le |x| \le 1} R^{\frac{q_0(p_0 - p(Rx))}{q_0 - p_0}} \, dx \right) \\ &\leq C \left(R^{\frac{q_0(p_0 - p_*)}{q_0 - p_0}} \left(\frac{r_0}{R}\right)^N + 1 \right) \le C, \end{split}$$

where each C is a positive constant which is independent of R. Hence we insist that $\{t_R : R \ge R_2\}$ is bounded. Then we have

$$\int_{B_R(0)} \left(\frac{1}{p(x)} |\nabla (t_R \bar{u}_R(x))|^{p(x)} - \frac{1}{q(x)} |t_R \bar{u}_R(x)|^{q(x)} \right) dx \le C \int_{B_R(0)} |\nabla \bar{u}_R(x)|^{p(x)} dx$$
$$= C \int_{B_1(0)} R^{-\frac{q_0 p(Rx)}{q_0 - p_0} + N} |\nabla \bar{u}_1(x)|^{p(Rx)} dx \le C \left(R^{-\frac{q_0 p_*}{q_0 - p_0}} r_0^N + R^{-\frac{q_0 p_0}{q_0 - p_0} + N} \right) \to 0$$

as $R \to \infty$. Hence we can find $R \ge R_2$ satisfying

$$\int_{B_R(0)} \left(\frac{1}{p(x)} |\nabla(t_R \bar{u}_R(x))|^{p(x)} - \frac{1}{q(x)} |t_R \bar{u}_R(x)|^{q(x)} \right) \, dx < \inf_{v \in \mathcal{N}_{J_{\mathbb{R}^N}}} J_{\mathbb{R}^N}(v).$$

Now, let Ω be any bounded open set which contains $B_R(0)$. Extending \bar{u}_R on Ω with $\bar{u}_R(x) = 0$ for $x \in \Omega \setminus B_R(0)$, we have $\bar{u}_R \in W_0^{1,p(\cdot)}(\Omega)$. Letting I, J, \mathcal{N}_I and \mathcal{N}_J be as in the previous proposition, we have

$$\inf_{v \in \mathcal{N}_I} I(v) \le I(t_R \bar{u}_R) < \inf_{v \in \mathcal{N}_{J_{\mathbb{R}^N}}} J_{\mathbb{R}^N}(v) \le \inf_{v \in \mathcal{N}_J} J(v).$$

Hence problem (1.3) has a nontrivial nonnegative weak solution on Ω by the proposition.

Finally, we give a sufficient condition for (5.4). We recall the following result, which is a special case of [6, Theorem 1.8].

Lemma 5.3. Let $p(\cdot) : \mathbb{R}^N \to \mathbb{R}$ be a log-Hölder continuous function which satisfies $1 < p_* \le p^* < N$ and

$$|p(x) - p(y)| \le \frac{C}{\log(e + |x|)} \quad \text{for each } x, y \in \mathbb{R}^N \text{ with } |y| \ge |x|.$$

Then the fractional integral operator

$$u \mapsto \int_{\mathbb{R}^N} \frac{u(y)}{|x-y|^{N-1}} \, dy$$

is bounded from $L^{p(\cdot)}(\mathbb{R}^N)$ to $L^{p_1^{\sharp}(\cdot)}(\mathbb{R}^N)$.

Corollary 5.4. Let $p(\cdot) : \mathbb{R}^N \to \mathbb{R}$ be as in the previous lemma, and let D, q_0 and $q(\cdot)$ be as in Theorem 5.2. Then there exists R > 0 such that for each bounded open set Ω in \mathbb{R}^N which contains $B_R(0)$, problem (1.3) has a nontrivial nonnegative weak solution.

Proof. Using the previous lemma, we can show that $\mathcal{D}^{1,p(\cdot)}(\mathbb{R}^N)$ is continuously embedded into $L^{p_1^{\sharp}(\cdot)}(\mathbb{R}^N)$ by similar lines as those in [35, p. 88]. Hence we obtain the conclusion by Theorem 5.2.

References

- [1] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, Academic Press, 2003.
- [2] C. O. Alves and M. A. S. Souto, Existence of solutions for a class of problems in \mathbb{R}^N involving the p(x)-Laplacian, Contribution to Nonlinear Analysis, Progress in Nonlinear Differential Equations and Their Applications **66** (2006), 17-32.
- [3] A. Bahri and M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math. 41 (1988), 253-294.
- [4] L. Boccardo and F. Murat, Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Anal. 19 (1992), 581–597.
- [5] M.-M. Boureanu, Existence of solutions for an elliptic equation involving the p(x)-Laplace operator, Electronic J. Diff. Eq., Vol.2006 (2006), No. 97, 1-10.
- [6] C. Capone, D. Cruz-Uribe, SFO and A. Fiorenza, The fractional maximal operators on variable L^p spaces, Rev. Mat. Iberoamericana 23 (2007), no. 3, 743-770.
- [7] J. Coron, Topologie et cas limite des injections de Sobolev, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), 209-212.
- [8] L. Diening, Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces L^{p(·)} and W^{k,p(·)}, Math. Nachr. 268 (2004), 31-43.
- [9] T.-L. Dinu, Entire solutions of multivalued nonlinear Schrödinger equations in Sobolev spaces with variable exponent, Nonlinear Anal. 65 (2006), 1414-1424.
- [10] D. E. Edmunds and J. Rákosník, Sobolev embeddings with variable exponent, Studia Math. 143 (2000), 267–293.
- [11] X. Fan, Solutions for p(x)-Laplacian Dirichlet problems with singular coefficients, J. Math. Anal. Appl. **312** (2005), 464-477.
- [12] X. Fan and C. Ji, Existence of infinitely many solutions for a Neumann problem involving the p(x)-Laplacian, J. Math. Anal. Appl. **334** (2007), 248-260.
- [13] X. Fan and X. Han, Existence and multiplicity of solutions for p(x)-Laplacian equations in \mathbb{R}^N , Nonlinear Anal. 59 (2004), 173-188.
- [14] X. Fan, J. Shen and D. Zhao, Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega)$, J. Math. Anal. Appl. **262** (2001), 749-760.
- [15] X. Fan and G.-H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal. **52** (2003), 1843-1852.
- [16] X. Fan and D. Zhao, A class of De Giorgi type and Hölder continuity, Nonlinear Anal. 36 (1999), 295-318.
- [17] X. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$, J. Math. Anal. Appl. 263 (2001), 424-446.

- [18] T.Futamura, Y. Mizuta and T. Shimomura, Sobolev embeddings for Riesz potential space of variable exponent, Math. Nachr. 279 (2006), 1463-1473.
- [19] T. Futamura, Y. Mizuta and T. Shimomura, Sobolev embeddings for variable exponent Riesz potentials on metric spaces, Ann. Acad. Sci. Fenn. Math. 31 (2006), 495–522.
- [20] P. Harjulehto and P. Hästö, Sobolev inequalities for variable exponents attaining the values 1 and n, to appear in Publ. Mat.
- [21] P. Harjulehto, P. Hästö, M. Koskenoja and S. Varonen, The Dirichlet energy integral and variable exponent Sobolev spaces with zero boundary values, Potential Anal. 25 (2006), 205-222.
- [22] O. Kovácik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czechoslovak Math. J. **41** (1991), 592-618.
- [23] K. Kurata and N. Shioji, Compact embedding from $W_0^{1,2}(\Omega)$ to $L^{q(x)}(\Omega)$ and its application to nonlinear elliptic boundary value problem with variable critical exponent, J. Math. Anal. Appl. **339** (2008), 1386-1394.
- [24] G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (1988), 1203-1219.
- [25] P. Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge University Press, 1995.
- [26] Y. Mizuta, T. Ohno and T. Shimomura, Integrability of maximal functions for generalized Lebesgue spaces with variable exponent, Math. Nachr. 281 (2008), 386-395.
- [27] Y. Mizuta, T. Ohno and T. Shimomura, Sobolev's inequalities and vanishing integrability for Riesz potentials of functions in the generalized Lebesgue space $L^{p(\cdot)}(\log L)^{q(\cdot)}$, to appear in J. Math. Anal. Appl.
- [28] Y. Mizuta and T. Shimomura, Sobolev's inequality for Riesz potentials with variable exponent satisfying a log-Hölder condition at infinity, J. Math. Anal. Appl. 311 (2005), 268-288.
- [29] W. Orlicz, Über konjugierte Exponentenfolgen, Studia Math. 3 (1931), 200–211.
- [30] D. Passaseo, Multiplicity of positive solutions of nonlinear elliptic equations with critical Sobolev exponent in some contractile domains, Manuscripta Math. 65 (1989), no. 2, 147– 165.
- [31] S. Pohozaev, Eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$, Soviet Math. Dokl. 6 (1965), 1408-1411.
- [32] M. Růžička, Electrorheological fluids: modeling and mathematical theory, Lecture Notes in Math. 1748, Springer, 2000.
- [33] P. Takáč, Nonlinear spectral problems for degenerate elliptic operators, Stationary partial differential equations. Vol. I, Handb. Differ. Equ. North-Holland, Amsterdam, 2004, 385-489.
- [34] M. Willem, *Minimax theorems*, Progress in Nonlinear Differential Equations and their Applications 24, Birkhäuser Boston, Inc., Boston, MA, 1996.
- [35] W. P. Ziemer, Weakly differentiable functions, Graduate Texts in Mathematics, 120, Springer-Verlag, Berlin, 1989.

(Y. Mizuta) Department of Mathematics, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8521, Japan

E-mail address: mizuta@mis.hiroshima-u.ac.jp

(T. Ohno) General Arts, Hiroshima National College of Maritime Technology, Higashino Oosakikamijima Toyotagun 725-0231, Japan

E-mail address: ohno@hiroshima-cmt.ac.jp

(T. Shimomura) Department of Mathematics, Graduate School of Education, Hiroshima University, Higashi-Hiroshima 739-8524, Japan

E-mail address: tshimo@hiroshima-u.ac.jp

(N. Shioji) Department of Mathematics, Graduate School of Environment and Information Sciences, Yokohama National University, Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan

E-mail address: shioji@math.sci.ynu.ac.jp